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This is an answer to question 4.

In the questions posted on March 14, question 4 concerns only the case of moduli
space of pseudo-holomorphic curves of genus 0 with one marked point and the
homology class is primitive. So there is no bubble. If the question is only on this
particular case, it seems to us that there is nothing more to reply than what we
wrote on March 21. (Surjectivity, injectivity, smoothness etc. that is mentioned
in March 23’s post is an immediate consequence of the implicit function theorem,
which is certainly a standard result in this case.) On the other hand, in the post
on March 23, ‘gluing’ is mentioned. (Line 7 of the paragraph starting Q4.) This
is contradictory. So we gave up replying the question word by word but explain
the construction of Kuranishi structure on the moduli space of pseudo-holomorphic
curves in general.

Our construction of Kuranishi charts does not use Fredholm theory at infinity.

We do not understand what means ‘slicing’, the word that appeared in the post
on March 23.

There is a well-established technique to find the moduli space as a manifold
with boundary in certain situation. It was used by Donaldson in gauge theory
(in his first paper [D1] to show that 1 instanton moduli of ASD connections on 4
manifold M with b5 = 0 has M as a boundary.) In this method we take some
parameter (that is the degree of concentration of the curvature in the case of ASD
equation and the parameter T" in the situation of Section 1 below). We consider the
submanifold where that parameter T is large, say Ty. We throw away everything
where T' > Tj. Then the part T' = Ty becomes the boundary of the ‘moduli space’
we obtain. It was more detailed in a book by Freed and Uhlenbeck [FU] in the gauge
theory case. Abouzaid used this technique in his paper [Ab] about exotic spheres
in T*S™, including the case of corners. At least as far as the results in [FOnl] are
concerned we can use this technique since we need to study moduli space of virtual
dimension 0 and 1 only to prove all the results in [FOn1]. In other words we can use
something like Theorem 1.10 for large and fixed T', but does not need to estimate
the T derivative or study the bahavior of the moduli space at T' = co. The reason is
as follows. In case we consider codimension 2 or higher codimension corners, then
since the virtual dimension of the moduli space is 1 or 0, the restriction to that
corner has negative virtual dimension. So after generic multivalued perturbation
the zero set on the corner becomes empty. So all we need is to extend multivalued
perturbation. (The C° extention is enough for this purpose.) For codimension
1 boundary and the case of moduli space of virtual dimension 1, after generic
perturbation we have isolated zero of the perturbed moduli space. So, for large
Ty, Theorem 1.10 or its analogue implies that the zero on the ‘boundary T = Ty’
corresponds one to one to the zero at the actual boundary (T = o0). So we do not
need to see carefully what happens in a neighborhood of the set T = oo. (All we
need is to extend this given perturbation at T = Ty to the inside.) This argument
is good enough to establish all the results in [FOnl].

As we mentioned explicitly in [FOnl, page 978 line 13] our argument there, in
analytic points, is basically the same as in [MS]. (Let us remark however the proof
of ‘surjectivity’ that is written in [FOnl, Section 14] is slightly different from one
in [MS].) So the novelity of [FOnl] does not lie in the analytic point but in the
general strategy, that is
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(1) To define some general notion of ‘spaces’ that contain various moduli spaces
of pseudo-holomorphic curves as examples and work out transversality issue
in that abstract setting.

(2) Use multivalued abstract perturbation, that we call multisection.

When we go beyond that and prove results such as those we had proved in
[FOOO1], we need to study the moduli spaces of higher virtual dimension and
study chain level intersection theory. In that case we are not sure whether the
above mentioned technique is enough. (It may work. But we did not think enough
about it.) It is not the way we had taken in [FOOO1].

Our method in [FOOO1] was using exponential decay estimate ([FOOO1, Lemma
A1.59]) and use s = 1/T as the coordinate on the normal direction to the stratum to
define smooth coordinate of the Kuranishi structure. We refer [FOOO1, Subsection
A1.4] and [FOOO1, Subection 7.1.2] where this construction is written.

Below, we provide more details of the way how to use alternating method to
construct smooth chart at infinity following the argument in [FOOO1, Subsection
Al.4].

1. A SIMPLE CASE

1.1. Setting. We will describe the general case in Section 2. To simplify the no-
tation and clarify the main analytic point of the proof we prove the case where we
glue holomorphic maps from two stable bordered Riemann surfaces to (X, L) in
this section.
Let ¥; be a bordered Riemann surface with one end. (i = 1,2.) We identify
their ends as follows.
¥ = K3 U((—5T,00) x [0,1]),
Yo = ((—OO,5T) X [0, ].D U K.
Here K; are compact and oo are the ends. We put
Ypr=K;U((-5T,5T) x [0,1]) U Ks. (1.2)

We use 7 for the coordinate of the factors (=57, 00), (—o0,5T), or (—5T,5T) and
t for the coordinate of the second factor [0, 1].

Let X be a symplectic manifold with compatible (or tame) almost complex
structure and L be its Lagrangian submanifold.

Let

(1.1)

ul(Ez,aEZ)—MX,LL Z:1,2
be pseudo-holomorphic maps of finite energy. Then, by the removable singularity
theorem that is now standard, we have asymptotic value

TILII;O ui(r,t) € L (1.3)
and
lim wug(7,t) € L. (1.4)
T——00

The limits (1.3) and (1.4) are independent of ¢.
We assume that the limit (1.3) coincides with (1.4) and denote it by py € L.
We fix a coordinate of X and of L in a neighborhood of py. So a trivialization
of the tangent bundle TX and T'L in a neighborhood of py is fixed. Hereafter we
assume the following:

Diam(uq1([—5T, 00) x [0,1])) < €1, Diam(us((—00,5T] x [0,1])) < €. (1.5)
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The maps u; determine homology classes 8; = [u;] € Ha(X, L).
We take K9P a compact subset of the interior of K; and take

E; C T(K?™%uiTX @ A% (1.6)

a finite dimensional linear subspace consisting of smooth sections supported in
Kpbst
oSk,

For simplicity we also fix a complex structure of the source ;. The version

where it can move will be discussed later. We also assume that ¥; equipped with

marked points Z; is stable. The process to add marked points to stabilize it will be
discussed later also. Let

Dy, 0t L2 11 5((5,05:); i TX,u{TL) — L% 5(S;;u; TX @ A™) (1.7)

be the linearization of the Cauchy-Riemann equation. Here we define the weighted
Sobolev space we use as follows.

Definition 1.1. ([FOOOL1, Section 7.1.3])! Let Lfn_Hyloc((Zi,8Ei);ufTX;u;‘TL)
be the set of the sections s of u;T'X which is locally of L?  -class, (Namely its
differential up to order m + 1 is of L? class. Here m is sufficiently large, say larger
than 10.) We also assume s(z) € u;TL for z € 9%;.

The weighted Sobovel space Lfnﬂ’é((&, 0%;);uiTX, ufTL) is the set of all pairs
(s,v) of elements s of L2, | 1,.((,0%);uf TX;uf TL) and v € Tp, L, (here py € L
is the point (1.3) or (1.4)) such that

m+1

Z / TN TR (s — Pal(v))]? < oo, (1.8)
k=0 Y Zi\Ki

where Pal : T),) X — T, (X is defined by the trivialization we fixed right after
(1.4). (Here £ is 4 for i = 1 and — for ¢ = 2.) The norm is defined as the sum of
(1.8), the norm of v and the L? | norm of s on K;. (See (1.26).)

Lfn, s(EiurTX @ A%) is defined similarly without boundary condition and with
out v. (See (1.28).)

When we define D,,,0 we forget v component and use s only.

Remark 1.2. The positive number ¢ is chosen as follows. (1.3) and a standard
estimate imply that there exists d; > 0 such that

—u t —ul7| 1.
Tu i (1,t) < Cre (1.9)

for any k. We choose § smaller than d;/10. (1.9) implies
(D,,,0)(Pal(v)) < Cre21I71/10,
Therefore (1.7) is defined and bounded.

It is a standard fact that (1.7) is Fredholm.
We work under the following assumption.

Assumption 1.3.
Dy, 01 L2 11 5((56,0%:); i TX,u;TL) — L% 5(S;;u;TX @ A)/E;  (1.10)

n [FOOO1] L? space is used in stead of L2, space.
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is surjective. Moreover the following (1.12) holds. Let (D,,,d) *(E;) be the kernel
of (1.10). We define

Devioo t LY,y 5((36,05:); uf TX,u; TL) — Ty, L (1.11)
by
Dev; oo(s,v) = v.
Then
Devi oo — Deva oot (Dy,0) H(E1) @ (Dy,0)~H(Ba) — Ty, L (1.12)
is surjective.
Let us start stating the result. Let
u': (B7,0%7) — (X, L) (1.13)
be a smooth map. We consider the following condition depending € > 0.

Condition 1.4. (1) u'|k, is e-close to u;|k, in C* sense.
(2) The diameter of u'([—5T, 5T x [0,1]) is smaller than e.

We take €5 sufficiently small compared to the ‘injectivity radius’ of X so that
the next definition makes sense.? For u’ satisfying Condition 1.4 for € < €5 :

Iy : B —» T(32r; (W)*TX @A)

is the complex linear part of the parallel translation along the short geodesic (be-
tween u;(z) and u'(2). Here z € K2Pt). We put

The equation we study is
ou' =0, mod E(u') & Ea(u'). (1.15)

Remark 1.5. In the actual construction of Kuranishi structure, we take several
u;’s and take E;’s for each of them. Then in place of Ej(u’) & E2(u’) we take sum
of finitely many of them. Here we simplify the notation. There is no difference
between the proof of Theorem 1.10 and the corresonding result in case we take
several such u;’s and FE;’s. See [Fu2, pages 4-5] and Section 2.

Theorem 1.10 describes all the solutions of (1.15). To state this precisely we
need a bit more notations.
We consider the following condition for u} : (X;,0%;) — (X, L).

Condition 1.6. (1) ul|k, is e-close to u;|k, in C* sense.
(2) The diameter of u)([—5T,00) x [0,1]), (resp. uh((—o0,5T]) x [0,1])) is
smaller than e.

2More precisely, we assume that
{(z,y) € X x X | d(z,y) < e2} C E({(z,v) € TX | [v| < €}),

where E : {(z,v) € TX | |v| < e} — X is induced by an exponential map of certain connection of
TX. See (1.30).
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Then we define
Lyt By = T(S3; ()" TX @ A%Y)
by using the parallel transport in the same way as I, . (This makes sense if
satisfies Condtion 1.6 for € < €3.) We put
Ei(u;) = Ly (E). (1.16)

So we can define an equation

ou, =0, mod E;(u}). (1.17)
Definition 1.7. The set of solutions of equation (1.17) with finite energy and
satisfying Condition 1.6 for € = €3 is denoted by M ((%;, 2;); B:)c,- Here f3; is the
homology class of w;.
Remark 1.8. In the usual story of pseudo-holomorphic curve, we identify u; and
u} if there exists a biholomorphic map v : (£;,Z;) — (2, Z;) such that u, = u; o v.
In our situation where ¥; has no sphere or disk bubble and has nontrivial boundary
with at least one boundary marked points (that is 7 = 400), such v is necessary
the identity map. Namely 3; has no nontrivial automorphism.

The surjectivity of (1.11), (1.12) and the implicit function theorem imply that if
€5 is small then there exists a finite dimensional vector space V; and its neighborhood
V; of 0 such that

MEB((84, 2); Bi)ex = Vi
Since we assume that ¥; is nonsigular the group Aut((X;, Z;), w;) is trivial. (In the
case when there is a sphere bubble, the automorphism group can be nontrivial.
That case will be discussed later.)

For any p; € V; we denote by uf* : (X;,0%;) — (X, L) the corresponding solution
of (1.17).

We have an evaluation map

eVZ}OO : MEl((Eza ’gl)ﬂ ﬂi)sz — L
that is smooth. Namely

evioo(u;) = Tgrinoo (T, t).

(Here + = + for i = 1 and — for i = 2.)®> We consider the fiber product:
MPH(S1,21); B1)ey X2 MP2((S2,22): B2)ey- (1.18)
The surjectivity of (1.12) implies that this fiber product is transversal so is
Vi xp Va.
And an element of Vi x, V5 is written as p = (p1, p2).

Definition 1.9. Let 8 = 31 + 2. We denote by MF1TE2((31, 7); B), the set of
solutions of (1.15) satisfying the Condition 1.4 with ez = e.

Theorem 1.10. For each sufficiently small €3 and sufficiently large T, there exist
€1,€3 and a map

Glug : MPL((31,21); B1)ey X1 MP2((29, 2); Ba)e, — METE2(21, 2); B).,

—

that is a diffeomorphism to its image. The image contains ME1+E2((S1,2); B)e, -

3This is a consequence of the fact that w; is pseudo-holomorphic outside a compact set and
has finite energy.
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The result about exponential decay estimate of this map is in Subsection 1.4.
(Theorem 1.34.)

1.2. Proof of Theorem 1.10 : 1 - Bump function and weighted Sobolev
norm. The proof of Theorem 1.10 was given in [FOOO1, Section 7.1.3]. The
exponential decay estimate of the solution was proved in [FOOO1, Section Al.4]
together with a slightly modified version of the proof of Theorem 1.10. Here we
follow the proof of [FOOO1, Section Al.4] and give its more detail. As mentioned
there the origin of the proof is Donaldson’s paper [D2], and its Bott-Morse version
in [Ful].

We first introduce certain bump functions. First let Ar C Xr and By C X1 be
the domains defined by

Ap =[-T—1,-T+1]x [0,1],  Br=[T—1,T+1] x[0,1].
We may regard Ar, By C ;. The third domain is
X =[-1,1 x [0,1] € 7.

We may also regard X C %;.
Let x%, x4 be smooth functions on [-5T, 5T x [0, 1] such that

1 7<-T-1
G(rt) = 1.19
xa (i) {0 > -T+1. (1.19)
x4 =1-x%.
We define
1 7<T-1
(1, 1) = 1.20
Xis (7 t) {0 F>T+1. (1.20)
Xg =1-x5-
We define
1 7<-1
(rt) = 1.21
XE () {O T (121

— —
Xy =1-xx.
We extend these functions to X and ¥, (¢ = 1,2) so that they are locally constant
outside [-5T, 5T x [0, 1]. We denote them by the same symbol.

We next introduce weighted Sobolev norms and their local versions for sections
on Y or X; as follows.
We define e; 5 : 3; — [1,00) of C* class as follows.

=TT if 7 > 1 — 5T
e15(mt) <=1 on K3 (1.22)
€[1,100  ifr<1-5T

AT it < 5T — 1
1 on Ko (1.23)
[1,10] if 7>57T—1

e2,5(7, 1)

m
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We also define ey s : ¥ — [1,00) as follows:

= 0757 ifl<7<5T—1
= Ol 5T if -1>7>1-5T

ers(m,t) ¢ =1 on K7 UK, (1.24)
€ [1,10] if T =57 <1lor|r+5T| <1

€ [e79/10,e°79] if |7] < 1.

The weighted Sobolev norm we use for L?, s(3;ufTX @ A%) is

IsllZ: = = Z/ ei.s|V¥s|?voly, . (1.25)
’ k=02
For (s,v) € L3n+1,5((2i7 0%;);uiTX,ufTL) we define
m+1
6.0l =3 [ (9¥sols,
k::m ' (1.26)

+ Z / ei.5|V¥(s — Pal(v))[*voly, + ||v]|2.

We next define a weighted Sobolev norm for the sections on Xp. Let
se L (37, 0%7);u* TX,u*TL).

Since we take m large, s is continuous. So 5(0,1/2) € T,1/2)X is well defined.
There is a canonical trivialization of TX in a neighborhood of py that we fixed right
after (1.4). We use it to define Pal below. We put

m+1 m—+1
||3H%3n+1 s = Z / |V*s|?voly, + Z/ |V*s|?vols,
T k=0'K1 k=0 7 K2
s (1.27)
+ Z / er.5|VF (s — Pal(s(0,1/2)))[*voly,
o / [-5T,5T]x[0,1]
+1s(0,1/2)|*.
For
s€ L2 ((Zr,087);u"TX @ A)
we define
Islis, =" [ enslVisfol, (1.28)
m,s =0 ZT

These norms were used in [FOOO1, Section 7.1.3].
For a subset W of ; or Xr we define |[s||z2 wes,), [ISllL2,  (wesy) by restrict-

ing the domain of the integration (1.28) or (1.27) to W.
Let (sj,v;) € L2, 1 5((24,0%:);u; TX,ufTL) for j = 1,2. We define the inner
product among them by:

{(s1,v1), (82,U2)>>L§ :/E > (s1 — Palvy, s — Palus)
b (1.29)

+/ (51,82) + (v1,v2).

i



THIRD+FOURTH ANSWER V86 9

We also use an exponential map. (The same map was used in [FOOOL, pages
410-411].) We take a diffeomorphism

E=(E,E) : {(z,v) eTX | |v]<e} > X xX (1.30)
to its image such that
dE. t
Eq(z,v) =z, % =0

=0
and
E(z,v) € L x L, forxe L,veT,L.
Furthermore we may take it so that
E(z,v) = (xz,2 +v) (1.31)

on a neighborhood of py.

To find such E, we take a linear connection V (that may not be a Levi-Civita
conneciton of a Riemannian metric) of TX such that TL is parallel with respect to
V. We then use geodesic with respect to V to define an exponential map. We then
define E such that ¢ — Eq(x, tv) is a geodesic with initial direction v. Note that we
may take V so that in a neighborhood of pq it coincides with the standard trivial
connection with respect the coordinate we fixed. (1.31) follows.

1.3. Proof of Theorem 1.10 : 2 - Gluing by alternating method. Let us
start with

uf = (uf*,ub?) € MPH((S1,21); Bi)e, X1 M2 (32, 2); B2)es -
Here p; € V; and the corresponding map (%;,9%;) — (X, L) is denoted by u/*. Let
p = (p1,p2). We put

P’ = Tli_)rrgo uft (r,t) = TEr_moO ub? (7, t).

Preglueing:
Definition 1.11. We define
X5 (uf’ = p?) + X7 (uh® = p?) +p”  on [-5T,5T] x [0, 1]
u%(o) =quf on K (1.32)
s on K.
Note that we use the coordinate of the neighborhood of py to define the sum in
the first line.
Step 0-3:

Lemma 1.12. If§ < §,/10 then there exists Q?T(O € FE; such that

)
ng;‘,(o) - ef,T,(O) - eg,T,(O)”Lfn,é < Crme™"". (1.33)

Moreover
HQZT,(O)”L%(K::) < €4,m- (1.34)
Here €4, is a positive number which we may choose arbitraly small by taking V; to

be a sufficiently small neighborhood of zero in V;.
Moreover efT ©) is independent of T'.
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Proof. We put
;. 7,(0) = guf € FE;.

Then by definition the support of gu;,(o) - ellj,T,(O) - eg7T7(O) is in [-5T, 5T x [0, 1].
Moreover it is estimated as (1.33). O
Step 0-4:
Definition 1.13. We put

Brrd 7. 0) = X% (0. (o) = & 1 0)):

Brry o) = X2 (90U, o) = &.1.(0))-

We regard them as elements of the weighted Sobolev spaces Lfm(s((Zl, 0%1); (u))* TX®
A%) and L2, 5((32,0%); (uh)*TX @ A%) respectively. (We extend them by 0 out-
side a compact set.)

Step 1-1: We first cut u;,(o) and extend to obtain maps ﬂf)T)( 2 (3,0%;) —

0) °
(X,L) (: =1,2) as follows. (This map is used to set the linearized operator (1.36).)
’all),T,(O) (2)

X<B_ (T - Ta t)u; (0) (T7 t) + XE) (T - T7 t)pp if z = (Ta t) € [_5T7 5T] X [07 1]
= ug’(o)(z) if z € K3

PP if z € [5T, 0) x [0, 1].
ﬁg,T,(O)(Z)

XA (T+ T ) o) (1, 8) + x5 (T + T, )pP if 2= (7,t) € [-5T,5T] x [0, 1]

= ug’(o)(z) if z € Ky
pP if z € (—o0, =5T] x [0,1].
(1.35)
Let
n.72 5 * ~ *
ﬁf)T)(O)a s L6 (2, c’iEi),(uf)Ty(o)) TX, (“Zﬂ(o)) TL) (1.36)
= L (25 (@ 1, 0)) TX ® A™)
be the linearization of the Cauchy-Riemann equation.
Lemma 1.14. We put E; = E;(4f . (0))- We have
Im(Dgp  9) + E; = Lo 5(565 (@ 1) TX @ A, (1.37)

Moreover

Devy oo — Deva o i (D 9)"HE) @ (D 9) N (Ey) = TpoL (1.38)

ﬁ‘l),T,(O) g,T.(O)

18 surjective.

Proof. Since ﬁf 7.00) is close to u; in exponential order, this is a consequence of
Assumption 1.3. (]
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Note that E;(u}) actually depends on u}. So to obtain a linearized equation of

(1.15) we need to take into account of that effect. Let g, (u;) be the projection to
E;(u}) with respect to the L? norm. Namely we put

7

dim E;
Mg,y (A) = D (A eia(u))) r2(x,)€ia(ul), (1.39)
a=1

where €; 4, a = 1,...,dim E;(u}) is an orthonormal basis of E;(u}) which are sup-

ported in Kj.

We put
d

(D Ei)(A,v) = (W, (8] 50)) (A))[s=0- (1.40)

Here v € I'((%;,0%;), (u))*TX, (u})*TL). (Then E(u}, sv) is a map (£;,0%;) —
(X, L) defined in (1.30).)

Remark 1.15. We use an isomorphism
(s B(ul, s0)*TX @ A%) 2 T(%;; (u))*TX @ A°) (1.41)

to define the right hand side of (1.40). The map (1.41) is defined as follows. Let
z € ¥;. We have a path r — E(uf(2),rsv(z)) joining u}(z) to E(u}, sv)(z). We use
a connection V such that T'L is parallel to define a parallel transport along this
path. Its complex linear part defines an isomorphism (1.41).

We note that the same isomorphism (1.41) is used also to define Duﬂ. Namely

(D B)(v) = %(EE(U;, 50))acso

where the right hand side is defined by using (1.41).

We put
Hﬁ(u;)(A) = A —1lg, ;) (A).

The equation (1.17) is equivalent to the following

We calculate the linearization

o _
gna(E(u;,sv»aE(uéa sV))
s=0

to obtain the linearized equation:

Dy d(V) = (Dy Ei)(0uj, V) =0 mod E;(uy). (1.43)
‘We note that
043 1.(0) = ®.1,(0)

is exponentially small. So we use the operator
_ o
V — Dﬁf)T)(O)a(V) — (Dﬂf,T,(o)El)(ei7T7(O)’ V) (144)

as an approximation of the linearlization of (1.42).
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Lemma 1.16. We put E; = E;(uf , (0))- We have

Im(Dge 0—=(Dar . E) (€] 7)) +Ei = Li s(Sis (0 1 0) " TX®A). (1.45)
Moreover
Devi,o0—Deva,co : ('Dﬁf,T,(o)5 B (D71T,T,(0)E1)(2’1)7T’(0)’ -))_1(E1) (1.46)
D (Dﬂ;”T’(o)a - (DﬁQP,T:(O)E2)(a;T,(0)a '))_1<E2) - Tp”L

s surjective.

Proof. (1.34) implies that (Dﬂ'f.T,w)

Eq)(e? (0y>*) 1s small in operator norm. The
lemma follows from Lemma 1.14. O

Remark 1.17. Note that (1.34) is proved by taking V; in a small neighborhood
of 0 (in V;) with respect to the C™ norm. (Note V; ¢ MFi((24,%); Bi)e, and V;
consists of smooth maps.) However we can take V; that is independent of m and
the conclusion of Lemma 1.16 holds for m. In fact the elliptic regularity implies
that if the conclusion of Lemma 1.16 holds for some m then it holds for all m’ > m.
(The inequality (1.34) holds for that particular m only. However this inequality is
used to show Lemma 1.16 only.)

‘We consider
Ker(Devy, 0o — Deva o)

0 ((Das, 8= Dag o EDE 100 ) (B) (1.47)

® (Dag, 0~ (Dag | Ea)(eh 7 0))) " (B2))

ﬁZ,T,(O) 73’g,T,(O)

This is a finite dimensional subspace of

2
Ker(Devy oo —Deva o) ﬁ@ L2 5((5:,0%); (af

i,T,(O))*TX7 (ﬁ’ZT,(O))*TL) (1.48)
i=1

consisting of smooth sections.

Definition 1.18. We denote by $(E;, Es) the intersection of the L? orthogonal
complement of (1.47) with (1.48). Here the L? inner product is defined by (1.29).

Definition 1.19. We define (V. 1y V7, 1y Apf, (1)) as follows.

(1P _(n. NP p
(Daf,T,(O)a)(VTﬁiv(l)) (Duf,T,(O)EZ)(eifT‘r(O)’ VT,i,(l)) (149)
+ ErrﬁT’(O) € Ei(ﬂZT,(O)).
DevOO(V:,’fJ,(l)) = Dev,oo(Vje,Z(l)) = Apfr,(l). (1.50)

Moreover
((qu*),lyuy Ap%(l)), (V’]F‘)’Q,(l)a AP;’(D)) € j’ﬁ(Ela E2)-

Lemma 1.16 implies that such (V1 1y V7, 1y Apf, (1)) exists and is unique.
Lemma 1.20. If§ < §,/10, then
IVE s A )iz s < Come™™Ts [Aph )| < Come™T. (151)

2
Liiiis
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This is immediate from construction and the uniform boundedness of the right
. 5 p
inverse of Dﬁf’T,(O)ﬁ — (Dﬁip,T,(O)Ei)(ei,T,(O)’ ).
Step 1-2: We use (qu,l’(l)7 V7€,2,(1)7 Apg,,(l)) to find an approximate solution upT’(l)
of the next level.

Definition 1.21. We define uf, (1y(2) as follows. (Here E is as in (1.30).)
(1) If z € Ky, we put

ugjy(l)(z) = E(aT,T,(o)(Z)v VﬁL(l)(z)). (1.52)
(2) If z € Ky, we put
upT’(l)(z) = E(ﬂg,T’(O)(z), Vj’3’27(1)(z)). (1.53)

(3) If z = (7,t) € [-5T,5T] x [0, 1], we put
u%(l)('r, t) =xz (1, t)(VﬂL(l)(T, t) — Apsﬂy(l)) (154
XA (T )V o (1) (T3 1) = AT (1)) + g ) (75 1) + A7 5. :
We recall that @f . ) (2) = uf )(2) on Ky and a5 1. ) (2) = uf, ) (2) on K>.
Step 1-3: Let 0 < u < 1. We fix it throughout the proof.

Lemma 1.22. There exists dy such that for any § < 62, T > T(6,m,€5,y,) there
exists efT a) € E; with the following properties.

10U, 1) = (& 10y + L) = o) T 5 lez, , < Crombses,me™"
(Here C1 y, is the constant given in Lemma 1.12.) Moreover
HQZT,(U ||L$n(K1,) < Cg,me_éT. (155)

Proof. The existence of ¢ . 1) satisfying

||5u§"7(1)7(257T7(0)+85)T7(1))7(QS7T,(O)+QS7T7(1))|‘Lfn75(K1UK2CET) < Ol,mﬂf&mei&T/lO

is a consequene of the fact that (1.43) is the linearized equation of (1.42) and the
estimate (1.51). More explicitly we can prove it by a routine calculation as follows.
We first estimate on K;. We have:

E(E(ufT(O)’VT )

=9(E (“1T(0)7 / s ulT(O)7SVT1 (1)))d3

3 B (1.56)
= O(B(@] 1,0),0)) + (Daz . ) (VEy 1)
s 82 _
-|-/O ds/o wa(E(“iT(O)JVTl(l)))d
We remark
‘/1 s 327 o o ))
ds —J(E(u TV, dr
s | 5 (B 10"V, L2 (k) (1.57)

< C3,mHV'18,1’(1)H%3n+115 < C’4,m€_26T.
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‘We have

HL
P
El (E(ul T,(O)’VT,l,(l)))

0
_ 17d J_
B HEl(ﬂf,T,(m) Jr/0 85 E (E(QT,T,(O)7SV7€,1,(1)))dS
(D 2 El)('avj€1(1))

L)

/dS/ or? El(E 1T(0)’TV£,1,(1)))dr.

We can estimate the third term of the right hand side of (1.58) in the same way as
n (1.57).
On the other hand, (1.56) implies that

H8 1T(0)7VTP,1,(1))) B

Therefore, using (1.58) and (1.51), we have

(1.58)

HJ_
By (af T, (o>)

< Cgme 7. 1.59
L2 (Ky) 6,m¢ ( )

L 3 P
‘ HEl(E( @ 10y Vi (1)))8( ( Uy 7,(0) VT,l,(l)))
1L
~ Wy a0 0 OB 1 0) Vi1 (1))
L P L P —26T
HEl(E(“1 ,(0)’ T 1, (1)))(21’T’(0)) + HEl(ﬂT,T,(O)’O)(el’T’(O)) 2 = O77m€ '
L2 (K1)
(1.60)
Therefore using (1.58) we have:
||HE1(E(u1 2oy Vi (1)))8(E(ﬁiT,(O)’ Viim))
L _
- HEl(ﬁf,T,w)vO)a(E(ul 7,0y VT”1 (1))) (1.61)
+ (D 0 _ )El)(el T(O)’VTI 1)>HL2 K1) < Cg m€_25T
By (1.49) and Deﬁmtlon 1.13, we have:
A(E(A] 7,9, 0) + (DajTy(o)g)(Vze,Lu)) (162)
- (Dﬂ‘f‘T,(o)ElxeT,n(o)v Vie,l,(l)) € El(ﬂf,:n(o))
on Kj.
(1.61) and (1.62) imply
L 3 ~p 14
%, w2 . ot oD OE@ 1 0) VEa, 1))
L = N
H ( 1,T, (0)’0)8(E(U§7T7(0)7 Vj?alv(l))) (1 63)
+ 15 B (0 o) 0)8(E(ﬁ§’7T7(0),0))
5 —26T
+ HE1(u1 7.(0)/0 )(Da’f,T,<0)3)(VTp,1,(1))HL%L(KQ < Come :
Combined with (1.56) and (1.57), we have
BR(5P p
||HE1(E 1 T (0)’VT 1 (1)))(8(E(u11T1(0)’ VT’L(l))))HLgn(Kl) (164)

—26T T
< ClO,m o < Cl,me 0 65,m/1'/107

for T > T,, if we choose T,,, so that Cloﬁme*‘STm < Cy mes,mp/10.
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It follows from (1.59) and (1.64) that

a N —oT
M e, (© 0 4 0 V2 s o) OB 10y, VI 1) = 1 1 o)l 22,060) < Crime™

Then (1.55) follows, by selecting

e;)7T7(1) = HEl(E(ﬂ{,T,(o)*qu,l,(l)))(g(E(ﬂiT(O)’ V£17(1)) a eiTv(O))'

The estimate oniKQ is the same.
Let us estimate duf, (1) on [T + 1,7 — 1] x [0,1]. The inequality

10w, 1yl 22, (1-r+1,0-11x[0,11c5r) < Crmpiesme " /10

is also a consequence of the fact that (1.43) is the linearized equation of (1.42) and
the estimate (1.51). (Note the bump functions x5 and x; are =1 there.) On Arp
we have

574;,(1) = 5(XZ((qu,z,u) - Ap/%,u)) + Vze,1,(1) + “;,(o))- (1.65)
Note
||5(XX(V7€,2,(1) - AP%(U)”L%(AT) < 03,m€76T5||Vq€,2,(1) - Ap%(l) ||L$,L+115(ATC22)
< 012,m677T6-
The first inequality follows from the fact the weight function eg s is around e57°

on Arp. The second inequality follows from (1.51). On the other hand the weight
function er s is around e*T9 at Ap.* Therefore

||5(X:\>(Vq€,27(1) - Ap%(l)))”Lfmé(ATCET) < ClS,me_gTﬁ- (1-66)

Note
Brr 7.0 =0

on Ar. Using this in the same way as we did on K; we can show
‘|5(V£1)(1) + u%(o))HLfms(ATCET) < Cl’me_5T65,mﬂ/20 (1.67)
for T' > T,,. Therefore by taking T large we have
||5upT7(1)HL2 (ArcEr) < Cl,mNGS,me_éT/la (1.68)

m,5

(Note that the almost complex structure may not be integrable. So the almost
complex structure may not be constant with respect to the flat metric we are
taking in the neighborhood of py. However we can still deduce (1.68) from (1.67)

and (1.66).)

The estimate on By and on ([-5T, =T —1]U[T +1,5T]) x [0, 1] are similar. The
proof of Lemma 1.22 is complete. (I
Step 1-4:

Definition 1.23. We put
() 70 + €1 2.0)s

P
1,
(€510 + 1)

)

- T

)

4This drop of the weight is the main part of the idea. It was used in [FOOOL1, page 414]. See
[FOOOL1, Figure 7.1.6].
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We regard them as elements of the weighted Sobolev spaces L%% s(B1; (@ m)*TX ®
A% and L2, 5(32; ( )*TX @A) respectively. (We extend them by 0 outside
a compact set.)

~p
Ua T,(1)

We put pfl) =p° + AppT’(l).

We now come back to the Step 2-1 and continue. In other words, we will prove
the following by induction on k.

’ (Vze,i,(m)vAp;,(ﬁ))’ L2, a2 Comp”™ e ™7, (1.69)
\\Ap”T,(H) < Coppu™ e, (1.70)
T o
HErrf7T7(K) - C’17me5,m/f€_5T, (1.72)

e 1 () L2 (ot Crsmp™ te™T ) fork >1. (1.73)

Remark 1.24. The left hand side of (1.71) is defined as follows. We define u/, ()
by ug_(ﬁ) = E(uf. (K_l),ug, ())- Then the left hand side of (1.71) is

P
||uT7(H) ||L$n,+1,5((2T182T)9(“;,(n—1))*TXv(“g"‘(n—n)*TL)'

More precisely the claim we will prove is: for any €5 ,,, we can choose T}, so that
(1.69) and (1.70) imply (1.72) and (1.73) for given T > T},,, and we can choose €5 ,,
so that (1.72) and (1.73) for x implies (1.69) and (1.70) for k + 1. (It is easy to see
that (1.69) and (1.70) imply (1.71).)

Below we describe Steps k-1,...,x-4.
Step x-1:
We first cut u’:’n(m_l) and extend to obtain maps QZT,(H_I) 2 (2,0%;) = (X, L)

(i =1,2) as follows.
,&T,T,(H—l)(z)

x5 (1 =T, t)u%(ﬂ_l)(T, )+ xg (-1, t)p?ﬂ_l) if z = (7,t) € [-5T,5T] x [0, 1]
= u’i(ﬁ_l)(z) if z € Ky

PT(e1) if 2 € [5T,00) x [0, 1].
ﬁ’g,T,(n—l)(z)

XZ(T+ Tt (1, 8) + x5 (T + T, t)p(, .y if 2 = (7,t) € [-5T,5T] x [0,1]

= u%(n_l)(z) if z € Ky
P 1) if z € (—oo, —5T] x [0,(1].74)
Let
9172 (A * N *
Dar, o 0 Ly oS0 0800l g 1)) TX (i) TL) -

= L, (863 (@ 1 o))" TX @ A,
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Lemma 1.25. We have

Im(Dgp  ~ 0)+E; = Lo 5865 (@ 1 1)) TX @ AV, (1.76)
Moreover
Devios — Devaoo t (Dag | (0>8)‘1(E1) ) (DﬁgyT)(o)é)—l(Eg =Ty L (1.77)

18 surjective.

Proof. Since 4 is close to u; in exponential order, this is a consequence of

4, T,(k—1)
Assumption 1.3. O

‘We denote
( 7.T (k—1) — ZezT(a) (178)

Lemma 1.26. We have

In(Dig, D= Dy BNy DHE
= Li (865 (@) 1 o1y TX @ A%).
Moreover
Devl,oo — D€V27oo
(Dag T Dar, B gy ) (ED) (1.80)
®(Dag . 0= Dag . E2)((s0)5 1 (o 1y5)) " (B2) = Ty
18 surjective.
Proof.
k-1 9T
Z ez'p,T,(a) < €4,m + Cl5,m 1 — (181)
a=0 L2, (K3)
imply that (Dge o El)( ¢ 7.0 -) is small in operator norm. The lemma follows
from Lemma 1.25. U
Note that Remark 1.17 still applies to Lemma 1.26.
Definition 1.27. We define (VTPJ’(M)J/'TP2 K),Ap%(n)) as follows.
D 1 oy VEii) = Pag o B (50, om0y Vi () 182)
+ErriT(/-i 1) € E( zT(n 1))
Devioo(Viy o) = Devaos(VE, () = AP (- (1.83)

We also require
((Vjc)l (k) Ap; (5))7 (VZEQ (k) AP’} (H))) € ﬁ(El, EQ)' (1-84)
Lemma 1.26 implies that such (VT 1(r)? VT 2(x)’ ApT( )) exists and is unique.

Remark 1.28. Note in (1.84) we use the same space $(FE1, E2) as in Definition
1.19. We may use the orthogonal complement of

2
Ker(Devi,0o — Devg o) N @ 09— (D,

=1

-1
ay g (r—1) f,T,(K—l)Ei)((se)ﬁTa(ﬁ—l)’ )) (Ez)
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instead. The reason why we use the same space as one in Definition 1.19 here
is that then a calculation we need to do for the exponential decay estimate of T
derivative becomes a bit shorter. Since ﬂf’T’(n) is sufficiently close to ﬁ’?,T,(O)’ the
unique existence of (V1 (N)J/Tp2 (K),Apg (r)) satisfying (1.82) - (1.84) holds by

(1.81).
Lemma 1.29. If§ < 61/10 and T > T(6,m), then

(Vi 0) AP (1))
|AP%(,{)| < CZ,mlﬁile

H—le—éT

L2, 11 6(0) S CQ’mN
—oT

)

(1.85)

Proof. This follows from uniform boundedness of the inverse of (1.79) together with
the x — 1 version of Lemma 1.22. (That is Lemma 1.31.) (]

This lemma implies (1.69) and (1.70).

Step x-2: We use (Vjﬁ’yly(n), V{f’zy(ﬁ), Ap%(n)) to find an approximate solution u%(n)
of the next level.

Definition 1.30. We define uf, (K)(z) as follows.
(1) If z € Ky, we put

ug,’(n)(z) = E(ﬂfl),T,(n—l)(Z)v ij”l,(ﬁ)(z)). (1.86)
(2) If z € Ky, we put
u’i(&)(z) = E(ﬁ§7T7(K_1)(z), Vze,z,(n) (2)). (1.87)

(3) If z = (7,¢t) € [-5T,5T] x [0,1], we put
U%(,{) (1,t) =x5 (7, t)(qu’l,(H) (m,t) — Ap%(n))
+ x4 (7,1) (Vqlf,27(,§)(7'a t) — Ap%(,@)) (1.88)
T UL (1) (7o) + APT (-

We note that ﬁ’;l),T,(nfl)(Z) = ug’(ﬁil)(z) on K; and ﬁg,T,(nq)(Z) = u%(ﬁfl)(z)

on K.
(2.267) is immediate from the definition and (1.69) and (1.70), since 0 < p < 1.

Step x-3:

Lemma 1.31. For each €5 > 0 we have the following. If 6 < 63 andT > T(6,m, €5),
then there exists efAT (%) € E; such that

(Here Cy p, is as in Lemma 1.12.) Moreover

< C’l,m/fqe_”.

Oy = D ) — D o)
a=0 a=0

2
Lm,é

||eip7T,(n)||Lgn,(Ki) < 015,m/ﬂ€_16_6T. (189)
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Proof. The proof is similar to the proof of Lemma 1.22 and proceed as follows. We
have:

E(E(ﬁT,T,(H*U’ VTEJ’("‘)))

1
= B ey O ) OB ey V098
o B (1.90)
= a(E(U'll),T,(f-ﬁ—l)’ O)) - (DﬂT T,(n—l)a)(vje’l’(“))
1 s 82 . o
ds | —50(E(i V. d
+/0 8/ 972 ( (ulT(n 1" Tl(n))) "
We remark
ds w1y TVE L ()T
‘ 1 T, (k—1) T,1,(x) L2 (K1) (191)
< 04,m||V;717(K)||L?n+1’6 < 057me—25T'u2(n71).
We have
1
HEl(E(ﬂf,T,w—l)’V?@,l,(m)))
0
— L 0% g ds
E1<u§’,T,<~71>>+/0 Bs BB 1 V) (1.92)

~ Dag >E1)("VT’31(n>)

/ ds/ 37‘2 El(E 1T,(n—1)7TVT1(K)))dT"

We can estimate the third term of the right hand side of (1.92) in the same way as
(1.91).
On the other hand, (1.90) implies that

_ HJ_
En(af T, (k— 1))

HE(E(all),T,(m—lﬁ ViLm)) — gell),T,(n—l)‘ 12 (K1) < Come™ " p" . (1.93)
Therefore
HHEl(E(ul ey Vi, (N)))a(E(ﬂiT,(nq)v Vi)
~Tgyar 09 g1y Vi ) (1.94)
T (Dﬁf,T,m El)(sel (k= 1)’VT1 Pz, < Crme T

By (1.82) we have:

E(E(ﬁ’llj,T,(mfl)’ 0)) + (Dﬁf,T,(n—l)g) (V:ﬁ’l’(ﬁﬂ

) (1.95)
— (Dﬁ";,T,(»:—l)El)(sef’T7(K71)7 Vjeyl’(h‘/)) € El (uiT,(Hfl))
on Kj.
Summing up we have
1L 08 1,1y V21 o) OE 1)y Ve, )D22,060) (1.96)

< ClO,m 2(5TMK, 1 < Cl,me_éTGS,mﬂﬁ/lo

for T > T,,.
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It follows from (1.93) that

||HE1 6T K—l.

)(E(E(QT,T,(N—U’V1€,1,(n)))_52§,T,(n—1)||L3,1(K1) < Cgme " p
Then (1.89) follows by putting

(E(ﬁT,T,(m—l)’Vle,l,(n))

eiTa( ) HEl(E(“l 1)V, (m)))(a(E( 1,7,(k—1)’ Vi’lj,L(f”v))) - 52§7T7(K_1)
€ Ev(B(aY 1,01y Vs ) = Er

Let us estimate duf, () O [—T,T)] x [0,1]. The inequality

”5u§“7(,{)HLil_ra([fT,T]x[O,l]CET) < C1mpesme T /10

is also a consequence of the fact that (1.43) is the linearized equation of (1.42) and
the estimate (1.85). (Note the bump functions x5 and x are = 1 there.) On Ap
we have

g o = OXZ (Vg ) = AP () + VP L (o) F Wi 1)) (1.97)
Note
1O (V5 () = AP oy 2, ar) < Came™ T2 NVE (o = APF )l 22
< Crogme™ T i1,

L7 41,6 (ArCE2)

The first inequality follows from the fact the weight function eg s is around e57°

on Ar. The second inequality follows from (1.85). On the other hand the weight
function er s is around T at Ap.5 Therefore

18O (Vi 5,y = AP (oDl 22 s arcmg) < CrameTou (1.98)
Note
Err; T(r—1) = 0
on Ap. Therefore in the same way as we did on K; we can show
OV () + 05 o))z, j(arcsr) < Crme*Fesmp/20 (1.99)
for T' > T,,. Therefore by taking T large we have
||5U;,(5)||L3n15(ATCET) < Oy s me T /10. (1.100)
The estimate on By and on ([-5T, =T — 1JU[T +1,5T1]) x [0, 1] are similar. The
proof of Lemma 1.31 is complete. ]
Step x-4:

Definition 1.32. We put

Err[l),T,(/{) = X§ <8u’f1)",(ﬁ) - Z el{,T,(a)) ’
Brry 1. = <3UT Z%) T.(a) ) '

We regard them as elements of the weighted Sobolev spaces Lm,é(Zl; (af (K))*TX@)
A%y and L2, (32 (i 4 (,.)) " TX ®A%') respectively. (We extend them by 0 outside
a compact set.)

5This drop of the weight is the main part of the idea. It was used in [FOOO1, page 414]. See
[FOOOL1, Figure 7.1.6].
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We put pl,) = bl 1) + AP (-
Lemma 1.31 implies (1.72) and (1.73).

We have thus described all the induction steps. For each fixed m there exists
T, such that if T' > T, then

lim u?
Koo Th(K)

coverges in L2, 41,5 sense to the solution of (1.15). The limit is automatically of C*°
class by elliptic regurality. We have thus constructed the map in Theorem 1.10.
We will prove its surjectivity and injectivity in Subsection 1.5 below. Before doing

so we prove an exponential decay estimate of its T derivative.

1.4. Exponential decay of T derivatives. We first state the result of this sub-
section. We recall that for T sufficiently large and p = (p1, p2) € Vi X, V2 we have
defined uf, (). We denote its limit by

uf = lim uf, () : (Er,0%7) = (X, L). (1.101)

K—» 00
The main result of this subsection is an estimate of 7" and p derivatives of this map.
We prepare some notations to state the result.
We change the coordinates of ¥; and X7 as follows. In the last subsection we
put
1=K U ([—ST,OO) X [0, 1])
and use (7,t) for the coordinate of [—5T,00) x [0,1]. This identification depends
on T. So we rewrite it to
1=K U ([0,00) X [07 1])
and the coordinate for [0,00) x [0,1] is (77, ) where
7' =71+5T. (1.102)
Similarly we rewrite
Yo = ((—00,5T] x [0,1]) U K>
to
Yo = ((—O0,0] X [07 1}) UKo
and use the coordinate (7”,t) where
" =7 —5T. (1.103)

We may use either (7/,¢) or (7”,t) as the coordinate of Y1 \ (K7 U K3).

Let S be a positive number. We have K; C X7. We put
K9 =K, U([0,5] x [0,1]) C 27, (1104
K39 =([-5,0] x [0,1]) UKy C 7. '

Here the inclusion K; U ([0, S] x [0,1]) C X7 is by using the coordinate 7/ and the
inclusion ([—S,0] x [0,1]) U K3 C X is by using the coordinate 7.

We may also regard Kj's C ¥;. Note that the spaces Kj's are independent of
T, as far as 10T > S.

We restrict the map v to K;r S We thus obtain a map

Glures;,s : [Ty, 00) x Vi x, Vo = Mappz (K%, K79 N 9%,), (X, L))
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by
Glures; s(T', p)(z) = ul(z) z € Ky (1.105)
Gluresy s(T, p)(7',t) = vl (7', t) = uf (1 + 5T, 1) '
Gluress (T, p)(x) = ull(z) z € Ky (1.106)
Gluresy s(T, p) (7", t) = ufp(7",t) = ul. (7 — 5T, t) '

Here Mapon,H (K5, K;79na,), (X, L)) is the space of maps of L% | class (m is
sufficiently large, say m > 10.) It has a structure of Hilbert manifold in an obvious

way. This Hilbert manifold is independent of T'. So we can define T derivative of
a family of elements of Map - " (K5, K;75 n9%,), (X, L)) parametrized by T

Remark 1.33. The domain and the target of the map Glures; s depend on m.
However its image actually is in the set of smooth maps. Also none of the construc-
tions of uf. depends on m. (The proof of the convergence of (1.101) depends on m.
So the number T;,, depends on m.) Therefore the map Glures; g is independent of
m on the intersection of the domains. Namely the map Glures; g constructed by
using L2, , norm coincides with the map Glures; s constructed by using Lfm norm
on [max{Ty,, Tm,},o0) X V1 xp, Va.

Theorem 1.34. For each m and S there exist T(m), Ci6.m,s,0 > 0 such that the
following holds for T > T(m) and n+ ¢ <m — 10 and ¢ > 0.

d[
HV"Glureng

P qTe < Cigm,se” " (1.107)

2
L'm+17[

Here V| is the n-th derivative in p direction.

Remark 1.35. Theorem 1.34 is basically equivalent to [FOOO1, Lemma A1.58].
The proof below is basically the same as the one in [FOOO1, page 776]. We add
some more detail.

Proof. The construction of u? (n) Was by induction on k. We divide the inductive

step of the construction of u’}’( from u%(n) into two.

Kk+1)

(Part A) Start from (V{f,l)(n), V73727(K), Ap%(ﬁ)) and end with ErriT,(K) and Err§7T7(K).

This is step k-2,k-3,k-4.

(Part B) Start from Err’l’m(&) and Errg”T’(R)

This is step (k + 1)-1.

and end with (V2 10, VEy 1) APF (i1
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We will prove the following inequality by induction on x, under the assumption
T>T(m),{>0,n+¢<m-—10.

n 8£ k—1_—0T
‘ Voo T (VTz (k) Ap%(ﬁ))‘ o < Cigmp™ e ", (1.108)
m+172,5(2i)
n P k—1_—6T
va WAPT,(H) < Cirmp” e , (1.109)
66
—uf n < CY187 eiéT, (1.110)
H paT@ T( ) LE7L+1 ZE(K;FST-Fl) "
ot
V"—Err < CiomeempeT,  (1.111)
P ¢ T,(k) ,m€6,m y
H aT L?—n,_e,(s(zi)
v o < C n—lg=dT (1.112)
P oTE e, T (k) Lo - 19,mM . .
7o (KPP

m

More precisely, the claim we will prove is the following: For each €g,,, we can
choose T'(m) so that (1.108) and (1.109) imply (1.111) and (1.112) for T > T'(m),
and we can choose €, so that (1.111) and (1.112) for x implies (1.108) and (1.109)
for k4 1. (1.110) follows from (1.108) and (1.109).

Remark 1.36. We use L2, norm on K;T* only in formula (1.110). Note we
use coordinate (7/,t) on K7\ Ky, and (7”,t) on K >7 T\ Ky. We remark also
that Xy = K7y K57+

Remark 1.37. Note that (Vsz (K),Apg )) appearing in (1.108) is an element

of the weighted Sobolev space Lm+1 s((34,0%); (0 5 (o 1)) TX, (4 05 (o 1)) TL)
that depends on T and p. To make sense of T" and p derivatives we identify

L7n+1 6((21v62) ( 1T(,.; 1)) TX ( ZT(K, 1)) TL)

= Lm+1 6((21'7 621), :TX, ’U,i TL)
as follows. We find V' such that af . (1) =
with respect to the path r — E(u;,rV) and its complex linear part to define this
isomorphism. The same remark applies to (1.111) and (1.112).

= E(u;, V). We use the parallel transport

Remark 1.38. The square of the left hand side of (1.108), in case i = 1, is :

2

82

vr—V*
p 0 T, 1,(k
H or 0 L2 41 o(K1)
m+1—~ 8 ,
k n
i Z / OO)XOl]elTTﬂHVw Vi oe (Vi — PalAPE )| dr'dt.

Note that we apply Remark 1.37 to define T" and p derivatives in the above formula.
The case i = 2 is similar using 7" coordinate.

(Part A) (See [FOOO1, page 776 paragraph (A) and (B)].)
We assume (1.108) and (1.109).
We find that
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(1)

Errfl)»Tv(n)(Z) - HE%(ﬁf,T,(N_1))5E(ﬂ11),T,(H_1)(Z)v qu,l,(n)(z)) (1.113)
for z € K;.
(2)
ErriT,(K) (")
=1 — x(r' = 57))0(x(7" — 4T)(VTP,2,(;{) (" —10T,t) — Apf}’(ﬁ)) (1.114)

+ qu717(,l{,) (T/v t) + u’f1)“7(,.;_1)(7-,7 t))7

for (7/,t) € [0,00) x [0,1]. (Note 7/ = 7" 4 10T and the variable of V£, ()
is (77,t).)

Here x : R — [0,1] is a smooth function such that

=0 T< -1
x(r)$=1 T>1 (1.115)
el0,1] 7el-1,1].

Note that in Formulas (1.108)-(1.112) the Sobolev norms in the left hand side
are L2 ., ,;(%i) etc. and are not L7 ., 5(¥;) etc. The origin of this loss of
differentiability (in the sense of Sobolev space) comes from the term V7, () (' —

T
107"). In fact, we have

9 9
57 Vi oo = 10T) = =105 5 V1 5 () (7' = 107)

for a fixed Ty. Hence 9/0T is continuous as L2, — L2 . We remark in (1.108)
for i = 2 we use the coordinate (7”,t) on (—o0, 0] x [0, 1] to define T derivative of
Vi)

Taking this fact into acount the proof goes as follows.

We can estimate T and p derivative of Err” on K7 in the same way as the

L,T,(x)
proof of Lemma 1.31.

Remark 1.39. The fact we use here is that the maps such as (u,v) — E(u,v),
(u,v) = Héi(u) (v) are smooth maps from LanleCfonﬂ,& — L$n+1,6 or Lfnﬂvlocx
L2, s = L7, s and u — Ju is a smooth map L2 ., s — L2 5. (Since we assume m
sufficiently large this is a well-known fact.) Moreover the map T+ uf. (5—1) and

T — V], () BT€ C* maps as a map [T(m),o0) — L3n+17£,5 with its differential
estimated by induction hypothesis (1.110) and (1.108).

We note that p — v, . is smooth as a map Vi xp Vo — L? .
p T,(k—1) m+1,

The estimates of T and p derivatives of (1.114) are as follows.
We first consider the domain 7" € [4T + 1,00). There we have

Exr{ 7 o (7', 8) =(1 = x(7' = 5T)A(VE (o (7" = 10T’ 1)

(1.116)
=+ Vql{l,(ﬁ) (7'/7 t) + U%(,{_l)(Tla t) — AP%(,{))
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By the same calculation as in the proof of Lemma 1.31, (1.116) is equal to

1 s 2
92 _
(1= x(r"~ 5T))/0 dS/O 520 (r(VE g, (" = 10T) = App )
+ T(V7€717(K) (Tlv t) - Ap%(,;))
g gy (7 t) + AP )dr

(Note that we are away from the support of E;.)® Using the fact that T
(V:,‘f)L(H)(T’,t) - AppT’(H)) + (Vﬁ)Q’(H)(T’ —10T) — Ap?)(m)) and T + U%(N,l)(Tl,t)
are of C* class as a map to L12n+172,57 we can estimate it to obtain the required
estimate (1.111) on this part. We remark T (ij’yzﬁ(n_l),Ap%(K_l)) is C* with
exponential decay estimate on T’ derivatives as a map [T'(m),00) — L7, ;. 5. This
follows from the induction hypothesis as follows.

ot o ,
a7 (Voo —107)) ’T:Tl

; 9 o2 ) ) (1.117)
= > (-10) o e VY 5 () (7 = 10T1).

L1+La=L

The Lfm_l_“-norm of the right hand side can be estimated by (1.108).
We next consider 7/ € [0,4T + 1]. There we have

EITT’T’(H)(T/, t) =0(x(7" — 4T)(V7€’2’(H) (" —10T) — Ap%(n))

(1.118)
+ qu,l’(n)(’l'/, t) + U%7(K71)(7‘/, t)).
Note
8upTV(K71)(T’, ) = Errfl),T,(nfl)(T/’ t),
there. Therefore we can calculate in the same way as the proof of Lemma 1.31 to
find

E(V;,L(K)(T/a t)+ U;,(N—U(T/y 1))

1 s 2
92 _
= /O ds/o wa(r(vj’;l,(”) (7',1) = AP () + Ul gy (7 8) + TAPT, () )dr

We can again estimate the right hand side by using the fact that the maps T —
(VTP’L(K) (7',¢), AppT,(K)) and T “;,(nq)(T/a t) are of C* class as amap to L2, 1 _, 5
with estimate (1.110).

Finally we observe that the ratio between weight function of L |, 5(¥2) and of
L2 1 5(37) is €T on 7 = =T (that is 7/ = 4T). We use this fact to estimate
A(x(r" — 4T)(VTP,27(N)(T’ —107) — APPT,(K)))' We thus obtain the required estimate
(1.111) for ErriT’(K) on 7' € 10,47 + 1).

We thus obtain an estimate for ErriT’(K) (7', 1).

The estimate of derivatives of Errg,T,(ka)(T/’ t) is similar. Thus we have (1.111).

We note that ef’ T is independent of T" as an element of F;. Among ef’ T
the term ef’T’(

)
O) s n) S,

0) is the only one that is not of exponential decay with respect to T'.

6Note 3 is non-constant. So a(r(vy, (K)(T, —10T) — Apf, (N)) +r(Vy, ) (7', t) — Aph, (@) +

u’j’,’(m_l)(T’7 t) + rAp%(K)) is nonlinear on 7.
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Once we note this point the rest of the proof of (1.112) is the same as the proof of
Lemma 1.31.

We finally prove (1.110). On K; we have
E(

Ur ey = BT (o) Vi e))-

So using p < 1, (1.110) follows from (1.108) on Kj.
On (7/,t) € [0,5T + 1) x [0, 1] we have:

u%(n) (7'/, t)
= Vle,l,(m) (7', t) + (1 —x(r' — 4T))(V75'72’(R) (' — 10T, t) — Ap;(n))
+ ug«7(n71)(7'/, t)

=Y V2 T )+ (= X(F = AT)) Y (V2 (7 = 10T, 8) — Aph, )
a=1 a=1

+ U%(O) (7',t).

Then using a calclation similar to (1.117) we have (1.108) on (7/,t) € [0,5T 4+ 1) x
[0,1].

Remark 1.40. In [Ab] Abouzaid used LY norm for the maps u. He then proved
that the gluing map is continuous with respect to T' (that is S in the notation of
[Ab]) but does not prove its differentiability with respect to T'. (Instead he used the
technique to remove the part of the moduli space with T' > Tj, as we mentioned at
the beginning of this note. This technique certainly works for the purpose of [Ab].)
In fact if we use L} norm instead of L2, norm then the left hand side of (1.110)
becomes L | norm which is hard to use.

Abouzaid mentioned in [Ab, Remark 5.1] that this point is related to the fact
that quotients of Sobolev spaces by the diffeomorphisms in the source are not
naturally equipped with the structure of smooth Banach manifold. Indeed in the
situation when there is an automorphism on X, for example X5 is disk with one
boundary marked point (—o0,t), then the T parameter is killed by a part of the
automorphism. So the shift of Vﬁl(n) by T that appears in the second term of
(1.114) will be equivalent to the action of the automorphism group of X5 in such a
situation. The shift of T causes the loss of differentiability in the sense of Sobolev
space in the formula (1.108) -(1.112). However at the end of the day we can still get
the differentiability of C'*° order and its exponential decay by using various wighted
Sobolev spaces with various m simultaneously. (See Remark 1.33 also.)

(Part B) (See [FOOOL1, page 776 the paragraph next to (B)].)

We assume (1.108)-(1.112) for k£ and will prove (1.108) and (1.109) for x + 1.
This part is nontrivial only because the construction here is global. (Solving linear
equation.) So we first review the set up of the function space that is independent
of T.

In Definition 1.18 we defined a function space $)(F1, E2), that is a subspace of
(1.48). Since (1.48) is still 7' dependent we rewrite it a bit. We consider uf :
(3;,0%;) = (X, L) that is T-independent.

The maps ﬂZT,(n) are close to u?. (Namely the C° distance between them is
smaller than injectivity radius of X.) We take a connection of TX so that L is
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totally geodesic. We use the complex linear part of the parallel transport with
respect to this connection, to send

to
2
@Lfmé (540, 05); (0 1)) TX, (@ 1, () ) TL).-

Note that Ker(Devy oo — Devs o) is sent to Ker(Devy o — Deva o) by this map.
Therefore we obtain an isomorphism between
2
Ker(Devy oo — Deva oo) NED L7, 5((Si, 0%:); (uf)*TX, (uf)*TL) (1.119)
=1
and
2
Ker(DevLoo—DeVQ’oo)ﬂ@Lfn’é (34, 0%,); (0f

i=1

YTX, (@, )*TL). (1.120)

ZT(K) zT(n)

In case k = 0 we send H)(E1, E») by this isomorphism to obtain a subspace of (1.119)
which we denote by $(E7, Es) by an abuse of notation. We send it to the subspace
of (1.120) and denote it by $(FE1, Fa; k,T). We thus have an isomorphism
5w 9(E1, Ba) = 9(Ey, By w,T).
We next use the parallel transport in the same way to find an isomorphism

Iyer t Ly (25 () TX @ %) — L2, 5(545 (0 1, )" TX @ A%).

Thus the composition

—1
IQ,I{,T o (Dﬁf,T,(,‘-fna - (Dup

Ai,T,(nfl)

E)((5)) 7, _1)))) © Lt
defines an operator

Dyr: (B, By) = L2, 5(5:; (uf)*TX @ A%).
Here the domain and the target is independent of T, k.

Remark 1.41. Note Dge 0— (DQZT’(E?I)E )((se)] (s—1)> ") is the differential

operator in (1.43) and (1.44). This differential operator gives the linearization of
the right hand side of (1.113).

(k=1)

We next eliminate T, x dependence of F;. We consider the finite dimensional
subspace:
Bi(af 1, () C Ly 5(865 (2 (1)) 'TX © A%).
Let us consider
Ei (), r = Iii,T(Ei(ﬁf,T,(n)))
that may depend on T. However

Ei0) = Iy p r(Eii 1 ()))

is independent of T since u T.0) = u? on K;. Let EJ-(O) be the L? orthogonal
complement of Ej oy in L7, s (Z (@ 1 ()" TX @ AOh).
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We have

E; ()1 ® Ei{(o) = L2, 5(Zi; (uf)*TX @ A°). (1.121)
Therefore the inclusion induces an isomorphism

Eif oy = L7, 5(S6; (uf) TX @ A°Y)/E; () -
We thus obtain

Dy : 9(Er, E2) = Ef .- (1.122)
The induction hypothesis implies the following:
(1) There exist Cagm,C21,m > 0 such that

CoomlVllzz < Pox(Vllza, < CormlVliza . (1.123)
(2) B B
1Dy (V) = Do (V)2 , < Corme™ VL2, (1.124)
Moreover
85 —
’VZ 8Tf w1 (V) L < ngyme HV||LfnJrl - (1.125)
m—~£,8
In fact, (1.125) follows from
n 0 a 8T
vp 6T€ u, T(n) < C23,m6 ) (1126)
((Ki)
‘V" o a? < Cogme T (1.127)
P oTe T () 2 ,(s.s+xo1)

for any S € [0,00). (See also the Remark 1.42.) Note that the weighted Sobolev
norm ||V238—T[;ﬁfT o llzz,_, (s, can be large because

8T ( T t)uT ,(k—1)
is only estimated by e=37 on the support of x5 (7 — T,t) but the weight e; s is
roughly €”7® on the support of x5 (1 — T,t). However this does not cause any

problem to prove (1.125). In fact the operator D, 7 is a differential operator whose
coeflicient depends on ﬂﬁ'ﬂ(fi)' So to estimate the operator norm of its derivatives
with respect to the weighted Sobolev norm, we only need to estimate the local
Sobolev norm without weight of ﬁZT’(K), that is provided by (1.126) and (1.127).

We note that EO,T is independent of T. So we write Dy. Now we have:

— 1 _ — ——1.—1\"1
Dor= ((1 +(Dy.r = Do)Dy ' )Dy)

& B (1.128)
Dy Y (=) (Dwr — Do))Dy )",
k=0
Therefore
n 00— s
HV,JWD (W) L < Coame " [Willz, | (1.129)

m+41—£,8

for £ > 0 and £ +n < m. (Here we assume W is T independent.) Since

1
(VE1 et Vi ey D0 o) = (T 0 D0 Iy k) (Braf o Bl 1 ),
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(1.111) and (1.129) imply (1.108) and (1.109) for s + 1.
The proof of Theorem 1.34 is now complete. (]

Remark 1.42. Let us add a few more explanation about the proof of (1.124) and
(1.125). Especially the relation between two operators D,, v and D,, 7. We consider
the direct sum decomposition

Ei ()1 @ B o) = L1 5(Si; (uf)*TX @ A™). (1.130)
Note that this is not an orthogonal decomposition. We take an isomorphism
B oyt L7, 5(S5 (W) TX @ A) — L2, 5(3s; (uf)*TX @ A)

such that according to the orthogonal decomposition

Ei0) ® Ef ) = L} 5(5i; (uf)*TX @ A™). (1.131)
The restriction Bi’(ﬁ)’T|Ei(0) is the identity map and the restriction B; () r|g;
is the canonical isomorphism
Ai ). 2 Bi0) = Ei0)
given by the parallel transportation. Namely we put
Bi»("@)vT = Ai,(n),T ° HEi,((J) + HEil’(o)'
It is easy to prove
IBie), (V) =Vl , < Cosme™ |V 12, (1.132)
Moreover
0* 5T
HVZWB,L’(H)’T(V) L S CQGYme_ ||V| L?n,& (1133)
m—L£,5
Note that
-1
Ciwy,r = Hpp 0By 1
is the projection to the second factor in (1.130) and hence
Dy =Tlg. 0B 50 Dsr. (1.134)

We can use (1.132), (1.133) and (1.134) to prove (1.124), (1.125).

1.5. Surjectivity and injectivity of the gluing map. In this subsection we
prove surjectivity and injectivity of the map Glur in Theorem 1.10 and complete
the proof of Theorem 1.10.7 The proof goes along the line of [D1]. (See also [FU].)
The surjectivity proof is written in [FOnl, Section 14] and injectivity is proved in
the same way. ([FOnl, Section 14] studies the case of pseudo-holomorphic curve
without boundary. It however can be adapted easily to the bordered case as we
mentioned in [FOOO1, page 417 lines 21-26].) Here we explain the argument in
our situation in more detail.
We begin with the following a priori estimate.

"Here surjectivity means the second half of the statement of Theorem 1.10, that is ‘The image
contains MF1+E2 (S, 2); B)c,.
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Proposition 1.43. ([FOnl, Lemma 11.2]) There ezist €3, Cos m,02 > 0 such that
if u: (37,0%7) — (X, L) is an element of ME1HE2((S1,2); 8)c for 0 < € < €3
then we have ‘

The proof is the same as [FOnl, Lemma 11.2] that is proved in [FOnl, Section
14] and so is omitted.
We also have the following:

ou

- < Cy7 e 26T=17D, 1.135
or > Cormeé ( )

Cm([r—1,7+1]x[0,1])

Lemma 1.44. MP1+E2((S1. 2); B). is a smooth manifold of dimension dim V; +
dim Vo — dim L.

This is a consequence of the implicit function theorem and the index sum formula.

Proof of surjectivity. During this proof we take m sufficiently large and fix it. We
will fix € and Ty during the proof and assume T > Tj. (They are chosen so
that the discussion below works.) Let u : (X7,0%7) — (X, L) be an element of
MEFE (34 7); B). The purpose here is to show that v is in the image of Glur.
We define u : (3;,0%;) — (X, L) as follows. We put p§ = u(0,0) € L.

uj (2)
xg (T =T, t)u(t,t) + x5 (r =T, t)py if z = (7,t) € [-5T,5T] x [0, 1]
= < u(z) if z € K
pY if z € [5T,00) x [0, 1].
uy(z)
XA (T + T, t)u(r, t) + x5 (T +T,t)py  if z = (7,t) € [-5T,5T] x [0,1]
= ¢ u(z) if z € Ky
Py if z € (—o0, =577 x [0, 1].
(1.136)
Proposition 1.43 implies
||HEi(u;)5u;||L§n15(2i) < Cogme . (1.137)

Here we take § < d2/10. On the other hand, by assumption and elliptic regurality
we have
[ — il L2 s (E) S Ca9,me. (1.138)

m

Therefore by an implicit function theorem we have the following:

Lemma 1.45. There exists p; € V; such that

[Jui — u;)iHLanﬁ(Ei) < Csome "7, (1.139)
p=(p1,p2) € Vi xp Va, and
|pi| < Cs1,me. (1.140)
(Note when p; = 0, uf* = u;.)
By (1.139) we have
lu— iz, (or) < Cszme™"T. (1.141)

Here uf. = Glur(p).
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We take V € T'((X7,0%7); (uf)*TX; (u)*TL) so that
u(z) = E(u(2),V(2)).
We define v® : (37,0%7) = (X, L) by
u’(z) = E(uf(2), sV (2)). (1.142)

(1.141) implies
||H(LE1+E2)(us)5us||L§M(2T) < Cszme " (1.143)
and
Haas . < Cayme " (1.144)
1,5 (K

for each s € [0,1].

Lemma 1.46. If T is sufficiently large, then there exists 4° : (X, 0%r) — (X, L)
(s € [0,1]) with the following properties.

(1) _
04° =0 mod (E; 4+ Es)(4°).

QA
0s

(3) 4° =u® for s=0,1.

< 2055 me T, (1.145)
L2, (K9 ’

Proof. Run the alternating method described in Subsection 1.3 in one parameter
family version. Since u® is already a solution for s = 0, 1, it does not change. [

Lemma 1.47. The map Gluy : Vi xp Vo — ME1E2((Sp) 2); B)c is an immersion
if T is suffciently large.

Proof. We consider the composition of Gluy with
ME1+E2((ET’ Z); ﬁ) - Lm+1((Ki+Sa st N azi)’ (X7 L))

defined by restriction. In the case T' = oo this composition is obtained by restriction
of maps. By unique continuation, this is certainly an immersion for T' = co. Then
Theorem 1.34 implies that it is an immersion for sufficiently large T'. (]

Now we will prove that
A={s€]0,1] | &° € image of Glur}

is open and closed. Lemma 1.44 implies that MP1+E2((S1, 2); B). is a smooth
manifold and has the same dimension as Vi X V5. Therefore Lemma 1.47 implies
that A is open. The closedness of A follows from (1.145).

Note 0 € A. Therefore 1 € A. Namely u is in the image of Glur as required. O

Proof of injectivity. Let p? = (p{,p%) e Vi xp V, for j =0,1. We assume
Glur(p°) = Glur(ph) (1.146)

and ‘

1ol < e. (1.147)
We will prove that p® = p' if T is sufficiently large and e is sufficiently small. We
may assume that V; xp V5 is connected and simply connected. Then, we have a
path s — p® = (p§, p3) € Vi x1 Va such that
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(1) p* = p? for j =0, 1.
(2)

< ®q(e)

o
as”
where lim._,o ®1(¢) =0

We define V(s) € T((Sr, 0%7); (ufs )*TX; (uf )*TL) such that
uf (2) = B (2), V(5)(2)).

(By (2) upT(z) is C%close to u%o(z), as € = 0. Therefore there exists such a
unique V(s) if € is small.) Note V(1) = V(0) since w' = u?”. Therefore for
w € D? = {w € C | |w| < 1} there exists V(w) such that
(1) V(s) = V(w) if w = 2™V Ts,
(2) We put w =z 4+ +/—1y.
0
—V
|5 vw

(w) < Bye) (1.148)

Lfn,+1,5(ET)

0
¥ Hav
L3n,+1,5(ET) y
where lim,._,o ®2(¢) = 0.
We put u®(z) = E(ur (2), V(w)(z)).
Lemma 1.48. If T is sufficiently large and € is sufficiently small then there exists
v (Ep,087) — (X, L) (s € [0,1]) with the following properties.

(1) _
04” =0 mod (E; + E2)(4").

[5° |3

air Ler+1,5(Kj—s) ay
with lim._,o ®3(e) = 0.

(3) 4% =u™ for w € OD?.

w

< By(e) (1.149)

s
L?n«#l,é(K:— )

a’LU

Proof. Run the alternating method described in Subsection 1.3 in two parameter
family version. O

Lemma 1.49. If T is sufficiently large and € is sufficiently small, there exists a
smooth map F : D> — Vi x Vy such that

(1) Glup(F(w)) = a®™.

(2) If s € ]0,1] then we have:

F(CQTY\/le) _ ps.

Proof. Note that p — Glur(p) is a local diffeomorphism. So we can apply the proof
of homotopy lifting property as follows. Let D? = {2z € C | |z — (r — 1)| < r}. We
put

A={rel0,1]|3 F:D? = Vi x, V, satistying (1) above and F(—1) = p'/?}.
Since Glur(p) is a local diffeomorphism, A is open. We can use (1.149) to show

closednsss of A. Since 0 € A, it follows that 1 € A. The proof of Lemma 1.49 is
complete. ([

The proof of Theorem 1.10 is now complete. (]
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2. THE GENERAL CASE

2.1. Graph associated to a stable map. We first recall the definition of the
moduli space of (bordered) stable maps of genus zero.

Definition 2.1. Let 8 € Ho(X,L;Z) and k,¢ > 0. The compactified moduli
space of pseudo-holomorphic disks with k+1 boundary marked points and £ interior
marked points with boundary condition given by L that we denote by M1 ¢(5) is

the set of equivalence classes of ((X, 7, 71%), u), where:

(1) X is a bordered semi-stable curve of genus zero with one boundary compo-
nent 0X.

(2) u:(X2,0%) = (X, L) is a pseudo-holomorphic map of homology class /3.

(3) Z = (20,-.-,2r) are boundary marked points. None of them are singular
points and they are all distinct. We assume that they respect the cyclic
order of 0%.

(4) Z% = (2", ..., 2"") are interior marked points of ¥. None of them are
singular points and they are all distinct.

We say ((3, 7, 210%),u) is equivalent to ((X', 2, 7%),u') if there exists a biholo-
morphic map v : ¥ — ¥ such that uwov = and v(z]) = z;, v(zI"¥) = 2int,
Definition 2.2. Let a € Hy(X;Z) and £ > 0. The compactified moduli space
of pseudo-holomorphic sphere with ¢ (interior) marked points that we denote by

MG (@) is the set of the equivalence classes of ((¥, 7), u), where:

(1) X is a semi-stable curve of genus zero without boundary.

(2) u:¥ — X is a pseudo-holomorphic map of homology class «.

(3) 't = (it 2It) are marked points of ¥. None of them are singular
points and they are all distinct.

We say ((3, 2™), u) is equivalent to (X', 2, /) if there exists a biholomorphic
map v : ¥’ — 3 such that uwov =’ and v(zI") = zint.

The topology of /\/l‘l?l(a) is defined in [FOn1, Definition 10.3] and the topology
of Mj41,(8) is defined in [FOOO1, Definition 7.1.42]. (See Definition 2.103.)

It is proved in [FOnl, Theorem 11.1 and Lemma 10.4] that M (a) is compact
and Hausdorff. M1 ¢(5) is also compact and Hausdorff. See [FOOO1, Theorem
7.1.43] and the references therein.

We refer [FOOOL1, Section 2.1] for the moduli space My41,¢(3). See also [Liu].

We consider the case when X is a point and denote the moduli space of that
case by My41,0. We call it Deligne-Mumford moduli space. (This is a slight abuse
of notation since Deligne-Mumford studied the case when there is no boundary.)
We define M¢! in the same way.

Theorem 2.3. M () has a Kuranishi structure (without boundary) and Mp1.¢(3)
has a Kuranishi structure with corners.

Remark 2.4. (1) Theorem 2.3 in case of M () is a special case of [FOnl,
Theorem 7.10]. In the case of M1 ¢(8), Theorem 2.3 is [FOOO1, Theorem
2.1.29).

(2) In the case of M1 ¢(8) we need to describe the way how various moduli
spaces with differet k, £, 8 are related along their boundaries and corners,
for the application. See [FOOO1, Proposition 7.1.2] for the precise state-
ment on this point. It is easy to see that the proof we will give in this note
implies that version.
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Below we give a detailed proof of Theorem 2.3. The proof is based on the proof
in [FOnl]. The smoothness of coordinate at infinity is useful especially in the case
of Mj114(8). On that point we follow the method of [FOOO1, Section 7.2 and
Appendix A1.4].

Remark 2.5. We discuss the case of genus zero here. We can handle the case
of moduli space of pseudo-holomorphic curves with or without boundary and of
arbitrary genus and with arbitrary number of boundary components, in the same
way. The case of multi Lagrangian submanifolds in pairwise clearn intersection
can be also handled in the same way. To slightly simplify the notation we restrict
ourselves to the case of disks, that is mainly used in our book [FOOO1] and spheres,
that is asked in this google group explicitely. In fact no new idea is required for
generalization to higher genus etc. as far as the construction of Kuranishi structure
concerns.

In a way similar to [FOnl, Section 8], we stratify My11.¢(8) as follows. For each
element p = [(X, Z, 2"), u] of My41.(8) we associate G = Gy, a graph with some
extra data, as follows.

A vertex v of G corresponds to X, an irreducible component of ¥. (It is either a
disk or a sphere.) We put data S, = [u|x, ] that is either an element of Hy(X, L;Z)
or an element of Hy(X;Z).

To each singular point z of ¥ we associate an edge e, of G. The edge e, joins
two vertices vi, vy such that z € 3,,. Note z can be either boundary or interior
singular points. We also denote by z. the singular point of ¥ corresponding to the
edge e.

For each vertex v we also include the data which marked points are contained

in X,.

Definition 2.6. We call a graph G equipped with some other data described above,
the combinatorial type of p = [(, Z, 7%), u]. We denote by My.11,,(3;G) the set of
p with combinatorial type G.

We write My41,0(8) the staratum Myyq ¢(5; pt), where pt is a graph without
edge.®

We say that G is stable if corresponding pseudo-holomorphic curve is stable. We
say that G is source stable if the marked bordered curve obtained by forgetting the
map is stable.

Let G and G’ be combinatorial types. We say G = G’ if G’ is obtained from G by
iterating the following process finitely many times.

Take an edge e of G. We shrink e and identify two vertices vy, vy contained in
e. Let v be the vertex identified to vy, vo. We put 8y = By, + Byv,. The marked
points assigned to v; or vy will be assigned to v.

Lemma 2.7. If

mﬂ Miy1,6(B;G") # 0,
then G = G'.

o o
8Mk+1,g(ﬁ) is slightly smaller than the ‘interior’ of My, 1 ¢(8). Namely elements of Mj,1 ¢(8)
do not contain any disk or sphere bubble. On the other hand, elements of the interior of M1 ¢(83)
may contain sphere bubble.
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The proof is easy so omitted.
Sometimes we add the following data to G.

(1) Orientation to each of the edge. We call that G is oriented in case we include
this data.’
(2) The length T, € R+q to each of the edges e.

We say an edge e is an outgoing edge of its vertex v and incoming edge of its vertex
v’ if the orientation of e is goes from v to v/. By an abuse of terminology we say v
is an incoming vertex (resp. outgoing vertex) of the e if e is an incoming edge (resp.
outgoing edge) of v. 19

We use the following notation.

Cg( ) = the set of the vertices that correspond to a disk component.
CY(G) = the set of the vertices that correspond to a sphere component.
C°(G) = CJ(G) UC(9).
Ccl(g) = the set of the edges that correspond to a boundary singular point.
C1(G) = the set of the edges that correspond to an interior singular point.

CHG) =C(G)UCL9).

Here d,s,0,c indicate disk, sphere, open (string), closed (string), respectively.

We define moduli space of marked stable maps from genus zero curve without
boundary in the same way. We denote it by M¢(a) where o € Ha(X;Z). (¢
is the number of (interior) marked points.) In the same way we can associate a
combinatorial type to it that is a graph G. In this case there is no C$(G) or C1(G).

o cl
We define M§(a; G), M, (), in the same way.
Let us introduce some more notations. Let p € My +(8). We put
p=(ru)=((%27")u)

Then we sometimes write r =y, ¥ =X, =3, =2, = 4, 2" = 2" = ZI"*. We

also write u = u,. We use a similar notation in case p € M (a).
Definition 2.8. We put
I'y = {v: X, = %, |vis a biholomorphic map, v(2y;) = 2zp,,
v(z ;“f) = zpnl,up ov=1up.} (2.150)
I} ={v:¥, = ¥, |vis a biholomorphic map, v(zp,) = zp.i, (2.151)
Jo € & v(zy) :z;‘?g(i), Up OV =Up.} .
Here &, is the group of permutations of {1,...,¢}.
The assignment v — ¢ defines a group homomorphism
| (2.152)

9Actually in our case of genus 0 with at least one marked point there is a canonical way to
orient the edges as follows. We remove ze from 3. Then there is a component which contains the
0-th boundary marked point (or first interior marked point if 8% = ). If v is a vertex contained
in e we orient e so that v is inward if and only if the corresponding irreducible component is in
the connected component of ¥ minus boundary marked points that contains 0-th boudary marked
point.

10This might be different from the usual meaning of the English word incoming and outgoing.
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When §) is a subgroup of &, we denote by Iy its inverse image by (2.152). We
denote

Mit1,6(8;9) = Myt1,6(8)/9,
where $) acts by permutation of the interior marked points.

In case X is a point we write M1 ¢($) and define the groups F?, 1":‘ for an
element r € My41.¢. Note that in our case of genus zero with at least one boundary
marked point, the group T, is trivial. (However this fact is never used in this note.)

We define a similar notion in the case of MY etc.

2.2. Coordinate around the singular point. Let us assume that G is an ori-
ented combinatorial type that is source stable and $) is a subgroup of G,. Let
r = [2,7,7% € Mgi1(H) with combinatorial type G. It is well-known that
Mi41,0(9) is an effective orbifold with boundary and corners with its local model
U(x)/TP. Let us describe this neighborhood in more detail below.

For each v € CY(G), the element r determines a marked disk r, € My, 410,
Here k, is the sum of the number of edges € C1(G) containing v and the number
of boundary marked points assigned to v. /¢, is the sum of the number of edges
€ C(G) containing v and the number of interior marked points assigned to v. (In
other words the singular points of ¥ that is contained in ¥ is regarded as a marked
point of zy.)

o cl

For each v € C2(G), the element ¢ determines a marked sphere r, € M, in the
same way.

Let QT(;V)/F?V be the neighborhood of ¢, in My, 410, ($) or in M;lv ($)), respec-
tively, according to whether v € C3(G) or v € C{(G). The group I'Y acts on the
product [[U(xv). The quotient

VDo) /Iy = [[ DG | /1P
)

veCo(g

is a neighborhood of ¢ in M1 4(G; $).
A neighborhood of ¢ in My 41 ¢($) is identified with

Vw:6)x | [[ Teoiool | x| ] (@00l x 8/~ | /T2, (2.153)

ecCl(9) eeCL(9)
Remark 2.9. The equivalence relation ~ in (2.153) is defined as follows. (7', 6) ~
(T",0) if (T,0) = (T",0') or T = T" = ox.
The action of I'Y on

I @Teooal | x| JI (Teo.00l xS/~

eeCl(G) e€Cl(G)

is by exchanging the factors associated to the edges e and by rotation of the S*
factors. (See the proof of Lemma 2.17.)

We will define a map from (2.153) to My41,¢($). (See Definition 2.14.) We need
to fix a coordinate of ¥ around each of the singular point for this purpose. For the
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sake of consistency with the analytic construction in Section 1, we use cylindrical
coordinate.

Definition 2.10. Let

7w M, — V(xy) (2.154)

be a fiber bundle whose fiber is a two dimensional manifold together with fiberwise
complex structure. This fiber bundle is the universal family in the sense of (2)

below.

We call (2.154) with extra data described below a wuniversal family with

coordinate at infinity if the following conditions are satsified.

(1)
(2)

3)
(4)

(6)

9, has a fiberwise biholomorphic T, action and 7 is I'}, equivariant.
For v € () the fiber 77!(n) is biholomorphic to X, minus marked points
corresponding to the singular points of ).

As a part of the data we fix a closed subset &, C 9, such that 7 : &, —
U(r,) is proper.

We consider the direct product

B(xy)x U (0, 00) x [07 1]

eecl(9)
e is an outgoing edge of v

U U (_0070) X [O’ 1]

eECé(g)
e is an incoming edge of v

U U (0,00) x S

eecl(g)

e is an outgoing edge of v

U U (—00,0) x St

eccl(g)
e is an incoming edge of v

(2.155)

(Here and hereafter the symbols U and | in (2.155) are the disjoint union.)
As a part of the data we fix a diffeomorphism between 9, \ &, and

(2.155) that commutes with the projection to U(r,) and is a fiberwise

biholomorphic map. Moreover the diffeomorphism sends each end corre-

sponding to a singular point z, to the end in (2.155) coprresponding to the

edge e.

The diffeomorphism in (4) extends to a fiber preserving diffeomorphism

M, ZV(ry) X By,

This diffeomorphism sends each of the interior or boundary marked points
of the fiber of y to the corresponding marked point of {9} x 3, . However,
this diffeomorphism does not preserve fiberwise complex structure. As a
part of the data we fix this extension of diffeomorphism.

The action of an element of ', on (2.155) is given by exchanging the factors
associated to the edges e and by rotation of the S' factors.

Hereafter we sometimes call a coordinate at infinity in place of a universal family
with coordinate at infinity.

Example 2.11. Let r, be S? with £+ 2 marked points

2m/—I(4—1)/¢
20=0,21 =00,20=1,...,2p41 =€ (e=1)/e
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Let § C Sy42 be the subgroup G, consisting of elements that fix zg, z;. We assume
that zg and z; correspond to singular points of r. It is easy to see that F? = Zy.
Then ¢, \ {20,21} = R x S' and the action of I'{ is given by rotation of the S*
factors.

Definition 2.12. Suppose we are given a coordinate at infinity for each of ¢, where
ry corresponds to an irreducible component of r. We say that they are invariant
under the I‘;r—action if the following holds.

We define a fiber bundle

m () M, — [ V@) (2.156)

veCo(g) veCco(g)

as follows. We take projections [, cco(g) B(xv) — B(ry) and pull back the bundle
(2.154) by this projection. We thus obtain a fiber bundle over [],ccog) B(rv)-
(2.156) is the disjoint union of those bundles over v € C°(G). In other words the
fiber of (2.156) at (h, : v € C°(G)) is a disjoint union of p,’s.

The fiber bundle (2.156) has a '} -action. We consider its restriction to

o () M\ Ry) = [ D). (2.157)

veCo(g) veCo(g)

The group 1"; acts on the sum of the second factors of (2.155) by exchanging the
factors associated to the edges e and by rotation of the S* factors. We require that
(2.157) is invariant under this action.

Moreover we assume that the diffeomorphisms in Definition 2.10 (4)(5) are T'f
equivariant.

Now we fix a coordinate at infinity for each of p, that is invariant under the
I'? action. We will use it to define a map from (2.153) to a neighborhood of ¢ in
Mii1.0(9) as follows. Let (9, : v € C°(G)) and vy, € V(ry). Take a represen-
tative Xy, of y,. We put K,, = X, N K. The coordinate at infinity defines a
biholomorphic map between |J,cco(gy) Xy, \ Kv and

U (0,00) x [0,1]

eccl(g)
e is an outgoing edge of v

U U (—00,0) x [0,1]

cecl(g)

¢ is an incoming edge of v

U U (0,00) x S*

eeccl, G)
e is an outgoing edge of v

U U (—00,0) x S*.

eecl(g)
e is an incoming edge of v

We write the coordinate of each summand of (2.158) by (72,te), (77, to), (72,t.),

(7, t!) respectively. (Here we identify S' = R/Z so t, € [0,1] or t/,t! € R/Z.)
Now, let ((Ty;e € CL(G)), ((Te, 6.);e € CH(G)) be an element of

(2.158)

Il @Teoodl ] x| JI ((Teo,00)x 8/ ~]. (2.159)

eeCl(G) eeCl(9)
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(Here 0, € R/Z.)
Definition 2.13. We denote the right hand side of (2.159) by (T2, oo] x ((TOC7 00 X
S1).
We first consider the case T, # oo. We define 7, for e € C*(G) and ¢, for
e € C1(G) as follows.
Te = To—5Te =1+ 5T, (2.160)
te = tho=t!—0.. (2.161)

We note that (2.160), (2.161) are consistent with the notation of Section 1.4. We
consider

[—5T.,5T%] x [0, 1] (2.162)
for each e € C1(G) with coordinate (7e,t.) and
[-5T,,5T,) x S* (2.163)

for each e € C1(G) with coordinate (e, te).
We now consider the union

U KUVU U [-57e,57.) x [0,1]
veCo(g eeCl(G)
u |J [-5T.,5T) x S".
ecCl(G)

(2.164)

(2.160) and (2.161) describe the way how we glue various summands in (2.164) to
obtain a bordered Riemann surface, that is nonsingular in our case where 7T, # oo.

Definition 2.14. We denote by ®((ny;v € C%G)), (Te;e € CL(G)), (Te,0e);e €

C1(G)) the element of My, 11 ¢ represented by the above bordered Riemann surface.
Hereafter we write ) = (ny;v € C°(G)), T° = (Tu;e € CH(G)), TC = (Te,e €

Ce(9)), and 6 = (A;e € CL(G)). Weput T = (T°,T¢). We denote D(y, T°, (T¢, 6)) =
B, T,0) € Myt

We next consider the case when some T, = co. We define a graph G’ as follows :
We shrink all the edges e of G with T, # oco. Various data we associate to G’ are in-
duced by the one associated to G in an obvious way. The element ®(y, T°,(T<, 6))
is contained in Myyq0(G’). Namely we glue (2.164) to obtain a (noncompact)
bordered Riemann surface ¥'. Then we add a finite number of points (each corre-
sponds to the edges with infinite length) to obtain (singular) stable bordered curve
B(,T°, (T¢,6)) such that ®(y, T, (T°,)) minus singular points is 3.

Thus we have defined

c I W) x (T, 00) x ((Tg, 00] x §) = My
veCco(g)

We define some terminology below.

Definition 2.15. We call K, as in (2.164) a component of the core of y or of

B(y, T, (T¢,6)). Each of the connected component of the second or third term of
(2.164) is called a component of the neck region. In case T is infinity, there is a
domain identified with ([0,00) U (—o0,0]) x [0,1] or with ([0, 00) U (—00,0]) x S*
corresponding to it. We call it also a component of the neck region. The union of all
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=

the components of the core and the neck region is ®(y,7°, (T, §)) minus singular
points.

Remark 2.16. Note that My, has an &, action by permutation of the interior
marked points. A local chart of My ¢ at ¢ is of the form /T, and a local chart
of Myy1,6/6¢ at [r] is of the form U/T'}.

Lemma 2.17. The map ® is I‘;“ equivariant.

Proof. We first define a T'j" action on (2.159). Note an element of F;r acts on the
graph G in an obvious way. So it determines the way how to exchange the factors
of (2.159). The rotation part of the action is defined as follows. By Definition 2.10
(6) we can determine the rotation of the t, coordiante induced by an element of
I'f. Therefore by (2.161) the action on 6, coordinate is determined.

Once we defined I'{ action on (2.159) the equivalence of the map @ is immediate
from definition. O

Note that the space (2.153) has a stratification. (This stratification is induced
by the stratification of (0, o] that consists of (0, 00) and {co}. The map @ respects

this stratification and stratification of My41 ¢ by {Mgt1,0(G)}. Moreover @ is
continuous and strata-wise smooth. We do not discuss the smooth structure of
(2.153) yet. (See Subsection 2.7.)

We remark that the map ® depends on the choice of coordinate at infinity. The
next result describes how ® depends on the choice of coordinate at infinity.

Let

By J] B x (T3, 00] x ((Tg, 00] x S*) = Mg (2.165)
veCo(g)

be the map in Definition 2.14. Suppose

Vo = 1(v0, T, )

and Gy, is the combinatorial type of 9. Note Gy, is obtained from G, by shrinking
several edges. Therefore we may regard

C*(G,) € CH(Ge).

Namely we can canonically identify e € C*(G,) with an element of e € C*(Gy,) if
Tyy,e = 00.

We take a coordinate at infinity of 9)g. By Definition 2.14 it determines an
embedding

Dy [ TP Qo) x (T7,00] x (T5,00] x §') = Myyre.  (2.166)
veC9(Gy,)

Here an element of (T9,00] x ((T¢,00] x §Y) is (Tw;e € CH(Gyy), (Te, )¢ €

Ce(G,))-
We put

By =B, 0 Do (2.167)
We next define Uqo. Let (3v) € HveCO(gg,o) U2 (g.,). We denote & € (T9, 0] x

((T¢, 0] x S to be the point whose components are all co. Then ®5((3y), 50) has
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the same combinatorial type Gy, as 9o. We define U], ((3v)) € [Tvecog 2 (¢,)
and 77,0 by

T (@a((30), %)) = (W ((5v)), T, 7).
We note that T, = oo if e € C1(Gy,) C C*(G;). Then we put
V12((54), T,0) = (¥1,((4)), T",0") (2.168)

where
T T. ifee C'YGy,)
‘ T, ifee C'(G)\ C'(Gy,),

o — 0. ifee Cl(Gy,)
¢ 6L ifeeCHG)\CHGy,)

Remark 2.18. If 9)o has the same combinatorial type as r then W12 is the identity
map. Note that even in the case o = r the map P12 may not be the identity map
since ®; depends on the choice of coordinate at infinity.

Let k7o =0,1,..., koo =0,1,2,... and define

aIETl H OFT.e
—_— = T,e'
oTkr ceC1(G) oTe™

We define g;fl in the same way. We put

ko
ET . f = Z kT,eTe7 E@ . fc = Z k07eTe
ecC1(G) eeCl(G)
Proposition 2.19. In the above situation we have the following inequality for any
compact subset Vo (r,G) of V(r,G) :
oIkl plkel _

W&?@m V)| < Cl,ke_é,(ET'f+E9'fc)7 (2.169)
T ]

Ck
for |krl, |kg| < k with |kp| + |ke| # 0, where the left hand sides are C* norm (as
maps on y) and §' > 0 depends only on & and k.

Remark 2.20. The estimates in Proposition 2.19 holds strata-wise. Namely in
the situation where some of Tt is infinity, we only consider k7, kg such that k7 =
kg = 0 for the edges e with T, = oc.

Remark 2.21. During the proof of Proposition 2.19 and also during various dis-
cussions in later subsections, we need metrics of the source and the target to define
various norms etc. For this purpose we take a Riemannian metric on X and also
a family of metrics of the fibers of (2.154) such that outside K, it coincides with
the standard flat metric (via coordinates 7 and t). We include it in the data of
universal family with coordinate at infinity. Since we use it only to fix norm etc. it
is not an important part of that data.

Proposition 2.19 is a generalization of [FOOO1, Lemma A1.59] and will be used
for the same purpose later to derive the exponential decay estaimate of the coor-
dinate change of our Kuranishi structure. We suspect Proposition 2.19 is not new.
However for completeness sake the proof will be given later in Subsection 3.1.
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Remark 2.22. In case )y = r, Proposition 2.19 implies that there exists AT :
Vo(r,G) — R#C(9) AD iUo(p,g) (Sl)#cl(g) such that T' component (resp. 6
component) of ®5; goes to T+ AT (resp. 0, + AQ) in an exponential order as T
goes to infinity. (2.169) implies that y component of ®9; goes to 1 in exponential
order as T goes to infinity.

Proposition 2.19 describes the coordinate change (change of the parametrization)
of the moduli space. A coordinate at infinity determines a parametrization of
the (bordered) curve itself, since it includes the trivialization of the fiber bundle
(2.154). Proposition 2.23 below describes the way how it changes when we change
the coordinate at infinity.

Let @15 = 6;1 o ®, be as in Proposition 2.19 and let (y;,7;,6;) (j = 1,2) be in
the domain of 5j. We assume

(91,71, 01) = D12(n2, To, ba). (2.170)

Let E(g,-,f,-,éj) be a curve representing ®; (t)j,fj, 9_;) It comes with coordinate at

infinity. By (2.170) and stability, there exists a unique isomorphism

¥ (2.171)

U(Uzvfm@) : 2(027f27§2) (91,T1,01)

of marked curves.

Let K be the core of Z(Uj 7.0,) We take a compact subset K\(,23 c K such
that

(2) 1
0 o 7.0y (Bv0) C KV (2.172)
for sufficiently large Ti. Note that the sets KW and K (2 o are independent of
(UQ, T27 02) Let
CHIL KL

be the space of C* maps with C* topology. The restriction of v
defines an element of it that we denote by

) e CHES), KW).

oL (2)
(92,72,02) to KV,O

ReS(U(UQ,T},@)

Proposition 2.23. There exist Cy y,, T}, such that for each ey € Cl (Gy,) we have

a\le gkl 9 N
H TkT eke (9T2 0 ReS(U(nz,f2,§2)) . < CQ,ke 2T2e0
o ) (2.173)
n oIFTl Plre 9 .
H v2 8TET 89/;9 892’% ReS(U(t)z,f27§2)) i < CQ,ke €0
if each of Ty is greater than Ty, and lkp| + |ko| +n < k. Here Ty = (Taee €

CH(Gy)), 02 = (O2.c1¢ € CL(Gy,))-
The ﬁrst inequality also holds for ey € CL(Gy,).

We note that when all the numbers T3 are oo, 52(U27f2,§2) has the same
combinatorial type as 9)g. (Note ®, gives a coordinate of the Deligne-Mumford
moduli space in a neighborhood of 9)y.) Then, integrating on T , Proposition 2.23
implies:
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Corollary 2.24.

glkr| glkal .
n —_— - p— - —0212 min
D2 aTET 89159 68(0(02,@,92)) ReS(U(UZVOO)) < C3J€e )
o (2.174)
a\le glFsl . :
—02412 min
TkT 9](79 es(n(ﬂz,fm@)) - ReS(U(027®)) < C3J€€ B
ck

if Toe > Tomin > Ti for all e and |kp| + |kg| +n < k. Here Ty pmin = min(The;e €

CH(Gy,))-

In later subsections we also use a parametrized version of Propositions 2.19 and
2.23, which we discuss now.
Let @ be a finite dimensional manifold. Suppose we have a fiber bundle

M 5 Qy x Vxy) (2.175)

that is a universal family (2.154) when we restrict it to each of {{} x U(g,) for
& € Qy. We put
I o

veCo(g)

Definition 2.25. A Q-parametrized family of coordinates at infinity is a fiber
bundle (2.175) and its trivialization so that for each £ = (&) the restriction to
{&} x V(ry) gives a coordinate at infinity in the sense of Definition 2.10.

Suppose a @Q-parametrized family of coordinate at infinity in the above sense is
given. Then we can perform the construction we already described for each £ and
obtain a map

By:Qx ] V) x (Tg,00] x (T5,00] x S*) = Mysae. (2.176)
velo(g)
Note that for each £ € @Q it gives a diffeomorphism to a neighborhood of ¢ in
Mg,
Suppose we have a (unparametrized) coordinate at infinity that is a fiber bundle
T Dﬁg) — V(zy)
equipped with trivialization. It induces an embedding
H Q] xv f(?a ] ((7_15:700] X 51) —>Mk+1,€-
vECU(g
They induce a map
TioQx [ Blw) x (7, 00] x (T, 00) x §)
veC(g)

— H EU Fv va ] ((fg’oo} X gl)
velo(g)

(2.177)

by the formula:
[ (612(57 n,1.,0)) = 62(57 n,T,0).
Here fé” and T;f’ are sufficiently large compared with T:S’ and fg
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Moreover we have a family of biholomorphic maps:

L 06.(2) v',(1)
U(€703T>0) : Zf,g - ZT/ 9/ N (2178)
Here (y/,1",0") = ®15(¢,9,T,0) and Z;}%% EUTJ%@) are marked bordered curves

representing @1 (®12(&, p, T, 6)) and By(€, p, T, 6), respectively.
Lemma 2.26. We have Cy, Csj such that:
- glkr| glkel _
Vil 00" 5
OTkr §Oke

— —

) — Uio(n, T,6)|| < Cupe®FrTHRoT (2.179)
Ck'
for |E5|, |ET|, \ko| < k, if each of T, is greater than Ty. The left hand sides are C*

norm (as functions on v). Moreover for each ey € CL(Gy,) we have

’ﬂl

12(€,9,

o o] o —5,7T
Vg Vo ortr T r 9k 8T (0(£,n,f,§)) < Cs pe” 22700,
“ (2.180)
alkT\ glkel 9
v o] = = C —02T,
| ¢ t)(‘3T’<T 90Fs D¢, Res( (f,n,T,e)) i < Cs ke 0,

if each of T, is greater than T}, and |E§| + |kz| + kol +n < k.
The first inequality of (2.180) also holds for ey € CL(Gy,).

Note that (2.179), (2.180) are parametrized versions of Propositions 2.19, 2.23,
respectively. For the proof, see Subsection 3.1.

2.3. Stabilization of the source by adding marked points and obstruction
bundles. Let ((3, Z, 7%),u) = (r,u) € My11.0(3;G). We assume that G is stable
but is not source stable. In Section 1 we assumed that the source is stable. In order
to carry out analytic detail similar to the one in Section 1 in the general case, we
stabilize the source by adding marked points. In other words, we use the method
of [FOn1, appendix] for this purpose.!!

Remark 2.27. We note that the method of [FOnl, appendix] had been used earlier
in various places by many people. A nonexhausting list of it is [Wo, Proposition
7.11, Theorem 9.1], [FOnl, appendix], [LT, begining of Section 3 and the proof of
Lemma 3.1}, [Si, page 395], [FOOO1, page 424], [FOOO2, Section 4.3]. See also
[Ru, (3.9)].

‘We recall:
int )

Definition 2.28. An irreducible component ¢, = (3, 2, 2"
unstable, if and only if one of the following holds:

(1) rv € Mg, 41,0, and ky, + 1420, < 3.
(2) rv € Mﬁi and ¢, < 3.

There is at least one boundary marked point in case py is a disk (r € My
and k+1 > 0), and at least one interior marked point in case r, is a sphere. (This
is because it should be attached to a disk or to a sphere.) Note we assume ¢ > 1 in
case of M§L.) Therefore there are three cases where r, is unstable:

of ¢ is said to be

g years of experience shows that the method of [FOnl, appendix] is easier to use in various
applications than the method of [FOnl, Section 13].
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(a) ry is a disk. v € My, 11, and ky =0 or 1. 4, = 0.
(b) tv is a sphere. r, € M§ and £, = 2.
(¢) rv is a sphere. ¢, € Mﬁi and £, = 1.

Remark 2.29. In the case of higher genus there are some other kinds of irreducible
components that are unstable. For example, T2 without marked points is unstable.
We can handle them in the same way. If we consider also Mg (a), then M§ also
appears.

Definition 2.30. ([FOnl, Section 13 p989 and appendix p1047]) A minimal stabi-
lization is a choice of additional interior marked points, where we put one interior
marked point w, of ¥, for each r, satisfying (a) or (b) above and two interior
marked points wy 1, wy 2 for each r, satisfying (c) above, so that the following

holds.
(1) wy ¢ 2" wy 1, wy 2 ¢ 7. They are not singular.
(2) w is an immersion at wy, wy 1, Wy 2.
(3) Let v € F(t w) such that vY, = ¥/, Suppose g, satisfies (a) or (b) above.
Then vw, = v'wy for some v’ € I‘?; )
Then there exists v’ € Fa ) such that vw, ; = v'wy ; for i = 1,2.
+
(rv,u)”

Suppose t, satisfies (c¢) above.

(4) wy1 #v'wy o for any v’ €T
(We add three marked points in the case of Mg.)

Definition 2.31. A symmetric stabilization is a choice of additional marked points
W= (wq,...,we) € Int X, such that:

(1) @zt = 0.

(2) w; #w]‘ for i #]

(3) w is an immersion at each w;.

(4) (%, Z,% U 7'%) is stable.
()

5) For each v € F?; ) there exists o, € &y, such that

v(wi) = wgv(i).
We note that a minimal stabilization induces a symmetric stabilization. Namely

we take
{vwy | v € I‘(tv wy by satisfies (a) or (b)}

U{vwy, |ve Fav)u),i = 1,2, 1, satisfies (c)}.
Since the notion of symmetric stabilization is more general, we use symmetric sta-
bilization in this note. Symmetric stabilization was used in [FOOO2].
We write
rUw = (%, 2, 2% U )
when ¢ = (3, Z, 2'°).

Remark 2.32. In our genus zero case, Definition 2.31 (4) implies that the au-
"t g) is trivial.'? So we can define an injective

tomorphism group of (X, 7, z*

homomorphism
o: L — G (2.181)

121y the case of higher genus, we may include the triviality of the automorphism as a part
of the definition of the symmetric stabilization. If we do so then (2.181) is still an injective
homomorphism.
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by

v(w;) = We (i)
(Here &4 is the symmetric group of order ¢'l.) We denote by $, ., the image of
(2.181). In a similar way we obtain an injective homomorphism

o: Tt

(tu) Gy x Gyr. (2.182)

We denote its image by ﬁ?; W)

We use the notion of symmetric stabilization of ¥ € M1 ¢(5;G) to define the
notion of obstruction bundle data as follows.

Definition 2.33. An obstruction bundle data €, centered at

p=(ru) = ((3,72"),u) € Myy1,(5;6)
is the data satisfying the conditions described below.

(1) A symmetric stabilization @ = (w1,...,we) of (r,u). We denote by Gguy

the combinatorial type of @ U .
. o

(2) A neighborhood U(x, Uy) of x, Uy = (Xy,, Z, 2 Uy ) in My 11,0, 440

o cl ° o cl

or M, ., . Herer, € Mg, 110, or € M, ., is an irreducible component

of r and w, is a part of w that is contained in this irreducible component.

(3) A universal family with coordinate at infinity of r, U, defined on U(r, U

wy). (We use the notation of Definition 2.10.) We assume that it is invariant
+

)
under the F( ;Lj;;)u) action in the sense we will explain later.

(4) A compact subset K" such that K" x U(x, U1d,) is contained in &, ,

at
which is defined in Definition 2.10 (3). We assume that they are F()F(ng)u)

invariant in the sense we will explain later. We call K> the support of
the obstruction bundle.

(5) Ay e U(r,Uy)-parametrized smooth family of finite dimensional complex
linear subspaces E, (9, u) of

Do (Int KOP: w*TX @ A°Y).

Here T’y denotes the set of the smooth sections with compact support on
the domain ¥, induced by v, € V(x, Uwy). We regard u : Xy, — X
also as a map from X, by using the smooth trivialization of the universal
family given as a part of Definition 2.10 (5).

Dy

We assume that EBveCO(Q) E, is invariant under the F(;uw,u

the sense we will explain later.
(6) For each v € CY(Gy) and v, € V(xy Uy) the differential operator

) action in

D3 L7, 5((Sy,, 0%y, );u"TX,u"TL)

2.183
— L%(;(Z,,V;u*TX @A"Y /By (9, u) ( )

is surjective. (We define the above weighted Sobolev spaces in the same
way as in Subsection 1.2. See Subsection 2.5 for the precise definition in
the general case.)
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If ve CY(Gy) and v, € V(xy U wy), the differential operator
D,0:L? Yo utTX

u m+12,6( Dv ) o (2184)

= Ly s(Bp ;" TX @ A7)/ Ey (v, u)

is surjective.

(7) The kernels of (2.183) and (2.184) satisfy a transversality property for eval-
uation maps that is as described in Condition 2.34.

(8) For each w; € X, we take a codimension 2 submanifold D; of X such that
u(w;) € D; and

T, Sy + T Di = T, X.

Moreover {D;} is invariant under the I'y action in the following sense. Let
v eIy and v(w;) = wy(;) then

D; = Dyii). (2.185)
(Note u(w;) = u(wq(;y) since uov = u.)

Condition 2.34. Suppose a vertex v € CJ(G,) is contained in an edge e € CL(G,).
Let z. be a singular point of X, corresponding to the edge e € C1(G,). We define

evye : L2y 5((Sy,, 058, );u* T X, u*TL) = Ty.y L (2.186)

by s — +s(z.) where we take + if v is an outgoing vertex of e and we take — if v
is an incoming vertex of e. If v € C9(G,) and e € C}(G,), then we define

evye t L2 11 5((Sy,, 05, ); 0T X, u*TL) = Tyz) X (2.187)
by the same formula. In a similar way we define
eVve t L1 5(Sy, 1w TX) = Tyio X, (2.188)

if e € C1(Gy) and v € C2(G,) is its vertex.
Combining all of (2.186), (2.187), (2.188) we obtain a map:

evg, : @ L72n+1,6((2nvaaznv)§U*TX7U*TL)
veC(Gp)

& P Lhs(SyiuTX) (2.189)
vecu(Gy)

— @ Tu(ze)LEB @ Tu(ze)X~

e€C1(G,) ecCL(Gy)

The condition we require is that the restriction of evg, to

is surjective.

Remark 2.35. In [FOOOL1] we used Kuranishi structures on My.1¢(3) so that
the evaluation maps ev : Myy1,0(8) — LFF x X* are weakly submersive. To
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construct Kuranishi structures satisfying this additional property, we need to re-
quire an additional assumption to the obstruction bundle data. Namely we need
to assume that the evaluation maps at the marked points

k L

ev: P Lhi1s(Sn,, 0%, ) u TX, w'TL) = [ [ Tuen L % [ [ Tueiey X
veC(Gp) i=0 i=1
are also surjective. But we do not include it in the definition here since there are
cases we do not assume it.
We next explain the precise meaning of invariace under the action in (3), (4),
at
(5). The invariance in (3) is defined in Definition 2.12. The F(]F(Lj;;iju) action on R,

is induced by its action. (See Definition 2.12.) So we require (the totality of) KoPs*
+

e
is invariant under this action in (4). To make sense of (5) we define a F( (x)
rUw,u)

action on
P Tolint K w*TX @ A™). (2.190)
veCO(G)

Ly
Ifve F(;S;;)u) then v¥, = X,/ for some v/ and KoPst = v KSPt by (4). Moreover

uov = u holds on ¥,. Therefore we obtain

v, s To(Int KOP%: u*TX @ AY) 2 Ty (Int KOP; u*TX @ A°).

at
They induce a F(iij;i)u) action on (2.190). Note that this is the case of the action at

wWUp = (WUg,u). When we move to a nearby point (1, u), the situation becomes
slightly different, since v, = y holds no longer. We have a smooth trivialization of
the bundle (2.154). (Definition 2.10 (5).) Namely we are given a diffeomorphism

v KV(U) — Kv/(n)

between the cores. (Here we write K,(p) in place of K, to include its complex
structure.) However this is not a biholomorphic map. On the other hand

v Ky(n) = Ky (vi)
is a biholomorphic map by Definition 2.10 (1). Therefore we still obtain a map
v, To(Int K% (n); w*TX @ A°Y) (2.101)
>~ To(Int KO (v,1); (wo v 1)*TX @ A,
Definition 2.33 (5) means
0 (Bpoo(9,0)) = Byoor (020,100 071) = By o (0,9, )
where the map v, appearing at the beginning of the formula is the map (2.191).

Remark 2.36. The condition (8), especially u(w;) € D;, is assumed only for p and
w. For the general point U(h, U wy) this condition is not assumed at this stage.
We put this condition only at later step (Subsection 2.6. See also Definition 2.49.)
and only to the solutions of the equation.

Lemma 2.37. For each p there exists an obstruction bundle data &, centered at p.
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Proof. Existence of symmetric stabilization is obvious. We can find Ey, ,(p U W)
for v € C’O(gpuwp) satisfying (7), (8) by the unique continuation properties of the

linearization of the Cauchy-Rieman equation. We can make them ngmp invariant
by taking the union of the images of actions. Then we extend them to a small
neighborhood of p U, in a way such that (7), (8) are satisfied. We make them
F?Ew,, invariant by taking average as follows. Let y = (9 ) such that 1, € U (r,Ud,).
Using the trivialization of the bundle (2.154) we can define
T B B @ D(EynutTX @A),

Veco(gpump) veCo(G)
f)+
Note for v € Fpupu7p
since v, o 3;3 = 3;3 0 Uy We may assume

the equality v, o 3y = T, o v. may not be satisfied. However

!

H’U* © 3:) - jvn

© x|

is small by taking U(r, U w,) small. Therefore

1 _
Ty = m— (v1). 0, 00
# pUD, o
”erpjmp

is injective and close to Jj,. We hence obtain the required Ey(y) by
B, (y) = Im3,.
The existence of the codimension 2 submanifolds D; is obvious. O

The obstruction bundle data determines

Ey(9,u) = @ Epv(9,u) C @ L?n,é(zﬂv;u*TX ® A™)
VECO(ngu‘;F) Veco(gpuu‘;p)

for y € Y (rUW). This subspace plays the role of (a part of) the obstruction bundle
of the Kuranishi structure we will construct. To define our equation and thickened
moduli space we need to extend the family of linear subspaces E,(-) so that we
associate E,(q) to an object q which is ‘close’ to p. We will define this close-ness
below. (This is a generalization of Condition 1.4.)

We use the map

o [ VU x (Tg,00] x ((Tg,00] x S') = Myye40-
Veco(gpuﬁzp)
(See Definition 2.13.) Let 9 = &(y, T, 5) be an element of My ¢y that is

>int

represented by (g, 2y, 2" Uy). By construction (2.164) we have

Sy = U &2u |J [-5T,5T) x[0,1]
VECO(gpuwp) eEC&(quwp)
u U [-5T5T) x St

eeCé (gpuwp )

We called the second and the third summand the neck region. In case T, = oo the
product of the union of two half lines and [0, 1] or S is also called the neck region.
See Definition 2.15.
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Definition 2.38. Let v’ : (Xg,0%y) — (X, L) be a smooth map in homology
class 8. We say that (Xg),u) is e-close to p with respect to the given obstruction
bundle data if the following holds.
(1) Since Q) = ®(y, T, 0) the core K? C Yy is identified with K)) C X,. We
require
|u — u/|Clﬂ(Kf§’) <e€ (2.192)
for each v. (We regard u as a map from 3, by using the smooth trivializa-
tion of the universal family given as a part of Definition 2.10 (4).)
(2) The map v’ is holomorphic on each of the neck region.
(3) The diameter of the u’ image of each of the connected component of the

neck region is smaller than e.
(4) T, > e ! for each e.

Remark 2.39. We use metrics of the source and of X to define the left hand side
of (2.192). See Remark 2.21.

Remark 2.40. We note that Definition 2.38 is not a definition of topology on
certain set. In fact, ‘(Xg),u’) is close to p’ is defined only when p is an element of
Mi41.0(8), but (X9, ') may not be an element of My ¢(53).

Even in case (Xy,u') € Mpi41,(58), the fact that (g, u’) is e-close to p does not
imply that p is e-close (Xg,u’). In fact, if (Xg),u’) is e-close to p then G, > Gy.

On the other hand, we have the following. If (Xg,u’) € Mj41,(8) and is €;-
close to p and if (g, u”) is ex-close to (Xg,u’), then (X9, u”) is €1 + o(ez)-close
to p. (Here lim,,_,00(e2) = 0.)

Let 9) = ®(y, T, 0) and v’ : (Xg,0%y9) — (X, L) be a smooth map in homology
class 8 such that (Zg,u’) is e-close to p. We assume that € is smaller than the
injectivity radius of X. Let v € CY(G).

Definition 2.41. Suppose that we are given an obstruction bundle data &, cen-
tered at p. We define a map

IR wa + Brv(9,0) = To(Int KP% (u)*TX @ A% (2.193)

by using the complex linear part of the parallel transport along the path of the form
t — E(u(z),tv), where E(u(z),v) = u/(z). (Note this is a short geodesic joining
u(z) and v’ (z) with respect to the connection which we used to define E.) Here we
identify
K™ C K, C%y, K™ CK,CXy.
We write the image of (2.193) by E, (2),u').

k)

4
The map I(Vn’pu) @) is F(;S;g_)u) invariant in the sense of Lemma 2.42 below. Note
' ot ot
we have an injective homomorphism I', ©% = — &, x &, such that the I,

(xUd,u) (U, u)
action on the elements of V(rUw) is identified with the permutation of the £ marked

)

9%
points in r and ¢ marked points . (See (2.151).) For v € F(p(Lj;D 4y we define v.9)
by permuting the marked points of ) in the same way. If (2),u’) is e-close to p
then (v4Q),u’) is e-close to p. Let v/ be the vertex which is mapped from v by v
D
(xUd,u) - N
(5) we gave right above Remark 2.36.) We remark that v,.9) = ®(v.h,v.T,v.0).

with respect to the I’ action of G. (See the discussion about Definition 2.33
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By using diffeomorphism in Definition 2.13, we have a map v : y — v,y. Note
there exists a map (diffeomorphism) v : ¥,y — X, that permutes the marked points
in the required way. However this map is not holomorphic in general. It becomes
biholomorphic as a map v : Xy — X, 4.

Lemma 2.42. The following diagram commutes.

P ,
Ep,v(t),u) _w @), Fo(lnt Kgbst@j); (u’)*TX ® Aol)
v,,p ’ -1
Ep v (viy,uov™t) Qo CeBev )y Po(Int KoP5t(v,); (u' o v™1)*TX @ A1)

(2.194)
Here we define v/ by v(K,) = K.

Proof. The lemma follows from the fact that parallel transport etc. is independent
of the enumeration of the marked points. (Note the left vertical arrow is well-defined
by Definition 2.33 (5).) O

Corollary 2.43.

Vs @ E,v(,u) | = @ Eyy(v.,u o0 ).

veCo(G) veCo(g)
This is a consequence of Lemma 2.42 and Definition 2.33 (5).

We next show that the Fredholm regularity (Definition 2.33 (6)) and evaluation
map transversality (Definition 2.33 (7)) are preserved when we take (2),v’) that
is e-close to p. (See Proposition 2.48.) To state them precisely we need some
preparation.

Let Q) = &(v, T, 5) be an element of M}, 41 ¢4¢ that is represented by (Xg, 2y, ?5tu
wWy). We denote by Gy the combinatorial type of 2). (Here G, is the combinatorial
type of y and Gy is obtained from G, by shrinking the edges e such that T, # c0.)

Let v € C%(Gy). We have a differential operator
Du 0 : Ly 5((Sy,, 08y, )i(u)"TX, (u) TL) (2.195)
— L2, 5(Sy,; (u) TX @ A°). '

In case v € CO(Gy) we have
Dy 0 : L7, 5(8y,: (W) TX) = L7, 5(Sy,; (u/)*TX @ A%). (2.196)

Definition 2.44. We say (2),v’) is Fredholm regular with respect to the ob-
struction bundle data €, if the sum of the image of (2.195) and E, (9, v’) is
L2, s(3y,; (u)*TX @ A%) and if the sum of the image of (2.196) and E, (2, ')
is Lfmé(Z@v; (W)*TX @ A%).

Using this terminology, Definition 2.33 (6) means that (x,u) is Fredholm regular
with respect to the obstruction bundle data €&,.
We next define the notion of evaluation map transversality.

Definition 2.45. A flag of G is a pair (v,e) of edges e and its vertex v. Suppose
G is oriented. We say a flag (v,e) is incoming if e is an incoming edge. Otherwise
it is said outgoing. We denote by z, the singular point corresponding to an edge e.
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For each flag (v,e) of Gy, we define

evve : L2 11 5((Sy,,05y,); (W) TX, (W)*TL) = Ty(z) L, (2.197)
if ve CY(Gy), e € CL(Gy) in the same way as (2.186),
evve : L2101 5((Sy,, 05y, ); (W)*TX, (W) TL) = Ty X, (2.198)
if ve CY(Gy), e € CL(Gy) in the same way as (2.187), and
evyet L2 11 5By, (W) TX) = Ty X, (2.199)

if e € C!(Gy) in the same way as (2.188).
Combining them we obtain

oy i D Ii1s(Sw,,059,); (W) TX, (') TL)
veCy(Gy)

D LSy (@)TX) (2.200)
veCQ(Gy)

D mets @ Taox
ecCl(Gy) e€Cl(9y)

Definition 2.46. Suppose (2),u’) is Fredholm regular with respect to the obstruc-
tion bundle data &,. We say that (), ') is evaluation map transversal with respect
to the obstruction bundle data €, if the restriction of (2.200) to the direct sum of
the kernels of (2.197), (2.198) and of (2.199) is surjective.

Using this terminology, Definition 2.33 (7) means that (r,u) is evaluation map
transversal with respect to the obstruction bundle data &,.

Proposition 2.48 below says that Fredholm regularity and evaluation map transver-
sality are preserved if (9),u’) is sufficiently close to p. To state it we need to note
the following point.

When we define e-close-ness, we put the condition that the image of each con-
nected component of the neck region has diameter < e. But we did not assume a
similar condition for p and €, itself. So in case when this condition is not satisfied
for p, there can not exist any object that is e-close to p. Especially p itself is not
e-close to p.

However, we can always modify the core K so that p itself becomes e-close to
p as follows. We take a positive number R, ) for each flag of G and write R the
totality of such R, ). We put

KR =K, U U (0, Riv.e)] x [0, 1]
eec‘})(g)
(v, e) is an outgoing flag
U U [_R(v,e)a()) X [07 1]
eccl(g)
(v, e) is an incoming flag (2 201)
U U (0, R(V,e)] x St
eccl(g)
(v, e) is an outgoing flag
U U [—R(V)e),()) x St

ecCl(9)
(v, e) is an incoming flag
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Definition 2.47. We can define an obstruction bundle data &, centered at p using
K R in place of K. We call it the obstruction bundle data obtained by extending
the core and write G;ré. We call (2.201) the extended core. (In case we need to
specify R we call it the R-extended core.) (2.201) is a generalization of (1.104).

Proposition 2.48. Let p € Myy10(8) and €, be an obstraction bundle data cen-
tered at p. Then there exist € > 0 and R with the following properties.

,u') 1s €-close to p with respect to 4’ en (2),u') is Fredholm regular
1) I ) is e-close to p with tto &, th ") is Fredhol l
with respect to Q‘S,fR.
,u ) 18 e-close to p with respect to ", then (), u') is evaluation map
2) I, ") is e-cl jth e, th ) is evaluati
transversal with respect to QE;,"R.

; ; +R
(3) p is e-close to p with respect to €.

Proof. By using the fact that the diameter of the ' image of the connected compo-
nent of the neck region is small, we can prove an exponential decay estimate of u’
on the neck region. This is an analogue of Lemma 1.43 and its proof is the same as
the proof of [FOnl, Lemma 11.2]. Then the rest of the proof of (1),(2) is a version
of the proof of Mayer-Vietoris principle of Mrowka [Mr]. See [FOOO1, Proposition
7.1.27] or [Ful, Lemma 8.5]. (3) is obvious. O

So far we have discussed the case of bordered genus zero curve. The case of
genus zero curve without boundary is the same so we do not repeat it. '3

2.4. The differential equation and thickened moduli space. To construct a
Kuranishi neighborhood of each point in our moduli space My 11.4(8) or M% (),
we need to assign an obstruction bundle to each point of it. To do so we follow
the way we had written in [FOnl, end of the page 1003] and [FOOO1, end of the
page 423-middle of page 424]. The outline of the argument is as follows. For each
p € Mpii1,0(B) we take an obstruction bundle data €,. We then consider a closed
neighborhood 20, of p in M1 ,(3) so that its elements together with certain

marked points added is €,-close to p with respect to @,J{R. Here we choose ¢, and

@jé so that Proposition 2.48 holds. We next take a finite number of p. € My11 ¢(0)
such that

U Int Wy, = Mpyq1.0(8).

For p € My1,0(B), we collect all E,, such that p. satisfies p € 20,,.. The sum will
be the obstruction bundle &, at p. Now we will describe this process in more detail
below.

We first define the subset 20, in more detail. We note that in Definition 2.38,
we need £ + £, interior marked points to define its e-close-ness to an element p €
Miq1,6(B). (Here ¢, is the number of marked points we add as a part of the
obstruction bundle data &,.) We start with describing the process of forgetting
those ¢, marked points.

Definition 2.49. We consider the situation of Definition 2.38. Let 9) = ®(v, T, )
and let v’ : (Xg),0%y) — (X, L) be a smooth map in the homology class 3 that is

13Higher genus case is also the same.
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e-close to p. We say (9),u’) satisfies the transversal constraint if for each w; € W
we have

u’(wz) € Dp,i' (2202)

Let us explain the notation appearing in the above definition. We have ), the
additional marked points on ¥, as a part of the obstruction bundle data &,. The
element y is in a neighborhood W (x, U w,). (This neighborhood W (x, U w,) is also
a part of the date €,.) (T,6) is as in Definition 2.14. Thus 9 = ®(y,T',d) is a
bordered genus zero curve with k + 1 boundary and ¢ + ¢, interior marked points.
(¢, is the number of points in w,.) We denote by w ; the (¢ +¢)-th interior marked
point. (It is i-th among the additional marked points.) For each i =1,...,¢,, we
took D, ; that is transversal to u,(X,) at up(w;) as a part of the data &,.

Lemma 2.50. For eachp € Myi14(8) and an obstruction bundle data &, centered
at p there exists €, such that the following holds.
Let q = (rq,uq) € Mi11,(B). We consider the set of symmetric marking w, of

rq with #u’)’l’J = {,, such that the following holds.

(1) There exists y € B(xrp Uwy) and (T.,6) e (TS, 0] x (T, 00] x S such that

tq U, = ®(n,T,0).
(2) (rq Uy, uq) is €p-close to p.
(3) (rq Uy, uq) satisfies the transversal constraint.

Then the set of such u_i;, consists of a single I'y orbit if it is nonempty. Here we

regard T'y C &y by (2.181) and T'y, acts on the set of LU; ’s by permutation.

The proof of Lemma 2.50 is not difficult. We however postpone its proof to
Subsection 2.6 where the transversal constraint is studied more systematically.

We are now ready to provide the definition of 20, C My11.¢(B).

First for each p € Mjy10(8) we take and fix an obstruction bundle data &,.
Let W, be the additional marked points we take as a part of &,. We take ¢, so that
Proposition 2.48 and Lemma 2.50 hold. Moreover we may change €&, if necessary

so that Proposition 2.48 holds for C%;rﬁ = ¢,.

Definition 2.51. 20" (p) is the set of all ¢ € My 1,¢(8) such that the set of
satisfying (1)-(3) of Lemma 2.50 is nonempty. The constant €, (which is often
denoted by €, or €.) is determined later. (See Lemma 2.64 (Remark 2.65), Propo-
sition 2.95, Lemma 2.105, Lemma 2.108, Sublemma 2.109 (Remark 2.110.) See also
2 lines above Definition 2.121.) We note that 20%(p) is open, as we will see in
Subsection 2.6. See Remark 2.111.

We choose a compact subset 20, C 207 (p) that is a neighborhood of p. We take
Qﬂg that is a compact subset of Int 20, and is a neighborhood of p.

We take a finite set {p. | ¢ € €} C My41¢(8) such that

| Int 20) = Mys1.0(8). (2.203)
cel

We fix this set {p. | ¢ € €} in the rest of the construction of the Kuranishi
structure. From now on none of the obstruction bundle data at p for p ¢ € is used
in this note.

Definition 2.52. For p € M1 4(8), we define
Ep) ={ceC|peW,}.
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We also choose additional marked points @¥ of ¢, for each ¢ € €(p) such that

(1) There exist y € Y(rp, U Wy,) and (T,0) € (T, 00] x ((T€, ] x S') such
that r, Uw? = ®(y, T, 0).
(2) (xp Uw?, up) is €y -close to pe.
(3) (xp Uk, uy) satisfies the transversal constraint.
Lemma 2.53. For each p there exists a neighborhood U of it so that if q € U then
€(q) € €(p).
Proof. The lemma follows from the fact that 20, is closed. O

We next define an obstruction bundle &, for each p = (rp,up) € Mpt1.6(5).
Take ¢ € €(p). Let ¥ be as in Definition 2.52. By Definition 2.41, the map

IR oviey * Boew (e, ue) = To(Int K urTX @A) (2.204)

is defined. Here r, U} = By, T, é;) and v, € V(xry. Uy, ). Note K¢t C K, C
Ip.- We have also Kot C r, since @? Uxy, = (e, Ty, 0).-

Lemma 2.54. The image E.(p) of (2.204) depends only on p € 2, and is inde-
pendent of the choices of W satisfying Definition 2.52 (1)-(3).

Proof. This is a consequence of Corollary 2.43 and Lemma 2.50. O
Definition 2.55. We define
Eem®) = Y Eelp). (2.205)
ce€(p)

For 20 C &(p) we put
Ea(p) =D Eelp). (2.206)

ceA
The defining equation of the thickend moduli space at p is
Oup =0 mod Eg(y) ().

We need to extend the subspace Eg(p(p) to a family of subspaces parametrized by
a neighborhood of p. Before doing so we need the following.

Lemma 2.56. By perturbing E,_ (that is a part of the obstruction bundle data
&,.) we may assume that

Ec<p) N EC’ (p) = {0}7
if ¢, € €(p) and ¢ # .

Proof. The proof will be written in Subsection 3.3. O

Now we start extending the equation (2.205) to an element q in a ‘neighborhood’
of p. We do not yet assume that q satisfies the transversal constraint (Definition
2.49). So to define E.(q) we need to include ., for all ¢ € €(p) as marked points
of g. We also take more marked points w, to stabilize p and take corresponding
additional marked points @, on ;. The marked points @, are used to fix the
coordinate to perform the gluing construction in subsection 2.5. ., is used to
define the map (2.204). Thus they have different roles.

A technical point to take care of is the following. We may assume that the £,
components of W are mutually different, for each ¢. (This is because £. components
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of Wy, are mutually different.) However there is no obvious way to arrange so that
wP Nwh, = () for ¢ # ¢’. Note, in the usual stable map compactification, at the point
where two or more marked points become coincide, we put the ‘phantom bubble’
so that they become different points on this bubbled component. For our purpose,
the proof becomes simpler when we do not put a phantom bubble in case one of the
components of ¥ coincides with one of the components of @, for ¢ # ¢/. Taking
these points into acount we define My 11 (s, (2.))(8:p),, 7, below.

We first review the situation we are working in and prepare some notations. Let
p € Mpi16(8). We defined €(p) in Definition 2.52. For ¢ € €(p) we fixed an
obstruction bundle data &,  centered at p.. Additional marked points w0, is a part
of the data &, . We put £, = #w.. We also put €. = ¢,, where the right hand side
is as in Lemma 2.50. As memtioned before we take €,  so that Proposition 2.48

holds for ¢ % = ¢, .

Definition 2.57. A stabilization data at p is the data as follows.

(1) A symmetric stabilization @, = (wp1,...,wpe,) of p. Let £, = #,.

(2) For each wy; (1 =1,...,4,), we take and fix D, ; such that it is a codimen-
sion two submanifold of X and is transversal to u, at u,(wy;). We also
assume up(wp ;) € Dy ;.

(3) We assume that {D,; | i = 1,...,¢,} is invariant under the I'y action in

the same sense as in Definition 2.33 (8) (2.185).

A coordinate at infinity of p U .

Wy N WP = 0 for any ¢ € €(p).

Let KS}’C“ be the support of the obstruction bundle as in Definition 2.33

(4). (Here v € C°(Gy,).) Since r, = ®(y, T, ) we may regard Kot C 5,

We require

e R
S U
==

KPtc | K.
v/ eCO(Gy)

Here the right hand side is the core of the coordinate at infinity given by
item (4) Definition 2.57.

A stabilization data at p is similarly defined as the obstruction bundle data
centered at p. But it does not include Ko or E, . The stablization data at p
has no relation to the obstruction bundle data at p.**

We fix a metric on all the Deligne-Mumford moduli spaces. Let U, (p U )
be the eg-neighbhorhood of p U Wy in My e1e, (Gpuw,)) Where Gpuag,) is the
combinatorial type of p U .

Definition 2.58. [Definition of ;1 s, e.)) (5, P; %)EO’T;’]. We fix a stabiliza-
tion data at p and an obstruction bundle data centered at p. for each ¢ € €(p). Let
B C €(p). For each ¢ € &(p) we chose w? in Definition 2.52.

For g > 0 and Ty = (T9,T) = (Tup : € € C*(Gp)) we consider the set of all
(D, v/, (iW.; c € B)) such that the following holds for some E.

M1 case p = p. we have both stabilization data and obstruction bundle data at p. The
notation Wy is used for both structures. They may not be coincide. We use the same symbol
for both since this can not cause any confusion and the case p = p. does not play a role in our
discussion.
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(1) There exist vy € Ve, (p U wy), (T,0) € (TS, 0] x (T, 0] x S*) such that
D =31, T,0) € Myy1,040,-

(2) ' is €o-close to u, on the extended core KF% of £, in C1%-topology. We
use the coordinate at infinity of p U, that is included in the stabilization
data at p, to define this C''* close-ness.

(3) Moreover we assume that the diameter of the v’ image of each neck re-
gion of ¥g) is smaller than ;. We assume furthermore that ' is pseudo-
holomorphic in the neck regions. (The neck region here is the complement
of the union of the extended cores K ﬁ'.)

(4) We write 9 = o U 1w, (Y) where w,() are £, marked points that corre-
spond to w,. We assume that (2o U, u’) is eg-close to pUw? in the sense
of Definition 2.38 after extending the core of p U w? by R.

We say that (9D, v/ (5"; ¢ € B)) is weakly equivalent to (Y@, w/@ (5i?; ¢ €
B)) if there exists a bi—holomorphlc map v : PP — D such that

(a) w'® =@ oy,

(b) U(w;(})) = w;(,i)c(i)’ where o, € &y,.

(c) v sends the i-th boundary marked point of 29 to the i-th boundary marked
point of 93, v sends 1-st,... l-th interior marked points of Y1) to the
corresponding interior marked points of 2)(2). v sends ¢+1,... (+k,.. A4-Ly-
th interior marked points of Y™ to the £+ o (1),...,L+0c(k),... L+ (fy)-th
interior marked points of 9)®), where o € Sy, -

We denote by ﬁkﬂ)(ww(m)(ﬁ,p; %)EO,TO the set of all weak equivalence classes
of (,u, (W;c € B)) satisfying (1)-(4) above. (Here we use the weak equivalence
relation defined by (a), (b), (c).)

We say that (M), /()] (1?)’:;(1); c € B)) is equivalent to (), u/(), (1172(2); c €B))
when ¢ = o, = identity is satsified in (a)-(c) above in addition. Let

Wt 1,(63,,00)) (B 93 B) . 7,

be the set of equivalence classes of this equivalence relation.
Lemma 2.59. We may choose €y sufficiently small so that the following holds.
Suppose (2)(1),11’(1),(117;(1);6 € B)) is weakly equivalent to (2](2),u'(2),(u72(2);c €
B)) in the above sense and P = Sy TU) gU)) e My i1,010,. Then we have

(0(2)’1'4(2)’ 9_'(2)) - v*(t)(l),f(l), 9_'(1))
for some v € Ty, C Gy, .
Proof. The proof is by contradiction. Suppose there exists a sequence of positive

numbers €g, — 0 and (uf;, ,  (p@ra TG)a gliay ()% ¢ € B)) for j = 1,2 and
a=1,2,... such that:

(1) The object (u(y),, (pDa, TWa ga) (51 ¢ e 9B)) is weakly equiva-
lent to the object (u(y) ,, (p@a T@a g2.a) (52 0 c 8)).

(2) YW =y, TUIe, §U19) € Myy ey, ’

(3) The objects (uf, . (e, TG)a gla)ey ( @ e B)) are representatives
of elements of leﬂ (6:6,,(00) (ﬁ,p, )eo,a,To'
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(4) There is no v € T, satisfying (y@-a, T2)a §(2.a) — ¢ (y-a TQ)a fi)a)

We will deduce contradiction. By assumption there exist ﬁa — o0 and biholomor-
phic maps v, : 1@ — )@ guch that

(I> |ul(2),a O Va — ul(l),a|clO(Kj’éa) < €0,a-
(IT) The diameter of uzj) ., image of each connected component of the comple-

ment of the union of the extended cores K Ra ig smaller than €0,a-
(I11) 'Ua(wé(l)’a) =/ , where o, € Gg,.

N c,0.(1)

(IV) v, sends the i-th boundary marked point of 9% to the i-th boundary
marked point of 9. v, sends 1-st,...,/-th interior marked points of
)@ to the corresponding interior marked points of 9)(2:¢. v, sends £ +
L,... 0+Fk,. ..¢+L,-th interior marked points of (1)@ to the (+o4(1),. .. 0+

04(k),... L+ 0q(y)-th interior marked points of (2@, where o, € &, .
By (I) and (II) we may take a subsequence (still denoted by the same symbol) such
that v, converges to a biholomorphic map v : ¥, — X, such that u, ov = uy,. Then
(III) and (IV) imply that v € T'.
So changing 2)?)-% by v we may assume v = identity. Therefore v, converges to
identity. The stability then implies that v, is identity. This contradicts to (4). O

Definition 2.60. Let q* = (9, v/, (@;c € B)) € Wt (2,0, ,0.)) (55 9; B) We

define

€0,To"

E.(qh)c €D  To(lnt K™ (u)*TX ® A™)
veCo(g(9))
as follows, where G(2)) is the combinatorial type of (),u’). We regard K" as a
subset of 9). We note that p U is €, -close to p. Uy, and (Y U, v’) is eg-close
to p Uw? in the sense of Definition 2.38. Therefore we have

LPe s iy Boew(Desue) = To(Int KO (o) TX @ A™). (2.207)

Here p. = (x¢, uc) and Y U, = & (y,, T, 5) We regard K°P*t as a subset of . also.
(Note that the core of 9) is canonically identified with the core of y..) Then we
define

Ec(q%) = Z Izdffuc)7(muzﬁé7ul)(EPC,V(UC’ uc)) (2.208)
veCo(g(D))
and put
Ex(at) =D E.(ah). (2.209)
ce’B
For 2 C B we put
Ealat) = 3 Fu(a®). (2.210)
ceA

Remark 2.61. When we define E.(q"), we use the additional marked points .
and w,, that are assigned to p.. So this subspace is taken in a way independent
of p. This is important to prove that the coordinate change satisfies the cocycle
condition later. We explained this point in [Fu2, the last three lines in the answer
to question 4].

The next lemma is a consequence of Lemmas 2.59 and 2.42.
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Lemma 2.62. Suppose that (9™, u'™") (_'é(l) ¢ € B)) is weakly equivalent to

(D@, /@) (1w, 7P ce 9B)) and v is as in Lemma 2.59. We put qt\0) = (W) 4/0)] (’J)’é(j); c

B)). Then

Now we define:

Definition 2.63. The thickened moduli space My 1 (0.0, ,(0.)) (B p; ;B 7, is the
subset of Ux 11, (¢,¢,,(0.)) (B3 3 %)60 7, consisting of the equivalence classes of elements
q+ = (QJ, u', (U_)'é, c e %)) S uk+1,(£,2p,(éc))(6§ p; %)eo,ﬁ) that satsify

Ou' =0 mod Ey(q™). (2.211)
In case A = B we write My 1 (0.0, (0.)) (55 p; )

€0, To"

Lemma 2.64. Assume A # (. We can choose €, €, sufficiently small and Ty
sufficiently large such that the following holds after extending the core of p U W.

(1) I q* = (2w, (@ c € B)) s in yr (0, 0oy (55 03 B),, 7 then the equa-
tion (2.211) is Fredholm regular.

(2) If a8 = (D, (@,;¢ € B)) is in Wpyy (00,00 (505 B), o7, then qt s
evaluation map transversal.

(3) P € W1, (t,0,(0)) (B3 93 B) 7, -

Here the definition of Fredholm regularity is the same as Definition 2.44 and
the definition of evaluation map transversality is the same as Definition 2.45. The
proof of Lemma 2.64 is the same as that of Proposition 2.48.

Remark 2.65. More precisely we first choose €,, so that Lemma 2.64 holds for
gt = p U w,. (The choice of ¢,, is done at the stage when we take D™ (p.) in
Definition 2.49.) Then we take ¢y small so that the Lemma 2.64 holds for any

element q* of 11 (4,2, (B 9:B),, 7,-

Corollary 2.66. If ey, €,, small then Mk+17(g7gp7(gc))(ﬁ;p;m;%)60 7, has a struc-
ture of smooth manifold stratawise. The dimension of the top stratum is

dim Myg10(8) +2 D Lo +20, + ) dimp E..
ceB ceA

Here dim My41,4(B) is a virtual dimension that is given by
dim Myy1.0(8) =k + 1420 — 3+ 2u(B).
(11(B) is the Maslov index.) The dimension of the stratum M1 (¢.¢, (c.))(B; 9;2%; B3 G)

dim My 0(B) +2 Y Le+20,+ Y dimg E, — 24C1(G) — #CL(9).
ceB ceA
L'y acts effectively on My1 (0,0, ,(0.)) (85 p; 25 B)

€0,T0 "

Corollary 2.66 is an immediate consequence of Lemma 2.64, implicit function
theorem and index calculation.

Remark 2.67. We can define the topology of My.11 (04, (c.))(B:p:2B), 7 in
the same way as the topology of M1 ¢(8). We omit it here and will define the
topology of My.11,(e.¢,,(c.)) (B; 9; 2 B),, 7, in the next subsection. (Definiton 2.71.)

€

€0,To
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So far we have described the case of My1.¢(3). The case of M () is similar
with obvious modification.

2.5. Gluing analysis in the general case. The purpose of this subsection is
to generalize Theorems 1.10 and 1.34 to the case of the thickened moduli space
Mg, e, ,0.) (B3 95 Ql)mfo we defined in the last subsection. Actually this gener-
alization is straightforward.

We first state the result. Let G, be the combinatorial type of p. We first consider
the stratum M1 (0,0, ,(0.))(B;9;%%; Gp)e,- We did not include Ty in the notation
since this parameter does not play a role in our stratum. (Note Te is the gluing
parameter. We do not perform gluing to obtain an element in the same startum as
p.) We write

Vier1,e.,,00) (B3 9524 B3 €0) = Mig1 (0,,,0.)) (B 3 2585 Gp ) g - (2.212)

This space in this subsection plays the role of Vi xp V5 in Theorem 1.10. In case
B =2, we put

Vier1,e.6,,6) (B3 9525 €0) = Vi1, (,6,,00.)) (B 924525 €0).
Lemma 2.68. Vi1 (¢, (0.))(B;9;%; B;e0) has a structure of smooth manifold.

Proof. This is a special case of Corollary 2.66 and is a consequence of Lemma 2.50
(2) and (3). We give a proof for completeness.

Let ¢ € €(p). Since p < p., there exists a map = : G,, — G,. For each
v/ € C%G,,) we obtain an element p., € My, (Bv) and peyv U Wev €
M, 10,10, . (Byr). For v e CJ(Gy) the union of p. s for all v/ with 7(v') = v
is an element p.. € My ., ¢ (By). Together with the union of w...’s it gives
Pev Uley € My oy 0,4¢.,(Byv). The obstruction bundle data centered at p. in-
duces one centered at p. . in an obvious way.

Let py € My, , (By) be an element obtained by restricting various data of p to
the irreducible component of g, corresponding to the vertex v in an obvious way.
We have additional marked points @w¥v by restricting w¥. Then p, Uw¥ is €. close
to Pev U We .

We have taken the additional marked points w, on p. Let W, . be a part of it
that lies on the irreducible component p, Then p, Uy, € My 1 0,40, (By)-

Using pe,v, We,v, Pv, Wp,v, W ete., we define My 11z, ¢, .. (0.0)) (Bv; Pvi s B; point ), .
(Note that p, is irreducible. So the corresponding graph is trivial, that is the
graph without edge.) We note again that p, is irreducible and is source stable.
So the thickened moduli space My, 41 (e, ¢, ., (e...)) (Bv; Pv; 2A; B point), is the set
parametrized by the solutions of the equations

Ou' =0 mod Ex(u')
together with the complex structure of the source. By Lemma 2.50 (2) the linearized
operator of this equiation is surjective. Therefore My 11 (4, 1, . (¢.+)) (Bvi Pvi R B; point)e,
is a smooth manifold on a neighborhood of (py,wp, v, (@Wh*)) for each v € CJ(G,).
(Note that we add marked points so that there is no automorphism of elements of
M +1,6,(Bv). So it is not only an orbifold but is also a manifold.) The case v €
CY%(Gy) can be discussed in the same way and obtain M‘(‘év’ew’(a’v)) (By; pv; ;5 B; point) ¢,
that is also a smooth manifold.
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We take the product of them for all v € CY(G,). By taking evaluation maps we
have

H Moy 41,000 £ 0, (£00)) By Py 25 B5 point) .,

veC](Gy)
x H Mfévxp v, <5V’pv,§2[ % pOlnt)
veC(9p)
2
- H L x H X
ecCl(Gy) ecCL(Gy)

Lemma 2.50 (3) implies that this map is transversal to the diagonal set HeeC})(gp) Lx
[Teccro) X = L#Co(9p) 5 X#Cc(9) The inverse image of the diagonal set is
Vier1,e.6,,(0.)) (B3 93245 €0). 4
The glumg we will perform below defines a map
Gl : Vit (6,6, 000) (B 93 23 B5 €1) x (T, 00] x ((T§, 00] x S*)

= Mii1,0,0,,(0)) (B3 P32 B) 7 -
For a fixed (f 5) we denote the restriction of Glu to Viy1 (e, ,e.)) (83 ;24 B €1) X
{(T',0)} by Glu, = (7.6

Definition 2.69. M1 (e, (c.))(8;9;2; B; (f, 5))60 7, is a subset of the space

Mty 0. (B3 93205 %)60 7 consmtmg of the equivalence classes of (), u’) such

(2.213)

that 2) = ®(y, T, 5) where the combinatorial type of y is G,. In case A = B, we put
Mii1,0,05,00) (B 03 ) ) 7 = Mt (0,0,,0.) (B9 22) 7, -

Theorem 2.70. For each sufficiently small €3, and sufficiently large f, there exist
€2, €4 and a F;‘ equivariant map

Gluz gy Vier1, 6,5, (0)) (B3 3 25 B €4)
= Mg, ,0,,000)) (85 93 245 B; (T',6))e,

which is a diffeomorphism onto its image. The image of Glu 74 contains the space
Mk-;—l,(é,ép ,(£e)) (/Ba pv Q’L %7 (T7 0))63 .

Here T beging sufficiently large means that each of its component is sufficiently
large. Theorem 2.70 is a generalization of Theorem 1.10.

(2.214)

—

Definition 2.71. We define a topology on M1 (e, (c.)) (8; 95 2; B; (f, ))e for

€ < €3 and fo large so that Glu is a homeomorphism to the image.
It is easy to see that this topology coincides with the topology that is defined in
the same way as the topology of M1 ¢(5).

To state a generalization of Theorem 1.34, that is the exponential decay estimate

of T derivatives, we take R and the extended core Kj‘ﬁ as in (2.201). By restriction
we define a map

Mii1, e, ,0)) (859524 B; (T, 0))c, 7,

B (2.215)
— C(K KRN 0%, ), (X, 1)).
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We compose it with Glu and obtain Glures

(T.6) (T-6),v,R
Theorem 2.72. For each m and R there exist T(m), Cg,, 5 and & such that the
following holds for T2 > T(m), TS > T(m) and n + k| + ko] < m — 10 and

‘ET| + |E9| > 0.

|Ez| glkol
|v alkrl g

? 9Tkr HYF. < Gy e BT (2.216)
T 0 N

Glures(T B v

L2
m+1—|kp|—|kgl|

Here V7 is the n-th deriwative in p € Vi1 (0,0, (¢ ) (B;p; 2B €2) direction and
8 >0 depends only on § and m.

The proofs of Theorems 2.70 and 2.72 occupy the rest of this subsection. We
begin with introducing some notations. Suppose that (¥, u”, (w?)) is a represen-
tative of an element p of Vii1 (r.0, (e. ))(ﬂ,p,ﬂ €0). We put X+ = X°. Its marked
points are denoted by z”, 2" and wp, w¥. Here w’s are additional marked points.
We divide each of the irreducible components £? of ¥ as

KPU U (0,00) x [0,1]

eeCcl(g)

e is an outgoing edge of v

U U (—00,0) x [0,1]
eccl(g)
e is an incoming edge of v

U U (0,00) x S*

cccl(g)

e is an outgoing edge of v

U U (—00,0) x S,
eECg(g)
e is an incoming edge of v

(2.217)

where the coordinates of the 2-nd, 3-rd, 4-th, and 5-th summands are (7,t),
(12, te), (78,tL), and (77,t), respectively. Here 7, € (0,00), 7/ € (=00, 0).

er’e C7C

We call the end corresponding to e the e-th end.
We recall
Te = 71,- 5L =1/ +5L, (2.218)
te = t,=1tl—0e. (2.219)
We put
u€ = ’up|KV, ug = Up|c-th neck region -

We denote by Yg) = 2%5 a representative of 9) = ®(y,T',0). The curve 2%5 is a
union
U kou | [-57.,57 x [0,1]
veCo(Gy) ecCl(9)

u |J 57,57 x S".
ecCl(G)

(2.220)

The coordinates of the 2nd and 3rd terms are 7, and t,.
We call [—5Ty, 5T,] x [0,1] or [=5T,, 5T,] x S* the e-th neck.
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In case T, = oo, the curve E%(; contains ([0, 00) U (=00, 0]) x [0,1] or ([0,00) U
(—00,0]) x St corresponding to the e-th edge. We call ([0, 00) x [0,1] (or xS*) the
outgoing e-th end and (—o0,0] x [0,1] (or S') the incoming e-th end.

We call K, the v-th core.

The restriction of u” to K, is written as u?. The restriction of u” to the e-neck
is written as uf.

For each e, let v; and vy be its incoming and outgoing vertices. We have

(2.221)

TQEHJOO U‘Jz (Te» te) = T}EHOO U51 (Tea te)»

and (2.221) is independent of ¢t,. We write this limit as p?. We take a Darboux
coordinate in a neighborhood of each p? such that L is flat in this coordinate. We
choose the map E such that (1.31) holds in this neighborhood of p%.

For e € C}(G,) with T, # oo, we define

Ae,T = [*Te -1, -Tc + 1} x [07 1] - [*5Te7 5Te] X [Oa l]a
Be,T = [Te - ]-7Te + 1] X [07 1] - [_5TE75TB] X [07 1]7
Xe,T = [_L +1] x [Oa 1] C [_5T975Te} X [07 1]

(2.222)

In case e € C! (Gp), the sets Ac 1, B 7, Xo 1 are defined in the same way as above
replacing [0, 1] by S*.
If v is a vertex of e then Aq 7, Be 7, Xe, 7 may be regarded as a subset of X also.
Let x$ 4, Xoia be smooth functions on [-5T¢,5T¢] x [0,1] or [=5T,5T¢] x S*
such that

1 7e<-T.—-1
S a(Terte) = N N 2.223
Xe,A( este) {0 o> T+ 1. ( )
Xeoa =1 —Xoa
We define
1 7o <Te—1
Ta(Te, te) = N N 2.224
X7t {0 e (2:224)
X:B =1- X:,B'
We define
1 o< -1
sx(Tete) = ¢ 2.225
Xe,X(T ) {0 To > 1. ( )

X:X =1- Xé_,x-
We extend these functions to E% P and 3¢ so that they are locally constant on its

core. We denote them by the same symbol.
We next introduce weighted Sobolev norms and their local versions for sections
on X2 as follows. We define a smooth function e, 5 : X2 — [1,00) by

=1 on K,

= el t5Tel if 7, > 1 — 5T, and e is an outgoing edge of v,
ev.o(Te,te) S € [1,10] if 7o < 1 —5T,, and e is an outgoing edge of v,

= 75Tl if 7, < 5T, — 1, and e is an incoming edge of v,

€ [1,10] if 7o > 5T, — 1, and e is an incoming edge of v.

(2.226)
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We also define a weight function e 5 : X7 - — [1,00) as follows:

= ¢lme=5Tc| if 1 <7 <57, —1,
= I +5Te| if —1>7>1-5T,,

ef 5(Teste) § =1 on Ky, (2.227)
€ [1,10] if |7e = 5Te| < 1 or |7e + 5Te| < 1,

€ [e279/10,e2Te0] if || < 1.

The weighted Sobolev norm we use for L7, 5(32; (uf)*TX @ A%) is given by

sl , = Z/Ep ey.5|VE s 2volyy. (2.228)
k=0 v

Definition 2.73. The Sobolev space L7 . 5((££,9%2); (uf)*TX, (uf)*TL) con-
sists of elements (s, ) with the following properties.

(1) ¥ = (ve) where e runs on the set of edges of v and v, € T,,(X) (in case
e € CL(G)) or ve € Ty (L) (in case e € CL(G)).
(2) The following norm is finite.

m—+1

Moo, =D [ [VsPvols, + 30 fuel?
’ k=0 Y Kv

e: edges of v

i (2.229)

Y / ev.5| V¥ (s — Pal(ve))[>volyp.
k=0 e: edges of v e-th end

Definition 2.74. We define
Devg, : P L2415((20,050); (uf)*TX, (uf)*TL)

veCd(Gy)

& P Llis(Z0 W) TX) (2.230)
veC2(Gy)

- P TuLe @ TuX
e€Cl(Gy) e€CL(Gyp)

as in (2.200).
Definition 2.75. We denote the kernel of (2.230) by
L2, 1 5((5P,05°); (u)*TX, (u?)*TL).
pWe next define weighted Sobolev norms for the sections of various bundles on
Zf7§' Let

/
u' (EP:F,(;’ 82’%7§) — (X, L)
be a smooth map of homology class 8 that is pseudo-holomorphic in the neck region
and has finite energy. (We include the case when u’ is not pseudo-holomorphic in
the neck region but satisfies the same exponential decay estimate as the pseudo-

holomorphic curve.) We first consider the case when all T, # oco. In this case Z% 7
is compact. We consider an element

5 € L2 (9 2085 : () TX, ()" TL).
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Since we take m large, the section s is continuous. We take a point (0,1/2), in the
e-th neck. Since s € L2, its value s((0,1/2)c) € Tyr((0,1/2)0)X is well-defined.

We take a coordinate around p? such that in case e € CL(G) our Lagrangian
submanifold L is linear in this coordinate around p?. We use this trivialization
to find a canonical trivialization of T'X in a neighbofhood of p?. We use this
trivialization to define Pal below. We put

m—+1

[ss =33 / V5[2volsy
R Ky

v
m—+1

+ Z Z/ e 5|Vk(s — Pal(s(0,1/2),))|*dtcdr. (2.231)
k=0 e-th neck

e

+> 15((0,1/2)e)]1

For a section s € L, (X7, FUTX® A1) we define

||sH%3M = Z/Zp eT,5|vks|2v012%6_. (2.232)
k=0">7 4

We next consider the case when some of the edges e have infinite length, namely
To = oco. Let Cg’inf(gp,f) (resp. Ccl’inf(gmf)) be the set of elements e in C}(G,)
(resp. Cl(Gy)) with T, = oo and let Cg*ﬁ“(gp,f) (resp. C'Cl*ﬁ“(gp,f)) be the set
of elements e € CL(G,) (resp. Cl(G,)) with T, # oo. Note the ends of EP:F,@
correspond two to one to Cg’i“f((]wf) u Ccl’i“f(gp,f). The ends that correspond
to an element e of Cg’i“f(gmf) is ([-5T%, 00) X [0,1]) U (—00,5Te] X [0,1]) and the
ends that correspond to e € Cg’i“f(gwf) is ([=5T,, 0) x S1) U (—o00,5T¢] x S1).
We have a weight function ey 5(7e,te) on it.

Definition 2.76. An element of

12, 115((% 5,090 s ()" TX, () TL)

is a pair (s,?) such that
(1) s is a section of (u')*TX on E% ;7 minus singular points ze with 7, = oo.
2) s is locally of L2, ., class.
3) On 0% - the restriction of s is in (u')"TL.
)
)

4) ¥ = (ve) where e runs in C1"(G,, T') and v, is as in Definition 2.73 (1).
5) For each e with T, = oo, the integral

(
(
(
(

m+1 o)
> / 0.5 (7es )|V (5(ros to) — Pal(ve) [2dracdte
k=0 70 Jte

. (2.233)

0
S / / v (Tor £0)|[ V¥ (5(7e o) — Pal(ve))[2dredte
k=0 Y —00 /e

is finite. (Here we integrate over t, € [0, 1] (resp. t. € S1)ife € CLM(G,, T)
(resp. e € CLIM(G,, T)).
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We define

IG5, D)7z, = (2:231) + (2233)+ > el (2234)
ecCLinf (G, T e€CLinf (G, T

An element of
Ly, 5(30, 5 (u)'TX @ A%)

is a section s of the bundle (v/)*TX @ A such that it is locally of L2 -class and

> / / ey,5|VFs(Te, te) [Pdredte
k=070 e

mo o (2.235)
+) / / ey 5|VF (5(Te, te)|2dredte
k=0Y —o° te
is finite. We define
IsllZz | = (2:232) + (2.235). (2.236)

eecl,inf(gp jﬂ‘)

m,8

restricting the domain of the integration (2.232), (2.231), (2.234) or (2.236) to W.
Let (s;,7;) € L3n+175((25,82€); (u)*TX, (ub)*TL) for j = 1,2. We define an
inner product among them by:

{((s1,01), (s2,02))) 2

-y / o7 5(s1 — Pal(vy), 55 — Pal(va.c)
e-th neck

For a subset W of ¥ or Z%g we define ||s||L3n16(WC25), II's]l 22 wess, ) by

eeC(Gy) (2.237)
+ Z / (81752) + Z ('Ul,eav2,e)-
veoo(g,) M Ky c€C1(Gy)

Now we start the gluing process. Let us start with the maps
ug = (5¢,0%50) — (X, L)
for each v so that (uf;v € C°(Gy)) consists an element of Vier1, .6, ,(0.)) (B3 95245 €2).

Let (T',6) € (T, 00] x ((T€,00] x S*). For k =0,1,2,..., we will define a series of
maps

P P p
Urg - e 085 ) o (X L) (2.238)
W orge ¢ (B90%0) = (X, L) (2.239)
and elements
¢ g € Pe= b E. (2.240)
veC9(Gy,)
Brrl s € Lms(D0 (@ 5 )" TX @A), (2.241)

Note E., C T'(Ky;uy TX @ A') is a finite dimensional space which we take as a
part of the obstruction bundle data centered at p..
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Moreover we will define V7 . " for v e C°(G,) and Ap” F ) for e € C1(Gp).
The pair ((Vﬁ’ - (K)), (APZT(?(H))) is an element of the weighted Sobolev space

L?nJrl 5((2 az ) ( TQ(H 1))*TX? (ﬁf:”f‘yéz(,{,l))*TL)'
The construction of these objects is a straightforward generalization of the con-
struction given by Subsection 1.3 and proceed by induction on x as follows.

Pregluing: We first define an approximate solution UT 5.0)° For e € C’l(gp) we
denote by v (e) and v_,(e) its two vertices. Here e is an outgoing edge of v._(e)

and is an incoming edge of v_,(e). We put:

S xep(ul () ~ P&+ X, ooalul_ (¢y — PE) +pE on the e-th neck
T,0,(0) uf on K,.
(2.242)

Step 0-3: We next define

Z ¢ rgo = 0wl on K. (2.243)

Here we identify F, & Ec(ue) on Ky by the parallel transport as we did in Definition
2.60. See also Definition 2.41. Note that duf is contained in @F, since (uf;v €
C’O(gp)) is an element of Vi1 (r.¢,.2.)) (8 9;%; €0)-

We put
T 5.0 ec 750 (2.244)
ceU
Step 0-4: We next define
< Y p . . .
Xe,x@ui 7 (0) on the e-th neck if e is outgoing
p — ) Dl . e .
T, 550y = Xe,x@ui 7 (0) on the e-th neck if e is incoming  (2.245)
5P ol
Mg~ ra0 O Ev

See Remark 2.80.
Step 1-1: We put

P
W 750y P)
X::B( =T, te)u %0 0) (Te, te) + Xc_,)B(Te — Ty, te)p?

if z = (7e,te) is on the e-th neck that is outgoing

= ¢ Xooa(Te = Te, te )Ufg(o)(T, t) + X a(Te — Te,y te)pl
if z = (7o, t.) is on the e-th neck that is incoming
p .
uv,f,@,(o)(z) if z € K.

(2.246)
We denote the (covariant) linearization of the Cauchy-Riemann equation at this

map 4° o T.9,0) by
p *
‘Dus,fé.(o)a Lm+1 5((2‘/’82 ) ( rfé’( )) TX ( VT,g,(O)) TL) (2 247)
ap * 01 :
— L2, (5 (uv,f,§,(o)) TX @ A).
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We next study the obstruction bundle E.. We recall that at u% 5.0) the obstruc-

tion bundle E.(u”, 5.0 )) was defined as follows. (See Definition 2.60.) We use the
added marked points w* and consider Ef} ~Uw’. Here, by abuse of notation, we
include the k 4+ 1 boudary and ¢ interior marked points in the notation 3” o . (The
additional marked points w and w? are not included.) By assumption ZT’ 7Y w is

(ec+o(€p))-close to p.. Therefore the diffeomorphism between cores of ¥,, and of
poa 7.9 is determined, by the obstruction bundle data &, . Using this diffeomorphism

and the parallel transport we have

Vipe . p
I(Ur‘ ur) (E -,<Uwc uf 9_(0)) . Ec,v(Ucvuc) - F(K‘”( T,§,(O))

*TX @A), (2.248)

The notation in (2.248) is as follows. There is a map 7 : G,, — G, shrinking several
edges. For v € CY(G,) we put

Ec,v = @ Ec,v’

v/ ecO(gy.)

r(v)=v

where F. . is the obstruction bundle that is included in the obstruction bundle
data €,_at p.. It determines E. (9c,uc) = B viecoie,,) Loy (9e, te). Then (2.248)

m(v)=v
is defined by Definition 2.41.
Remark 2.77. In Definiton 2.57 (6) we assumed that the image of K$%" by the
diffeomorphism mentioned above is always contained in the core of 2% e (Here

KSFCSt is the support of E..) Note by the core we mean the core with respect to
the coordinate at infinity that is included as a part of the stabilization data at p
here.

The vector space E.(u”. 7 (0 )) is the sum over v € C%(G,) of the images of (2.248).

7.0
We next consider the obstruction bundle at 4” e T50)° . A technical point we need
. . ~p
to take care of here is that the obstruction bundle we use is not E.. (HveCO(gp) W rg (0))

but is slightly different from it. Let K Ob“ C K, C E’i 7 be the image of the set

Kf,’}’jt by the above mentioned diffeomorphlsm that is mduced by the stabilization
data at p. We remark that we may regard K, as a subset of 32 also by using the

stabilization data at p. Moreover on K, we have u Ti0) = u% 5.(0)° So we have
Image of (2.248) C T'(Ky; (uP 7.0 )) TX ®A01)
_ * 01 (2.249)
- @ T,@,(o)) TX@A™).

veCo (gp)

Definition 2.78. We regard the left hand side of (2.249) as a subspace of

veC%(Gy)
and denote it by

/ 01
E(? )E L i) C Q? L2, i) TX @A),
veCO(G, veCo(G,)
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We also define

/ 1l / ~p _ / ~p
gPN ally T 0. (0) @ Bl v,T,0,(0 ); P)Q‘<uf,§,(o)) B @ 5P7V79‘(uv,i§,(0))'
ceA veC%(Gy)
/ ~p .
Remark 2.79. The reason why FE.(a” T, (0)) # EC(UV,T',(?,(O)) is as follows. The
union of the domains of uv 7.g0 OVer v is ¥,. When we identify the core of ¥,

with the core of Ef 5 We use the additional marked points w, included in the
stabilization data at p. We now consider the two diffeomorphisms:

K2t —  Core of %%, . — Core of %, (2.250)
7 7.0

)

Kf,’}’ft — Core of Xy. (2.251)

We note that the diffeomorphism of the second arrow of (2.250) is defined by using
the additional marked points @,. The other arrows are defined by using the addi-
tional marked points w,,. Therefore in general (2. 250) # (2.251). The definition

of E'(a ﬂé(o)) uses (2.250) and the definition of E. ( 70 )) uses (2.251). This

phenomenon does not occur in the situation of Section 1 This is because we took
p = p. in Section 1.

Remark 2.80. In the situation of Section 1 we have Err” e T.0.0) = = 0 on the core
K. However this is not the case in the current situation . In fact by definition we

have
p _ 7P _
Z Ertf - o . Il 5 6 o 5ef 7.0 (2.252)
veCo(Gy)

and
I3 _ P g,
ﬁef,e”,(o) = mec’ig’(o) = ouf (2.253)
ce

on K. Moreover uf = uf 5(0) on K. However (2.252) is nonzero because the way

how we identify an element ¢’ , . € E, as a section on K, are different between

e, T,0,(0)
the case of u? and of u” . . Namely, in (2.252) we regard e that is a

T,0,(0) ()(

) as an element of E, (ua ~ ). In (2.253) we regard egT as an

part of se”. 7 T.9.(0) 7.(0)

0,(0)
element of E (uf).

We identify K, C E%g with K, C Xf by using the stabilization data at p
Thus e 5.0) in (2.252) is also regarded as an element of E/(uf). So ErrV 740 |
nonzero on K, because of E/(uf) # E.(uf). But this difference is of exponentlally
small. Namely we have the next lemma.

Lemma 2.81. Put Ty, = min{7T, | e € C'(Gy)}. Then there exists Ty, such that

the following inequality holds
[kr| glkal

n 9 0 Err

76T[llill
p 8217]}.1“ 80];9 V,’f,@j(O) < C77m6 (2254)

(=9)

2
m—|Fp|—|Fg|—1,6
for |ET| + \E9| <m —10 and Tmin > Ti.

The proof is given later right after the proof of Lemma 2.90.

In Definition 2.78 we defined &) | o(-) for - = ﬁii@(o). We next extend it to

nearby maps. Let v/, : (22,0%°) — (X, L) be a smooth map which is sufficiently
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close to a” 750 in C*0 sense on K. We define &, , 4(u}) as follows. We identify
Kv with a subset of E’i P by using the additional marked points w,’j Take any

(E% pa 62’1 ﬂ) (X L) that coincides with ul, on K, and is enough close to
Up SO that E, ( N = @V,eco(gh) E. . (u") is defined. We put

Ev(u)= & Eow(”).

v/ ecO(gyp,)
(v )=v

By definition, E..(u") is independent of u” but depends only on w) and is in
I'(Ky; (u))*TX @ A°). Again using the diffeomorphism which is defined by the
marked points w} we identify this space as a subspace of I'(X£; (u})*TX ® A%).
That is by definition E,  (u/,). (This is the case v € C3(G,). The case of v e C2(G,)
is similar.) We put
p v Z E ;/a,m(u/) = Z ‘%,v,m(ug)- (2.255)
ceA veCo(Gy)
Let
He gy o @D Lhs(B0 W) TX @A) — & 4(u)
veC(Gy)
be the L2-orthogonal projection. We next define its derivation by an element
v=()e @ (SO W) TX, ()T e @ T2 () TX)
veCl(G,) VECO(gp)
by

(Du ) (A, (0) = (lley oy (Ao (2256)
as in (1.40), where
Ay € 12, 5(50; (' TX © AOL).
We use the operator

3 /
V= Dﬁﬁje_,(o)a(V) - (Dﬁ:f,g,(mgp’m)(sef 5.0)’ V) (2.257)

as the linearization of the Cauchy-Riemann equiation modulo &y. *°
We recall that

L’mr‘rl 5((2 azp) ( rfv 9"(0))*TX7 (ﬁ%7§7(0))*TL)
is the kernel of (2.230) for UT 0= (ﬂp £.0.0 ))veCO(g )- The direct sum of (2.257)
induces an operator on L7, | s((3°,0%°); (4 ‘%5 0)) TX, (uf 5(0)) TL) by restric-

tion.
Lemma 2.82. The sum of the image of the direct sum of the operators (2.257) on

L$n+1,5((zp azp) (urfé’(o))*TX (u%é‘(o))*TL)

15Here we consider &g and not 5&. Note we are studying the Cauchy-Riemann equation for

I I (P . . . .
uf 5.0 The obsutruction space £y (uvﬁigﬂ’(o)) is sent to Eg[(uf 5(0)) by the identification using

the stablization data at p.
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and the subspace 5;§,m(ﬂ%,§,(o)) s

sz is sufficiently large.
Proof. This is a consequence of Lemma 2.64. (|
Lemma 2.82 is a generalization of Lemma 1.16.

Definition 2.83. The L? orthogonal complement of

in

—

is denoted by 9(p, T,
We take T = & = (00, ...,00) and write $(p) = H(p, 0, 0y). Then the restric-
tion of (2.257) to $(p) induces an isomorphism to

pP. 01 ! ~
EC@(Q)L (0 (0 1 5 o) TX @A)/ E (i 5 )
v »

for sufficiently large T.

Definition 2.84. We define Vf(; " for v e C%(G,) and Ap” o 7.0,1) fore € C1(Gy)

so that ((Vf . (1))V, (Ape i (1)) ) € H(p) is the unique element such that

Dit a0 Vi) = P 5 0 50265 5. 0) Vi) (2.258)
B 50 € Soal@ 75 )
and
Vi e (Terte) = AP 5 ) (2.259)
where 00 = +00 if e is outgoing and = —oo if e is incoming.
Step 1-2:

Definition 2.85. We define u”, e )( z) as follows. (Here E is the map as in (1.30).)

(1) If z € K, we put
— o
(2) If z = (7o, te) € [—5Te,5T] [0 ] or Sl, we put
U% é’( )(Te’te) X\:(e),B(Te7 te)(Vf7§7V (e), (1)(7—37 e) - APZT 9 (1))
- p 1z
X0 aTer te) VE g o o) Terte) = AP 55 0) (2.261)

+uf§(o)(Te’ )+Apecﬁ§( 1
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Step 1-3: We define:
&y = Hepamws, o ve,  OBWE g o Vis ) (2.262)

and
(2.263)

Step 1-4: We take 0 < p < 1 and fix it throughout the proof of this subsection.
Definition 2.86. We put

nggu% 5 on the e-th neck if e is outgoing
P _ )= 3, . e .
Errv,i§,(1) = Xe,xauﬁg’(l) on the e-th neck if e is incoming  (2.264)
5,0 Y
BuTﬂﬁ,(O) ¢ 5 OB K.

We extend them by 0 outside a compact set and will regard them as elements of
P

the function space Lfn,é(Zﬁ; (G *TX @A), where 4 will be defined

oTaw) W5

in the next step.

p P 0
o700 = Petgo T Aot )
We now come back to Step 2-1 and continue inductively on k.

The main estimate of those objects are the next lemma. We put Ry o) = 5T +1

and R = (R(v,e))-

We put p

Proposition 2.87. There exist T, C3.m, Co,m, Cr0,m,€5,m > 0 and 0 < p < 1 such

that the following inequalities hold if To > Ty, for alle. We put T = (Tu;e € C(G,))
and Tmin = min{7T, | e € C*(Gy)}.

> Apf < s )H e O Tmin 2.2
(V25 o) O ) sy Camn e (2269

Cgmpte 0Tmin - (2.266)

N

o
H (AP 7600 H
; 0977”675Tm;n’ (2.267)

-
TOk)  THO) Lz | (ki)

P K ,—0Tmin
HEI‘I"“T’@(K) 2,50 ClO,mEE),m,Uf e s (2268)
p k=1 ,=8Tmin
Hef,g’:(,@) L2 (Keobst) Cro.mp ¢ ’ (2'269)

where we assume £ > 1 in (2.269).

Proof. The proof is the same as the discussion in Subsection 1.3 and so is omitted.'6
O

2.265) implies that the limit of w”, . . converges as k goes to oo after C*
T

79)(K)
topology for each k if T, > Tjy10 for all e. We define

Gluz 5(p) = KILH;O u% Fiw) = u%’g. (2.270)

16Actuadly we need some new argument for the case kK = 0 of (2.268). We will discuss it later
during the proof of Lemma 2.89.
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(2.268) and (2.269) imply

o0
:FeT:Z 7,0 € E0(0UZ ).

Therefore

—

UQ 7 € Mit1,6,6,,00) (B 2; (T°, T, 0))c, 7
We thus have deﬁned Glu~ g-
We next prove Theorem 2 72. The main part of the proof is the next lemma.

Proposition 2.88. There exist Ty, Ci1,m,C12,m;C13,m: Cra,m,€2,m > 0 and 0 <
w < 1 such that the following inequalities hold if Te > T,, for all e.
Let eg € CL(G,). Then for each kr, kg we have

L Olkrl glkel g
? 9Tk ogke OTe,

14 o
((Vf,g,v,(n)), (Ape7f79",(ﬁ)))‘

2 s 50 (2271)
< Oy te w0,
glErl gliel g
A et 2.272
‘VPGT’CT H0%e OT,, ( eT,(),(n)) < Cri,mp” e 0, (2.272)

< Clgme Mo, (2.273)

. olrl glkal o ,
P OTEr 9gke Oley  T0.(5)

+R
Lm+17|1€ |—|Eg|— ( )
T ol—1,8

Err

on olEr| glkal 5
? oTkr ggFe T,

p
v

T,0,(k)
L?”*‘ET\*\EO\—La( 9 (2274)
—06Te,

K
< Cizmés,mit"e

gn 7! olkrl glksl g
P 8Tk'T 80k9 0T, T 0,(x)

< Cramp™ e ™0 (2.275)

obst
M*\’;T\*\EQ\*l( )

for |kp| + |ko| +n < m —11.
Let eg € C} (Gp). Then the same inequalities as above hold if we replace GTL by
eo

_0_
90e,

Proposition 2.88 = Theorem 2.72. Note if ke, # 0 or 8, # 0 then
kr-T + kg -TC < 2k max{Te | kre # 0, or kg e # 0}.

It is then easy to see that Proposition 2.88 implies Theorem 2.72 by putting ¢’ =
5/2k. O

Proof of Proposition 2.88. The proof is mostly the same as the argument of Sub-
section 1.4. The new part is the proof of the next lemma.

Lemma 2.89. Let eg € CL(G,). We have

[kr| glkol
HV s ; < Chs,me Moo (2.276)

L2 . = (=9
m—|kp|—|kg|—1,6"""

P aTkT 30% 8TEO V ﬂ107(0)
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and
olErl glkal 9 , .
ne 7 L me T (2.2
H 0 oT%r Doks aeeo rrv,T,O,(O) < C’157 e 0 ( 77)
L2 (s
m—|Ep|-Fgl-1,6
Proof. We recall (2.245),
— 9,,P . e .
Xeﬂauﬁ 7 (0) on the e-th neck if e is outgoing
p _ )= B . e .
Errv,f,@,(o) =X X@uﬁ 7 (0) on the e-th neck if e is incoming  (2.278)
o Y
aui@(o) 58?,9”,(0) on K,.
We first estimate Errﬁ 74,0y OO the neck region. Let e € C}(G,) is an outgoing
edge of v. Let v/ be the other vertex of e. We have
P ’oyl
Errv,f,5,(o) (12, 10)
— (1 - (s~ 5T.))D (pz (1= X (7L — 6T)) (w2 (7L 1) — pE) 2.379)

+ x (16 — AT.) (uf, (15 — 10T, t, + b)) — pg))

Note that we use the coordinates (77,t,) for uf and (7//,t7) for u?,. (See (2.218),
(2.219).) The function y is as in (1.115).

If eg # e, then 0/0Tc, or 0/00,, of (2.279) is zero.

Let us study 0/9T, or 0/960. of (2.279) in case ey = e. We apply 9/00, to the

third line of (2.279) to obtain

(1= X(5, ~ 5T2)) 2= (x(7 — ATl (5~ 10T, 1, +6.)

= (1— x(7& — 5T.))x (7. — 4Te)8(£,u$,(7'é — 10T, t, + He)>.

e

(2.280)

Support of (2.280) is in the domain 47, — 1 < 7/ < 5T, + 1 that is —67, — 1 < 7/ <
—5T, + 1. There the C™ norm of uﬁ, is estimated as

[uf, | om (—67s—1,—5Tu41)) < Crrme "7

On the other hand, the weight function e, s given in (2.226) is estimated by edTed

on the support. (See (2.226).) Therefore this term has the required estimated.
(Note § < 61/10.) The other term or other case of the estimate on the neck region
is similar.

We next estimate Err” on the core. As we explained in Remark 2.80 this

v,T,60,(0
is nonzero because of the diﬂ?e(rénce of the parametrization of the core. So to study
it, we need to discuss the dependence of the parametrization of the core on the
coordinate at infinity. Proposition 2.23, Coroolary 2.24 and Lemma 2.26 give the
estimate we need to study.

We consider p. and the obstruction bundle data &, _ there. Let G. be the combi-
natorial type of p.. Note p € 20,,, and (r, Uw?, up) is €, -close to p.. Let G(p, c) be
the combinatorial type of (r, Uw?, u,). By Definition 2.38 (1) we have G, > G(p, c).
Let

F)J U _‘ICJ = 6(‘7171_—:1;0_;)
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Note that the singular point of p corresponds one to one to the edges e of y; such
that T o = oo.
For each v/ € C°(G,.), we denote the corresponding core of ¥, by K¢ . We may
also regard
K, C .
Let m: G, — G, be a map shrinking the edges e with T, # co. We put v = n(v’).
Then there exists R such that .
¢ c KR (2.281)
Here the right hand side is the core of the coordinate at infinity of p, that is included
in the stabilization data of p. The inclusion (2.281) is obtained from the map v
appearing in Lemma 2.26 as follows.
We put

£n,T,0

{vi@)li=1,...,n.v}={v' € CO(QPC) | m(v') = v}.

We consider the union

Ne,v
- b
K= U K33 € By,
i=1
. P . . P
We consider ET‘, 7 that is a domain of Ut §.(0)
the marked points @ and . By forgetting @}, we have an embedding

L. c P
O i) o - Ky = X g

. The parameter p includes both

(Here the parameter @ (that is a part of p) plays the role of the parameter § € Q
in Lemma 2.26.)
By forgetting w” we have an embedding

L P
Op v, 70 Ky = ET,@'

We consider K\?E’is)t - ch(i) that is a compact set we fixed as a part of the
obstruction bundle data centered at p.. By Remark 2.77, we may assume

obst
Oev)p 7T IV ) © Op 1t g B).
Therefore taking union over ¢ = 1,...,n., we obtain
Ne,v
| I A g
O pc)vip o0 = Oy p 715 ° (H "c,vm,p,T,e) PR K (2.282)
i=1

We denote this map by
R‘es(n(p,c),v,p,fﬁ) S CW(K&O, KV)

We can estimate it by using Lemma 2.26 that is a family version of Proposition
2.23 and Corollary 2.24. (See Lemma 2.90 below.)

We next describe the way how o ~ 7 and its estimate are related to the
p,c),v,p,T,0

estimate of Err” . We first recall that

v,T,6,(0)
duf € @ E..
ce
by assumption. We denote by ¢’ . . the sum of its E,, components over v. It is

e, T,8,(0)
actually independent of 7', 6. So we write it e ©) here. We remark that we identify

E.y CTo(Ky; (u?)*TX @ A%)
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using the obstruction bundle data centered at p.. Here K, C X,. (Note that the
combinatorial type of y is the same as p.)
In (2.242), we used u to obtain a map

P p

Uz g (= Ta,@Zﬂ )= (X, L).

u’

~ - _on K,. However
T',0,(0) M

B (ul) # Ben (b )

Moreover uf =

as subsets of

D(Ky; (u)*TX @ A" = T(Ky; (v -

* 01
‘o) TX @ A%,

In fact, E. v(u 3.0 )) is defined by the diffeomorphism o

defined by the dlffeomorphism n(p ) vop, G-

Therefore, by definition, Err” on K, is
v, T,8,(0)

6o Ze 0>—Z( ARRATIE (2.283)

where ¢ 0) € Byecog,) Fevlu f@(o)) and ¢ (0 € Dyecog,) Fev(uf) are defined
as follows

po) v, .0 0 Eey (uf) is

= Pal

1
¢20) (O (p.c) oo, 7,0(2)) pens (280 o o752 (C )5

h , (2.284)
ec’(()) (U(p,c),v,p,o'é(z)) = Palupc)V(z),uﬁ(u(p,c%\,,p,&,(z) (ec,(o))'

Thus Lemma 2.90 below implies

< C81m617m676Tmin .

,5(KV)
This is the case k = 0 of (2.268) on K.

Proposition 2.23 implies the estimate (2.276) and (2.277) on K. The proof of
Lemma 2.89 is complete assuming Lemma 2.90. [

HEr

VTG(O)’

Lemma 2.90. There exist Ci5, T), such that for each e € CL(G,) we have:

olFrl glkel 9
! - - v
92 aTkT 69k9 8T2,e0

—5T
< Cispe” 27200,

o (2.285)

—082T%2 ¢
)

(p0) v, T.0)

< 015’}66

H okl glksl 9
Ck

U - =
TkT 0]{)9 802 €0 (», C)7V1PJT10)

whenever Ty ¢ is greater than T, and |ET| + |E9| +n<k.
The first inequality holds for e € CL(G,) also.

Proof. 1t suffices to prove the same estimate for LI and O (i) 0 Note
p E Vk+1,(574p,(56))(ﬁ;p;9(;eo) contains various data. We use only a part of such
a data. We blow recall the parametre space which contains only the data we use
below.

Let U(rp U w?) be a neighborhood of r, U @ in the stratum of the Deligne-
Mumford moduli space that consists of elements of the same combinatorial type

as rp Uw¥. We also take U(r, U w,) and V(r, U WP Uw,) that are neighborhoods
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in the stratum of the Deligne-Mumford moduli space of r, U@, and r, U w¥ U w,,
respectively.
We can take those three neighborhoods so that there exist ()1 and @2 such that

Q1 X V(rp Uw) = V(r, Uk Uy) = Qo x V(rp, Uy) (2.286)
and that the isomorphisms in (2.286) is compatible with the forgetful maps
B(xp U} U ) — V(xp Udiy)
and
B(xp U} Uddy) — B(xp Udy).
We consider the univeral family
M(xp U U diyp) — V(xp Ul Udy).

Together with other data it gives a coordinate at infinity. We take any of them.

Using (2.286), this coordinate at infinity of r, Uw? U, induces a Q-parametrized
family of coordinates at infinity of r, Uw¥ and a @Q2-parametrized family of coordi-
nates at infinity of r,Uw,. (See Definition 2.25 for the definition of a Q-parametrized
family of coordinates at infinity.)

Compared with the given coordinate at infinities of r, U w¥ and of r, U w, we
obtain the maps Oy v p ol and O v(i)p,T0" Therefore Lemma 2.90 follows from
Lemma 2.26. O

We thus have completed the first step of the induction to prove Proposition 2.88.
The other step is similar to the proof of Theorem 1.34.

When we study 7T, and 6, derivatives and prove Lemma 2.88, we again need to
estimate the T, and 6, derivatives of the map

(P * 01
E.— FO(I(va (uf79"7(ﬁ)) TX®A )

This map is defined by using the diffeomorphism O (p.c)vop B0 Therefore we can
use Lemma 2.90 in the same way as above to obtain the required estimate.!”
The proof of Proposition 2.88 is complete. O

Proof of Lemma 2.81. We can prove Lemma 2.81 by integrating the inequality in
Lemma 2.90. U

Thus we have proved Theorem 2.72.

We can use it in the same way as in Subsection 1.5 to prove surjectivity and
injectivity of the map Gluig.

To show that Glufﬁ is F;—equivariant, we only need to remark that if p. € €(p)
then F;r - I‘;rc. (In fact all the constructions are equivariant.)

The proof of Theorem 2.70 is complete. (I

Remark 2.91. We close this subsection with another technical remark. Theorems
2.70 and 2.72 imply that

) (Bip; A Bier) x (T, 00] x ((Tf, 00] x S*)
= Mii1,0,0,,(0)) (B3 P32 B) 7

Glu : Vk+1’(g,gp,(g

c

1"We remark that E. is a fnite dimensional vector space consisting of smooth sections with

compact support. So estimating the effect of change of variables of its element by O (prc) v T8 is

easy using Lemma 2.90.
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is a strata-wise C" diffeomorphism if T, o for all e is larger than a number depending
on m. Using Theorem 2.72 we can define smooth structures on both sides so that
the map becomes a C™ diffeomorphism. (See Subsection 2.7. We will use s, = T, !
as a coordinate.)

Note that the domain and the target of Glu have strata-wise C'° structure.
However, the construction we gave does not show that Glu is of C*°-class. This is
not really an issue for our purpose of defining virtual fundamental chain or cycle.
Indeed, Kuranishi structure of C* class with sufficiently large k is enough for such
a purpose. (C!-structure is enough.)

On the other hand, as we will explain in Subsection 3.2, Theorems 2.70 and
2.72 are enough to prove the existence of Kuranishi structure of C'* class. Except
in Subsection 3.2, we fix m and will construct a Kuranishi structure of C" class.
For this purpose we choose T, so that it is larger than Tig,. Therefore our
construction of Glu works on L%, 41,60

18

2.6. Cutting down the solution space by transversals. In Subsection 2.5, we
described the thickened moduli space M1 (¢, e.))(8;p;2;B) by a gluing
construction. Its dimension is given by

dim My t1,(0,0,,(0.)) (B 952 B) | 7
= virdim My.41,¢(8) + dimg Ex + (26, +2 ) _ L)
ceB

=k+ 1420+ p(B) -3+ dimp Ex + (26, +2 > L)
ceDB

€0,To

Note that the dimension of the Kuranishi neighborhood of p in Mj44 ¢(3) must
be virdimM 1 ¢(8) + dimg Ey. Therefore we need to cut down this moduli space
Mies1, e, ,0)) (B3 952 %)6077:0 to obtain a Kuranishi neighborhood. We do so by
requiring the transversal constraint as in Definition 2.49. We will define it below
in a slightly generalized form. (For example, we define it for (r,u) such that u is
not necessarily pseudo-holomorphic but satisfies the equation du = 0 mod Eg (u)

only.)
Let p € Mp110(8) and O # A C B C €(p). We consider a subset B~ C B
with 20 € B~. Let Wy = (wp,1,...,Wp,¢,) be a symmetric stabilization of r, that

is a part of the stabilization data at p. Let I C {1,...,4,} and we consider @, =
(wp,i3i € I). For simplicity of notation we put I = {1,...,¢, }. We assume that
W, is already a symmetric stabilization of rp. It induces a stabilization data at p
in an obvious way. We thus obtain Mk+1,(e,£;,(ec))(65p3m5 B)

€0,10"

Definition 2.92. An element (), v/, (w; ¢ € B)) of M1 (0,0, (0.)) (55 p; 2A;B)
is said to satisfy the (partial) transversal constraint for w, \ W, and B\ B~ if the
following holds.

(1) Ifi > ¢, then u'(wy, ;) € Dy ;. Here wy, ;, i = 1,..., £, denote the (£+1)-th,
..., (£+ £,)-th interior marked points of ).

(2) fee B\B~ andi=1,..., L thenu'(w, ;) € D.;. Here w, = (wy q,...,w,, ).

€0,To

18This is an easy consequence of implicit function theorem.
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We denote by
W, BT
Miia, 6,00 (B3 9525 %)Q:fo
the set of all elements of the thickened moduli space My 41 (.¢,.(¢.))(B;9;2:B) . 7

€0,To
satisfying transversal constraint for ), \ w, and B\ B~.

Our next goal is to show that Mk+1’(e7£p’(ec))(/3; p; 2As %)G;Tlm_ is homeomorphic
€0,10
to M., (005 (0)) (B; p; A, ‘B*)eo 7 (Proposition 2.95.) To prove this we first define
»(Eskp »(Le )

an appropriate forgetful map.

Definition 2.93. Let (9,v/, (W;c € B)) € Mk+1,(£,lp,(5c))(5§p§Ql?%)m,fo- Note
2) = Yo U, and W, consists of £, interior marked points. We take only £, of them
and put @, and put Y~ =Yy Uw, . We assume that Y~ is stable and r, Uw, is
also stable. We also assume that I'y preserves w, as a set. We define the forgetful
map by:

fOtget%,%*;u‘ip,u?p’ (2)7 u/’ (w;7 ce %)) = (Q.j_vu/7 (’lﬁé, ce %_)) (2'287)

Lemma 2.94. The map forgety o oy defines

Wy,

M1, .(00)) (Bs p; 24 sB)EU,T}, - Mkﬂ,(e,z;,(ec))(@ p; A 537)60’7:0.

This map is a continuous and strata-wise smooth submersion. The fiber is 2(£, —
b)) +23 e\ Le dimensional.

Proof. We note that 9~ is still stable. (This is because r, U, is stable.) Therefore
fotget%,%,;wpﬁ; preserves stratification. Note we forget the position of the ¢, —
Ly + ZCQB\%, ¢, marked points. There is no constraint for those marked points
other than those coming from the condition that (2),u’) is €o-close to (xrp, U Wy, uy)
and (Yo U ., u') are ep-close to p Uw? for all ¢ € A. These are open conditions.
Therefore this map is a strata-wise smooth submersion and the fiber is 2(¢, — ¢, ) +
2 Ece%\%, £, dimensional. O

Proposition 2.95. The following holds if €q, €p, are sufficiently small.
(1) The space Myy1, (0,0, (0. (B3 952 %)m;Tl%_ is a strata-wise smooth subman-
€010
ifold of our thickened moduli space My 1 (0,0, .(0.))(B;p; 25 B) of codi-

mension 2(0y — £y) + 23 con\ - Le-
(2) The restriction of forgety B 5, Ty induces a homeomorphism

€0,70

w

@y BT _
Mk+1,(é,ep,(éc))(5;l3§9[§‘B)C[:T*O *>Mk+1,(é,[;,(€c))(ﬁ;p;m;% )mjo

that is a strata-wise diffeomorphism.

Remark 2.96. Note that if ¢ € B then p € 9, and €. is used to define M, . (See
Definition 2.51.)

Proof. We consider the evaluation maps at the (£, — £, ) + Zce%\%, £, marked
points that we forget by the map forgety . By iy It defines a continuous and
strata-wise smooth map

Mii1,00,0,,00)) (Bs 9:2:B) 7 — X cem i e, (2.288)
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We consider the submanifold

y4 le
ﬂ Dpix [ []Pes (2.289)

i=l, +1 c€B\B~ i=1

of the right hand side of (2.288). By Proposition 2.48 (2), the map (2.288) is
transversal to (2.289) at p if €, is sufficiently small. Therefore we may assume
(2.288) is transversal to (2.289) everywhere. Since M1 (s, ,(e.)) (55 P; 2; %)w";B
€o0s10
is the inverse image of (2.289) by the map (2.288), the statement (1) follows.

By choosing ¢ sufficiently small we can ensure that the image under the map
(2.288) of each fiber of the map forgety o .z 5, intersects with the submanifold

Wy , W

(2.289) at one point. Moreover by stability the elements of M,y (o (5,y)(5; p; ;B ™)
g

have no automorphism. The statement (2) follows.

We next consider a similar but a slightly different case of transversal constraint.
Namely:

Definition 2.97. An element (9, ', (wg;c € B)) of My (4,0,,(0.)) (85 p; s )60 7
is said to satisfy the transversal constraint at all additional marked points if the
following holds. Let wy, ;, i =1,...,£, denote the ((+1)-th, ..., ({+£,)-th interior
marked points of 9. We put @, = (w 1,..., w0, ).

(1) Foralli=1,...,£¢, we have u'(wj, ;) € Dy ;.

(2) Forallce B and i=1,...,L we have u'(w ;) € D,

We denote by M1 (0., (e. ))(ﬂ, ;A ‘B)“ans the set of all elements of the thick-
ened moduli space My 11 (s, ,(¢.)) ) (85 p; A %)6 T satisfying transversal constraint
at all additional marked points.

Lemma 2.98. The set Mk+17(g7gp7(gc))(ﬁ;p;ﬂ;‘B)“a%s is a closed subset of our
€0,140

space ./\/lkH,(g,gp,(gc))(ﬁ;p;Ql;%)60 7, and is a strata-wise smooth submanifold of

codimension 20, +23 " o Le

Remark 2.99. We note that the map Glu is a homeomorphism onto its image of
the thickened moduli space M1 (0., ,(e.)) (55 P; 2L; EB)“a%S.
’ €0,10

Proof. By Proposition 2.95 it suffices to consider the case A = 8. By the way
similar to the proof of Proposition 2.95 we define

Mics1 (0, (00) (Bs 3 ) g, — X P H2cente (2.290)

that is an evaluation map at all the added marked points. If ¢ is small, then (2.290)
is transversal to

HDM X H HD“ (2.291)

ceAi=1
Since Myi1,(0,¢, ,(¢0)) (B b3 Ql)zza%z is the inverse image of (2.291) by the map (2.290),
the lemma follows. , O

Definition 2.100. We denote by My 1 (s.¢,,e.)) (B P; Ql)“a%s Ns~1(0) the set of all
€0,

(D, v, (Wy;c € ) € Mg, ,e,,00)) (B b3 2[)2;3%5) such that v’ is pseudo-holomorphic.

€0, To
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Our space Mk+17(é,£p7(&))(5;p; m)i;a%s) Ns~1(0) is a closed subset of the moduli

trdnb

space M1, (0,0, ,(0.)) (B P; Ql)eo 7
By forgetting all the additional marked points we obtain a map

forget : Mii1 (e,0,,(00) (B 03 2) 2% Ns1(0) = Myi1.0(B). (2.292)

We recall that we have injective homomorphisms

Fp — Ggp X H ch,
ceA
Iy — & x &, x [] &
ceA
The group F;‘ acts on Mk+1’(g’[p’(gc))(ﬁ;p;m)eO 7, as follows. We regard F,‘f C
S x6y, X[ [,co ©¢.. Then the action ong on Myy1,(e,e,,0)) (B5 3 20), o T, is by ex-

changing the interior marked points. It is easy to see that My1,(s,0, (¢.) (6, p; Ql)zra;S
0

is invariant under this action. Therefore (2.292) induces a map

forget : (Mkﬂ,(e,z,,,(ec))(ﬁ;P;m)zm;z Ns (0 )) /Ty = Mpy1,6(B). (2.293)

Remark 2.101. The map (2.293) induces a map

(Mo o0 (G505 01570 ) /T = M (55

See Remark 2.16. We can use this remark to construct an &, invariant Kuranishi
structure on My.yq 0(8).

Proposition 2.102. The map (2.293) is a homeomorphism onto an open neigh-
borhood of p.

Proof. The geometric intuition behind this proposition is clear. We will give a
detailed proof below for completeness sake. We first review the definition of the
topology of My41.¢(8) given in [FOnl, Definition 10.2, 10.3], [FOOO1, Definition
7.1.39, 7.1.42].

Definition 2.103. Let p, = (X4, Za 70 u0), Poo = (3, 2, 210%) 1) € Miy10(B).
We assume (4, Z,, Z2) and (2, 7, ) are stable. We say that a sequence ((3Z4, Z,, 72", u,)
stably converges to ((X, z, 22Y), ) and write

lHms pa = Po
a—r o0

if the following holds.

(1) We assume

lim (., Z,, 2%) = (%, 2, 27)
a— 00

in the Deligne-Mumford moduli space My;1,. We take a coordinate at
infinity of (X, 2, 7). It determines a diffeomorphism between cores of 3,
and of X for large a.

(2) For each € we can extend the core appropriately so that there exists ag such
that (2),(3) hold for a > ao.

|ua - U|Cl(Core) <e
Here we regard u, and w as maps from the core of ¥, and ¥ by the above
mentioned diffeomorphism.
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(3) The diameter of the image of each of the connected component of the neck
region by u, is smaller than e.

Definition 2.104. Let p, = (24, Za, 70, u4), Poo = ((Z, 2, 2%), 1) € Myy1.0(B).
We say that p, converges to p., and write

lim p, = poo

a— o0
if there exist ¢ > 0 and q, = ((Za,Za, 2 U 2509 4,), goe = ((%,7,20 U
ZE%) ) € Myt1,040/(B) such that

lims qq = g0 (2.294)

a—r o0

and

forget(uytiore, (k10)(da) = Pa,  Forget o) (k410 (doo) = Poo-  (2.295)
Here
forget i tioey (ot150) * Mit1,e40/(8) = Mit1,0(B)
is a map forgetting (£ + 1)-st,...,(£ + ¢')-st (interior) marked points (and shrinking
the irreducible components that become unstable. See [FOOO1, p 419].)
Now we prove the following:

Lemma 2.105. If €, €,, are sufficiently small, then the image of (2.293) is an
open subset of My41.4(5).

Proof. Let

p' € f0t99t<(Mk+17(z,zp7(zc))(5;P;91)2;&;5 Ns (0 ))/H)

and p, € Mgy1,0(8) such that lim,_o pg = p’. We will prove

Pa € f0t99f<(/\/lk+1,(e,ep,(ec))(5;P; 2A) N s (0 ))/Fp>

for all sufficiently large a.
We put p’ = (Yo, ') and
(o Uy, o (s ¢ € M) € Micpa, ety e (55 2052 157 (0).

We also put p, = (xp,, up, ). By Definition 2.103, there exists qq, oo € Mpt1,040(5)
such that (2.294) holds and

forget oy tioren), (hr1:0)(Ga) = Pas OBt 10407y (k4 130) (doo) = B (2.296)

Let Z"® C pg,, Z5 C r4.. be the interior marked points that are not the marked
points of p, or of p’. By perturbing qa and (. a bit we may assume

uCIa +,mt ¢UD)JZUUUDC“

ceAi=1

uqoo +1nt ¢UDP7UU UDCI

cei=1

(2.297)

We consider the map Y, — X,/ that shrinks the irreducible components which
become unstable after forgetting (¢ + 1)-th,..., (¢ + ¢')-th marked points zf 1t
of rq... By (2.297) none of the points u’i{a, w!, are contained in the image of the
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irreducible components of ¥, that we shrink. Therefore w,,w, C %, may be
regarded as points of ¥

Then by extending the core if necessary we may assume that wp, W, are in the
core of X . Here we use the coordinate at infinity that appears in the definition
of lims q, = qoo.

a— o0

We note that

“qm(w;,i) € Dy, uqoo(wt/:,i) € De,i-

We also note that ug, converges to uq . in C'-topology on the core. Moreover ug__
is transversal to D, ; (resp. DCZ) at uqx( wy, ;) (resp. ugq, (w, ;). Therefore, for
sufficiently large a there exist w/, € X4, with the following properties.

(1) uq@( apz)erz
(2) uCIa( acz)eDCl
( ) hma%oo wa P ;J,’L"
(4) limg oo W) ., =w

a,p,i’ acz

!/
a,c,t c,i”
Here in the statements (3) and (4) we use the identification of the core of X,
and of ¥4 induced by the coordinate at infinity that appears in the definition of

lims q, = qoo. We send wy, , ; by the map %,, — %,  and denote it by the same

a— 00

symbol. We thus obtain @, , C ¥,,. The additional marked points wy, . ; induce
W, . C Xy, in the same way.

Using (1)-(4) above and the fact that u,, converges to uq. in C'-topology we
can easily show that

(PPa U wa o Upar (W ( a,c3 C € Q[)) € Mk—&-l,(i,fp,(@c))(B? p; )zrd;i n 5_1(0)
for sufficiently large a. Thus we have

Pa = fotget((xpa U wa p’upav ( a,c’ S Q[)))

€ fﬂfgef((Mkﬂ,(e,zp,(ec))(ﬂ;P;Ql)za;s Ns~ 1(0))/Fp>
for sufficiently large a. The proof of Lemma 2.105 is complete. (]

Lemma 2.106. If ¢ is sufficiently small, then the map (2.293) is injective.
Proof. The proof is by contradiction. We assume that there exists 6(()”) with eén) —0
as n — 0o, and

(Vjjs(n).0 Y5 () s Wiy s (T 3 € € A))
€ Miia e, (60 (8592010575 Ns™(0)

for j = 1,2. Here we extend the core of the coordinate at infinity of p by R(n) — 00
to define the right hand side of (2.298). We assume

(D 1:(n).00 U, (n)) ~ (D2:(n),05 s, (1)) (2.299)

(2.298)

in Mg41,0(8) but

[(@1;(71)»0 U wi;(n),p’ ull;(n)7 (U_jl i(n),er ;C € m))]

# [(D2;(n).0 U T, () s Uy () (Wo, () 5 € € A))]
n ((./\/lkﬂ,(g,gp’(gc))(ﬁ;p;ﬂ)tfi?ﬂ Ns—10 ))/Fp. We will deduce contradiction.

The condition (2.299) 1mphes that there exists v(n) : B9, )0 = Ty(ny0 With
the following properties.

(2.300)
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(1) v(n) is a biholomorphic map.

2) () © V) = U

3) v, sends k + 1 boundary marked points and ¢ interior marked points of

(n)
D1;(n),0 to the corresponding marked points of s,y 0-
We take a coordinate at infinity associated to the stabilization data at p. Then
. o (G = 1,2) s i

(2.298) implies that the core of ;)0 ( = 1,2) is identified with the extended

core (KP)*Ee of p. This identification may not preserve complex structures but
preserves the k + 1 boundary and £ + ¢’ interior marked points. Therefore v,
induces _

U(n) Kg’v — (K§)+R(”)

where KJ , is a compact set such that w’l;( € K&v. (We may extend

i VL),
the core so that we can find such Kg,v.)
We may take E(n) — oo so that the u;,(n) image of each of the connected

components of the complement of (KE)*EW has diameter < eg").

We consider the complex structure of ¥, on (K£)+R("> and denote it by j,. Then
we have

B 000 =0l 20y = (2.301)
where R'(_n) — o0 is chosen so that v(n)((K"j)JrR;m) C (K‘E)*é(n).
On the other hand by Property (4) above we have

nh—>Holo lue v = u“cl ((KE)JrE(])) =0 (2:302)

We use (2.301) and (2.302) to prove the following.

Sublemma 2.107. After taking a subsequence if necessary, there exists v' € T’
such that

i oy = vlles ey =0
for any R.

Proof. Since v(,) is biholomorphic with respect to a pair of complex structures
converging to (ju, jp), we can use Gromov compactness to show that it converges
in compact C'* topology outside finitely many points after taking a subsequence if
necessary. Let v’ be the limit. By the Property (2) above we have u o v’ = u.

On the irreducible component of r, where u is not constant, we use v o v’ = u
together with the fact that v, is biholomorphic to show that there is no bubble
on this component. Namely v(,) converges everywhere on this component.

The irreducible component of r, where u is trivial is stable since p is stable. We
note that v’ preserves the marked points of p. It implies that v’ is not a constant
map on this component. Then using the fact that v(,) is biholomorphic we can
again show that there is no bubble on this component.

We thus proved that v,y converges to v’ everywhere. It is then easy to see that
v eT,. O

By replacing (2;(n),0 U u_}é;(nm, uh, (u7’2;( ;¢ € A)) using the action of v’ € T'y,

n),c’
we may assume that

lim [0y — identity||o: xp ) = 0. (2.303)

n—oo
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Then, uy, ) (W3, () p i) Uy () (W i) € D, Imply

V) (W) p.iv) = W) i (2:304)

We next take coordinate at infinity associated to the obstruction bundle data

centered at p.. Then we can think of the restriction v(,) : Kg,i} — KPe, which
satisfies

lim [jvg,) — identity||cl(K|0ac) =0. (2.305)

n— o0
(In fact, we may take R so that for each v € C°(G,.) we have v/ € C°(G,) such
that K¥e C (K¥,)*H)

Then, w3, ) (W n) ¢, Ui (m) (Wi(n),c.i) € Dei 1Py

U(n) (wll;(n),c,m ) - wl2;(n),c,i' (2306)
Property (1),(2) and (2.305), (2.306) contradict to (2.300). The proof of Lemma
2.106 is complete. O

Lemma 2.108. If €y, €,, are sufficiently small, then (2.293) is a homeomorphism
onto its image.

Proof. 1t is easy to see that the map (2.293) is continuous. It is injective by Lemma
2.106. It suffices to show that the converse is continuous. The proof of the continuity
of the converse is similar to the proof of Lemma 2.105. We however repeat the detail
of the proof for completeness sake. Let

(Fpa U wa pvupav( a, i C€ Q’l)) € Mk-‘rl Ly, (Le ))(57]3 Ql)trans 0571(0)

and
(¥poe Uy Upoe (W 3¢ € A)) € My (a0, (0.)) (Bs 95 )zza;Z Ns(0).
We put pos = (Xp.., Up..), Pa = (Xp.,Up,) and assume
lim p, = poo (2.307)

a—r o0

in Mk+1,[(ﬁ).
By Definition 2.103, there exist qq, oo € Myt1,e40(8) such that (2.294) and

forget i 1.op ey, (kt1:0)(da) = Pay  Forgetinyioie) (hr1:0)(doc) = Poo. (2.308)

Let ZHmt ¢ p o 20t ¢ r o he the marked points of qa, qeo that are not marked
points of p, or of po,. By perturbing q, and qo a bit we may assume (2.297).

We consider the map ¥, — X,_ that shrinks the components which become
unstable after forgetting (€ +1)-th,..., (¢ + ¢')-th marked points ;"™ of r,_. By
(2.297) none of the points wOo 1 Woo . are contained in the image of the components
of ¥, that we shrink. So w, ,, @, . C ¥y may be regarded as points of ¥ .

Then by extending the core if necessary we may regard that W/ » ’OO . are in the
core of ¥g_. Here we use the coordinate at infinity that appears in the definition
of lims ¢, = qoo-

a— o0

We remark that ugq, (W), ;) € Dci. We also remark that ug, converges to uq,,
in C'-topology on the core. Moreover ug__ is transversal to Dy ; (resp. D.;) at
Uqoo (wgo . ;) (resp. ugq, (Wi, .,)). Therefore, for sufficiently large a there exist
w! € ¥4, with the followmg properties.

a,p,i a c,t

(1) uq, (w apz) € Dp,i.
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(2) UQa( acz) € DC%
(3) limy—oeo wa pi = Woo pie
( ) hmaﬁoo wa c,t = w</>o,c,z
Here in (3)(4) we use the identification of the core of ¥4, and of ¥,_ induced by
the coordinate at infinity that appears in the definition of lims 0o = Joo- We send
wy, p ; by the map ¥;, — ¥, and denote it by the same symbol We thus obtain

Wy, C Xy, The addltlonal marked points wy, . ; induce w, . C ¥y, in the same

way
Sublemma 2.109. wy, ,; = w, ,; and w, ., = w, ., if €0 and €, are small and
a is large.

Proof. Note (xp, UWa,p, , Up, ) and (tp, Ullso p.. ; Up.. ) are both eg-close to (xp, Wy, up).
Then we can choose €y small so that (3) above implies

d(w!, ., wh ;) < 3eo

a,p,i Ya,p,i

for sufficiently large a. We can also show that
d(w;,c,ﬂ wa c, 1) < 3( (60) + €Pc)

in the same way. (Here lim¢, 0 0(€p) = 0.) On the other hand we have ug, (v,

api) €
Dy 45 Ug, (W € D.;. They imply the sublemma.

acl)

Remark 2.110. In the last step we need to assume €,  small. More precisely,
when we take ep at the btage of Definition 2.51 we require the following
If d(w; We i We ) < 4dep,, w GEP and UP( )GD(‘NU’P( )E'Dp“then

/ _ 12
wc,i - wc;i

We next choose €y so small that the same statement holds for p,, with 4e,
replaced by 3ep, .

CZ’

Now (3)(4) above imply
lim (FP U ’LUa P Up,, (W ( 4:1 e CE Q[)) (Fpoo U woo P Up oo (w:)o,c; cE 2[))

a—00
in M1, 00)) (B5 3 Ql)trarlb Ns~1(0) as required. ]
The proof of Proposition 2.102 is complete. g

Proof of Lemma 2.50. Lemma 2.50 is actually the same as Lemma 2.106 except the
following point. We remark that at the stage when we state Lemma 2.50 we did not
prove Theorems 2.70 and 2.72. In fact, to fix the obstruction bundle E. we used
Lemma 2.50. However the argument here is not circular by the following reason.
When we prove Lemma 2.50, we take an obstruction bundle data centered at
p only, the same point as the one we start the gluing construction. We use the
obstruction bundle induced by this obsruction bundle data to go throught the gluing
argument (proof of Theorems 2.70 and 2.72.) We do not need the conclusion of
Lemma 2.50 for the glueing argument. Then we obtain Glu. We use this map to
go through the proof of Lemma 2.106 and prove Lemma 2.50. ]

Remark 2.111. In Definition 2.51 we mentioned that we prove open-ness of the
set 207 (p) in Subsection 2.6. Indeed it follows from Lemma 2.105. We remark that
open-ness of 207 (p) was used to define the set €(p) and so was used in the proof of
Theorems 2.70 and 2.72. However the argument is not circular by the same reason
as we explained in the proof of Lemma 2.50 above.
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2.7. Construction of Kuranishi chart. In Lemma 2.94, Propositin 2.95, Lemma

2.98, strata-wise differentiable structures of the spaces My 1 (1.0, (¢.)) (B;p; 2, )j;ql%_
0
and M1, (2,e,,0.)) (B3 95 Ql)tm;s or maps among them are discussed. These spaces
€0,40

are actually dlfferentlable manifolds with corners and the maps are differentiable
maps between them. As we mentioned in [FOOOL, page 771-773] this is a con-
sequence of the exponential decay estimate (Theorems 1.34 and 2.72). We first
discuss this point in detail here.

Let Vig1,(0,e,,0.)) (B3 p; 2;B5 €1) be as in (2.212). We put

Vi1, 6,6, (6)) (B3 952 By eq) P P

- (2.309)
= Mits, 0,0 (B0 2) "5 0 Vi e, 00) (B3 03 25 €1)
Viet 1,0, (02)) (B3 3 2U; €1) 278

= My, ey, (B3 ) 2 O Virn (0,6, ,(60)) (85 05 s 1),

(See Definitions 2.92, 2.97.) We note that the right hand side is independent of
eo and Ty if € is sufficiently small. By Proposition 2.95 (1) and Lemma 2.98,
Vi1, 6,6, (0 (B 032 B3 e1) P and Vir (0,0, 0.)) (B; 03 2; €1) 77 are C™-submanifolds.

Proposition 2.112. There exist strata-wise C™-maps
Endy g Virt, (0,000 (893 2 Bs €)™ % x (Tg, 00] x ((Tg, 00] x )
= Vier1,(6,0,,(20)) (B5 p; 24, B5 €1)
and
Endyans : Vk+1,(z,e,,,(éc))(ﬁ;p;m;61)“%8 X (Tg,oo] X ((T’g,oo] X §1)
= Vi 1,066, (0.)) (B5 p; s €0)
with the following properties.
(1) Miga,,,,000)) (B5 93 2 %) 7 s described by the map Endwp_,B, as fol-

lows:

Mii1,(0,6,,00.)) (B3 93 s %)

{Glu(End 5o - (a0, (T.0)),T.0)

—

(3 (F,8)) € Vs ., 0.0 (503 2585 00) % 27 x (T, o] x (75, 00] x S)}

We also have
Mici, (8,000 (Bs s ) 0°F

= —

= {Glu(Endtrans( (f )) f7 0)

—

0 100) € Ve 0 3503 8 60)™ x (B3, 06] x ({5, 06] x 30}
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(2) The maps Endw;%, and Endtans enjoy the following exponential decay

estimate.
olFr| glkol o
"o~ —Endy g || < C,, ge ° ko TR TO) 2.311
q OTkT HPke n Wy ,B o 16,771,36 ( )
olFr! Hlkel B
vniﬂfEn 2 < O *676 (k7 Ttko T) (2312)
‘ T9TFr ggke o
if n+ |kr| + |kg| < m. Here V4 is a derivation of the direction of the pa-
rameter space Vk+1)(g7gp)(gc))(ﬂ; p; A B; 61)“7;’%7 or of the parameter space

Vit 1,665 ,(00)) (B3 93 5 €0) 275,

Proof. We prove the estimate for the case of My.y1 (e, ,(2.)) (83 ;2 %)Z;qu%i The
other case is entirely similar.
We consider the evaluation map (2.288)
M1 0.y, 000 (B5 93 3 B) ) gy — X0 T oemims b (2.313)

and compose it with (2.212)
Gl : Vit (0,6, (00) (B 93 2; B5 €1) x (T, 00] x ((T§, 00] x S*)
— Mk.:,.l,(ﬁ,ﬁp,(&))(ﬁ; IR sB)607'1:0
to obtain

oV Vi, (ey (6 (B2 Bs 1) x (T3, 00] x ((T5,00] x S) 310
— )((e|B 7£FT)+ZCG‘B\‘B* [c. '

Lemma 2.113. The map Vs B enjoys the following exponential decay estimate.

=8 (kp-T+kg-T)
< Cl?,m,Re

Co

. : (2.315)

lkr| glkol
HVZ 4 = LGV ——
aTkr ggre v

if n+ |kp| + |kg| < m. Here V1 is a derivation of the direction of the parameter
space Vi1, (0,0, (¢.)) (35 p; 24; By e1) %
Proof. We remark that (2.314) factors through

Glures Vi1, (0, (0.))(B; 2 B 1) x (T, 00] x (T, 00] x S*)

= I LAUKSE ERnos,.), (X, L)). (2.316)
veCo(Gy)

In fact we may take R so that all the marked points are in the extended core

Uveco(gp) K}, Therefore the lemma is an immediate consequence of Theorem
2.72. O

By definition, we have:

eF ec
Vi1, (0.0, (00 (B3 152 B3 e9) v P :er,j,%< H Dy,i X H HDm‘).

i=(, +1 c€B\B~ i=1
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(See the proof of Proposition 2.95.) Proposition 2.112 is then a consequence of

Lemma 2.113 and the implicit function theorem. ([
We next change the coordinate of (T2, 00] x (T, 00] x S§). The original coor-
dinates are ((T2), (0.)) € (7§, 00] x (T, o] x §1).

Definition 2.114. We define
1 1
Se =— € [O, ) , if e € CL(Gp),

T. T.
1 0 (2.317)
do = TQXP(QW\/T]_GG) c D2 (T ) y ifee Ccl(gp)
e e,0

We also put s, = 0 (resp. 30 = 0) if T, = co. Here we put D?(r) = {z € C | |2| < r}.
By this change of coordinates, (T2, 00] x (1%, 00] x S') is identified with

11 [0,T1)>< 11 D2<eo) (2.318)

c€CL(Gp) &0 c€CL(Gy)

Definition 2.115. We denote the right hand side of (2.318) as [0, (7)) x
D*((T5)™).
Remark 2.116. The space [0, (7)) x D2((T€)™!) has a stratification that is
induced by the stratification
[0,1/Te0) ={0}U(0,1/T%0)

and

D*(1/Te0) = {0} U (D*(1/Te,0) \ {0})-
This stratification corresponds to the stratification of (T, 0o] x (T, 00] x S') that
we defined before, by the homeomorphism (2.317).

We note that [0, (7)~1) x D2((T5)~!) is a smooth manifold with corner. The
above stratification is finer than its stratification associated to the structure of
manifold with corner.

We then regard Glu as a map

Gl : Vi, (0,6, ,(0.)) (B p; ;B3 e1) x [0, (Te)™") x D*((T5) ™)

(2.319)
= M1, (0,0, ,0.)) (B ;2 B) 7 -

Corollary 2.117. The inverse image

T, B
(Gl')~ (Mk-H (0,0y (00 (Bip; 2 B) "~ >
€0,40
is a C™-submanifold of Vi1 1 (0,0, (0.)) (85 9;2; B e1) x [0, (T9)~1) x D2((TS)™Y). It
is transversal to the strata of the stmtzﬁcatzon mentioned in Remark 2.116.

The same holds for M1 0.6, 0.)) (B 3 Ql)';“;z

This is an immediate consequence of Proposition 2.112.
Remark 2.118. We can actually promote this C™ structure to a C*°-structure as

we will explain in Subsection 3.2. The same remark applies to all the constructions
of Subsections 2.7-2.10.
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Definition 2.119. We put

Vier1,e((B; 3 20); €0, To) = My 0.0, (00)) (B 93 20) %

€0,To

and regard it as a C"™-manifold with corner so that Glu’ is a C™-diffeomorphism.
Lemma 2.120. The action of I'y on Vk+17g((,8;p;21);60,f0) is of C™-class.

Proof. Note the I'y-action on (T, 0] x ((T¢,00] x S) is by exchanging the fac-
tors associated to the edges e and by the rotation of the S' factors. Therefore
it becomes a smooth action on [0, (7)) x D2((T<)~'). By construction Glu’ is
I'p-equivariant. The lemma follows. (I

The orbifold Vi11,¢((8; p; A); €o, fo)/Fp is a chart of the Kuranishi neighborhood
of p which we define in this subsection. Note we may assume that the action of
I'y to Vk+1’e((5;p;m);60,’,ﬁ)) is effective, by increasing the obstruction bundle if
necessary.

We next define an obstruction bundle. Recall that we fixed a complex vec-
tor space E, for each ¢ € 2. (E, = ®veco(gp )EC,V and E. is a subspace of

Io(Int K‘?bSt;u;cTX @ A%).) By Definition 2.33 (5), E,. carries a I'y_ action. It
follows that I'y C Iy, because p U w?¥ is e.-close to p. U W, . Therefore we have a

I'p-action on
By = @ E..
ceA

Definition 2.121. The obstruction bundle of our Kuranishi chart is the bundle

(Vk+1,e((5;lﬂ;9l);€o,fo) X EQL) (Vk+1,e((5;lﬂ;m);€oafo)>
; — v )

(2.320)

We next define the Kuranishi map, that is a section of the obstruction bundle.
Let g7 = (rq, uq; (Wd;c € A)) € Mt .0)) (B3 95 Ql)zra%s. By definition we have
0,40

guq S ggl(q+).
By Definition 2.60 we have an isomorphism (2.207)
e By, v(0e,ue) — To(Int K5 (ug)*TX @ A%). (2.321)

(Uc7uc)7(FqU1ﬁg;uq) :
The direct sum of the right hand side over ¢ € 2 and v € C°(G,.) is by definition
Ex(q™). Sending the element Juq by the inverse of IE’U”’C ) (g i ) W€ ODtain an
c Uc ) (FqUWe ,Ugq
element

ViPe -1,5
@ I(nf,uc),(xquwg,uq) (Quq) € Eq. (2.322)
vecfoe(gh)

Definition 2.122. We denote the element (2.322) by s(q*). The section s is called
the Kuranishi map.

Lemma 2.123. The section s defined above is a section of C™-class of the ob-
struction bundle in Definition 2.121 and is I'y-equivariant.
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Proof. The I'y-equivariance is immediate from its construction.

To prove that s is of C'""-class, we first remark that s is extended to the thickened
moduli space Mk_s_l,(g’gw(gc))(ﬂ;p;Ql)EO)fO by the same formula. We consider the
composition of q* +— s(qF) with the map Glu’ (2.319). Since K2 lies in the
core this composition factors through Glures (2.317). (Here we identify (75, 0] x
(T, 0] x §Y) with [0, (T)~1) x D2((T)~1).) Therefore by Theorem 2.72 we have

Rz glkel J
ng o (soGlu)|| < C,, ge* FrTTke ™) (2.323)
AT T §fke - .
if n + |kp| + |kg| < m. Therefore s is of C™-class. O

We note that the zero set of the section s coincides with the set
. gae trans —1
Mg, (06,00 (B 9:20) % N5~ (0)
which we defined in Definition 2.100.

Definition 2.124. We define a local parametrization map

.571(0)
G T,

— Mpi1,0(8)

to be the map (2.293).

Proposition 2.102 implies that ¢ is a homeomorphism to an open neighborhood
of p.
In summary we have proved the following;:

Proposition 2.125. Let p € My114(8). We take a stabilization data at p and
A C &(p). A #0.) Then there exists a Kuranishi neighborhood of My114(8) at
p. Namely :

(1) An (effective) orbifold Vk“,g((ﬂ;pﬂl);eo7fo)/Fp.

(2) A vector bundle

(Vkﬂ,e((ﬁ;p;ﬂ);eo,fo) X Em) (Vkﬂ,z((ﬂ;p;m);eo,fo))

Ly - Ty
on it.
(3) Its section s of C™-class.
(4) A homeomorphism
s~ 10
U F( ) = Mis1,0(B)
p

onto an open neighborhood of p in Myi1,6(8).

Before closing this subsection, we prove that the evaluation maps on Mjy11,(5)
are extended to our Kuranishi neighborhood as C™-maps.
We consider the map

ev: Vi1 e((Bsp; 20); Eo,fo) = Mk+1,(z,ep,(¢u))(ﬂ;P;Ql)zﬁ%s — LA x X* (2.324)

that is the evaluation map at the 0-th,... k-th boundary marked points and 1st -
{-th interior marked points.

Lemma 2.126. The map (2.524) is a C™-map and is T'y-equivariant.



92 K. FUKAYA, Y.-G. OH, H. OHTA, K. ONO

Proof. We first remark that (2.324) extends to M/H_l)(g)gp,(gc))(ﬁ;p;?[)eo 7, Its
composition with Glu factors through Glures (2.317). Therefore by Theorem 2.72
we have

— (ev o Glu)

|kr| Hlkol
vaa T
OTkT 9@k

< Gy, e Fr TR T (2.325)
Co

if n+ |kp| + |kg| < m. Therefore ev is of C™-class. T, equivariance is immediate
from definition. O

Remark 2.127. Proposition 2.125 holds and can be proved when we replace
Me1,0(B) by M&(a). The proof is the same.

2.8. Coordinate change - I: Change of the stabilization and of the coor-
dinate at infinity. In this subsection and the next, we define coordinate change
between Kuranishi charts we constructed in the last subsection and prove a version
of compatibility of the coordinate changes. In Subsection 2.10 we will adjust the
sizes of the Kuranishi charts and of the domains of the coordinate changes so that
they literally satsifiy the definition of the Kuranishi structure.

We begin with recalling the facts we have proved so far. We take a finite set
{pc | c € €} C Mp41,(B) and fix an obstruction bundle data &, centered at each
Pe

Let w, be a stabilization data at p € Mjy1¢(8). The stabilization data to,,
consists of the following:

(1) The additional marked points w0, of ry.

(2) The codimension 2 submanifolds D, ;.

(3) A coordinate at infinity of r, U .
By an abuse of notation we denote the coordinate at infinity also by tv, from now
on. Let ¢, = #w, and A C &(p). We always assume that A # (.

By taking a sufficiently small ¢y and sufficiently large fg, we obtained a Kuranishi
chart at p by Proposition 2.125. The Kuranishi neighborhood is Vi11,¢((5; p; 2); €o, f’o)/Fp.
This Kuranish chart depends on eo,fo as well as tv,. During the construction of
the coordinate change, we need to shrink this chart several times. We use a pair of
positive numbers (0, T) to specify the size as follows. We consider

Gl : Vit ety 0 (Bs s s 1) x (Tig, 00] x (T, 00] x S*)
1o
= M2 ey ) (B P ) o 7, -

Remark 2.128. Here and hereafter we include the symbol tv, in the notation of
the thickened moduli space, to show the stabilization data at p that we use to define
it. In fact the dependence of the thickened moduli space on the stabilization data
is an important point to study in this subsection.

(2.326)

Vier1,(e.6,,(6.)) (B3 9; 24 €1) is a smooth manifold. We fix a metric on it. Let

B " (93 Vit 1,(0,6,,0.)) (B p; A €1)) (2.327)
be the o neighborhood of p in this space. We put T, o = 7 for all e and denote it

by 7. Since this space is independent of €; if o0 is sufficiently small compared to €;
we omit €; from the notation. We consider

B (93 Vi1, (0, (0.0 (Bs s 20)) x (T, 00] x (T, 00] x ). (2.328)
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Definition 2.129. We say that (0, 7) is 1o, admissible if the domain of the map
(2.326) includes (2.328). We say it is admissible if it is clear which stabilization
data we take.

We say (0,7) > (o/,7")ifo >0 and 1/T > 1/T".
Definition 2.130. We denote by V (p, 1o,; (0, 7);2) the intersection of the image
of the set (2.328) by the map (2.326) and ./\/l,€le .ty (20)) (B3 B3 Ql)zzaé;z

The restrictions of the obstruction bundle, Kurambhl map, and the map 1 to
V(p,wp; (0, 7);2A) are written as &, w,:(0,7):2- A0 Sp o, (0,7)5205 Vprop:(0,7):2 Te-
spectively.

They define a Kuranishi chart. Sometimes we denote by V(p,wy; (0,7);2) this
Kuranishi chart, by an abuse of notation.

The main result of this subsection is the following.

Proposition 2.131. Let m(]) (G = 1 ,2) be stabilization data at p and A D AW >
A £ (. Suppose (oM T(l)) 18 mp admissible.
Then there exists (00 ,7'(2)) such that if (02, T?) < (0(()2), 76(2)) then (0?), T(2)
18 m)(gz) admissible and we have a coordinate change from V (p, o, ); (0, 7)), A))
to V(p,to (1) (oM 7MWY AM) . Namely there exists (@12, P12) with the following
propertzes
(1)
pr2 V(p, w5 (0, T 24®) — v (p, w0fs (0, 7))
is a I'y-equivariant C™ embedding.
(2)
P12 5p,mg2>;(o<2>;r<z>);gu2> - gp,mg);(o(l);r(l));m(l)
is a I'p-equivariant embedding of vector bundles of C™-class that covers
P12-
(3) The next equality holds.
Sp oD, Ty © P12 = P12 O %) (0@, T@) A

(4) The next equality holds on 5;%2);(0(2)’77(2));%2) (0).

¢p,ms,1);(o(1),7_(1));91(1) o P12 = %,mg”);(a(m,ﬂm);m(z)-

Here wp,mf,l);(o(U,T(l));Ql(l) is the composition Of¢p7mgl);(0<1)’T(1));m(1) and the

projection map
V(p,ps (00, TW); W) = V(p, w0y (00, TM); 20 /1y,
The definition of wp 0@ () 7)) is similar.

(5) Let q® € V(p, m,(f), (0@, 7MY, AR and gV = p15(p). Then the deriva-
tive Ofsp,mff);(o<2>,T<2>);91(2) induces an tsomorphism

2) T(2) 2)y
Tq(Q)V(p mp ,(0( T( ) Ql( )) <8p m;f) (0(2)’T(2));m(2)q(2)

T,V (p, t‘op S (e, 7MWy Wy (gp,m(pl);(am’7'(1));9“”)qu)
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Proof. We divide the proof into several cases.

Case 1: The case u_i;(,l) = _'(2) D(l.) = D(Qi) and AMD = (2,
(2)

This is the case when only the coordinate at infinity m( ) is different from .
A part of the data of the coordinate at infinity is a fiber bundle (2.154) that is:

MG iy, = DO (e U T)) (2.329)

where U ((xr, U 10, )y) is a neighborhood of (x, U t,)y in the Deligne-Mumford
moduli space My, 41,6, or Mg . (v € C%(Gy,uw,).) We choose B~ ((x, Udy)y) C
0U)((r, Ub,)y) an open neighborhood of (r, U0, )y so that

VO~ ((x, Utdp)y) € VD ((gp U dy)y). (2.330)

We put mgfggwp)v = ﬂ'_l(m@)_((}:p U Wyp)yv)). Then there exists a unique bundle
map

B~ o

(pUyp)y 7 (U)o
that preserves the marked points and is a fiberwise biholomorphic map. This is

because of the stability. By extending the core of m( ) we may assume

P12(82 050 ) D (RY o )N a (BD (1, Uy )y)).- (2.331)

(xpUdy)y (xpUdp)y

Lemma 2.132. Let ¢y and T be given, then there exist €, T®) such that

(- o
M1 ey 00 B0 ) 70 © M 0, 00 (B0 A) o 7o (2.332)

Here we define m'(f)f from m‘(,z) by shrinking 8@ ((z, Uty )y) to B~ ((x, Udy)y)
and extending the core so that (2.331) is satisfied and use it to define the left hand
side.

Proof. Since the equation (2.211) is independent of the stabilization data at p, it
suffices to show

o~ o
1ty ey B0 70 ST ety 00 (B D)y 70

Here the meaning of the symbol ¢(2)—" and ‘(1) is similar to (2.332).
(2

An element of ilkﬂ (0,0, (¢ (ﬁ, )E T 18 (Yo Uwp,u (). Let us check that

it satisfies (1)-(4) of Definition 2.58 applied to ilk+1 (0.8 (e ) (Bib) 7 -

(1) is obvious. (2) follows from (2.331). (4) is also obvious.

We will prove (3). We note that p is €y close to p itself by our choice. So the
diameter of the u, image of each connected component of the neck region (with
respect to (1)) is smaller than ;. We take ¢, so that the diameter of the u, image
of each connected component of the neck region (with respect to o)) is smaller
than ey — 2¢). Now since the C° distance between v’ and u, on the core of w(? is
small than e,

u’ (e-th neck with respect to m,ﬁ”)
C €, neighborhood of u, (e—th neck with respect to ml(f)).
(3) follows. O
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Using the fact that Dél) Dﬁ) , Lemma 2.132 implies

(2>7 rans m(l) ran
M (0.0 (£2) (ﬁ;p;%)ﬁjﬁg) C ML oty 00y B 93 20T (2.333)

Let
(1)
Gl B (93 Vi1, (0., (600 (B; 5 21)) (2.334)
2(1) (1) 1 oy |
X (T 00 X ((TH,00] X %) = My Ty s 00y (B3 ), 700

and
@-
G ™ B (05 Viesr, ey (00)) (85 95 20))
(@)-
~ (T<2),oo] X ((T(2)7OO] X 51) - M:J;L(e,zp,(fc))(ﬁ;p;m)@f@)

be appropriate restrictions of ( 26). Its image is an open neighborhood of p U .

Therefore there exists (o}, 71>)) such that for any (0, 7®) < (6, 7*) we
have

- - .
Glu(Q)f( o) (P'Vk+1 (6,05,00)) (Bsp; L)) X (T, 00] x ((T®), 00] x 1)
c Gn"(B ( o (p Vier1, (., ,(0.)) (B3 9; 1)) X (TM, 00] x (TM, 00] x sh).

This in turn implies
V(p w0y (02, T):20) € V(p, w3 (o), 7)),
Let @12 be this natural inclusion.
Lemma 2.133. @15 is a C™-map.
Proof. Let
Vp. w37 (02, 7))

o)~ . . .
C Bo<2> (05 Vi1, (0, ,0)) (Bs 93 2)) x (TP, 00] x (TP, 00] x S1)
be the inverse image of V(p, m(2)_; (0@, T@):9) by Glu®~ and let

V(p, g (oD, 7W); 21)
é” 2 (1) =(1) &L
C Bau) (P§Vk+1,(z,ep,(zc))(5;13;m)) x (T, 00] x ((T', 00] x S7)

be the inverse image of V (p, m,ﬁ”, (0, 7MW)Y; ) by Glu®.
We consider the maps

M
an (P; Vier 1, (6,0, ,(20)) (B3 p; 2A)) — H B ((r, Uiy )y)
veC9(Gy)
o)
Bo@) (5 Vier1, (0.6, ,()) (B3 5 2)) — H B~ ((xp Uy )v)

veCo(G,)

that forget the maps. (Namely it sends (y,u) to 9.)
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We then define a map
30 V(p,wy”; (0, 7))

m [t +R
- I om0 KL QY Nose ), (X, L))
veCo(Gy)

X H s«17(1)((251: U dp)v)
veC9(Gy)
x (T, 00] x (T, 00] x S1).
Here the first factor is induced by the map

(2.336)

)
w,
M

+R +R
k.t,_l (€, ,(Lc ))(ﬂvp Q[)eo fo — Lm+10((K " K v N 82v ,(1) ) (Xa L))

(1) 27, (1)

that is the map Glu™ followed by the restriction of the domain to the core K (1()1) .

(See (2.215).) (We put the symbol (1) in K+(1()1>) to clarify that this core is induced

by m(l).) We chose T, o so that the gluing construction works for L3, ;. (See the
end of Subsection 2.5.) The second and the third factors are the obvious projections.
The map § is a O embedding of the C" manifold V' (p, m,(f) (0@, T@);20), with
corners.

We also consider a similar embedding

32 V(p, (2 (0@, T 20)

m(( Ry R
o 1L O ) K 0 0% ), (X 1)
VECO(gp)
x H Q7(2)((&: U dp)v)
Veco(gp)
X (T3, 00] x ((T®), 0] x §1).
We denote by X(1,m) the right hand side of (2.336) and by X(2,2m) the right
hand side of (2.337).
We next study the change of parametrization of the core. Let us use the nota-
tion in Proposition 2.23. For (p,T,0) € HVECO(QP) B ((xp Udy)y) x (TP, 0] x
((T®, 0] x §') we have a map

(2.337)

5@ ()

| D
p, 1,0 T,0 B19(p,T,0)"

The source 2;2)5 is obtained using the coordinate at infinity m;(az) and the target

s s obtained using the coordinate at infinity )

@12(1)77, 7 p - We may assume that

o (K+E(2)

) ) - K+R(1)

p, 1,0 v,(1) °

We then define a map
12 : X(2,2m) — X(1,m)
by the formula

512(“7 (pv f? 5)) (UOU( ,0)° P, ( fa 5)) (2338)
Sublemma 2.134. $15 is a C™-map.
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Proof. By Proposition 2.19, the map ®,5 is a C™ diffeomorphism. Therefore the
second and the third factors of $15 is a C™-map. The first factor is of C™-class
because of Proposition 2.23 and a well-known fact that the map C™(My, Ms) x
C?™(My, M3) — C™(My, M3) given by (v,u) — uowv is a C™ map. O

On the other hand we have:

Sublemma 2.135.
9120 FH =FW 0 015
This is immedate from the construction.

Since §® and §) are both C™ embeddings, Sublemmas 2.134 and 2.135 imply
Lemma 2.133. U

The map 12 is obviously I'y equivariant. We then define
P12 = @12 X identity :V (p, m,(f); (0@, 7@y 90) x @Ec
ceA
C V(p.wg; (0, TW);20) x P E..
ceA

Conditions (2)-(5) are trivial to verify. It also follows that the maps obtained are
I'p-equivariant. (In the situation of this subsection, I'y-equivariance is always trivial
to prove. So we do not mention it any more.)

Case 2: The case m,(,l) = m,(f) and AW £ AR,
Assume that B D A1) 5 AR (B C &(p)). If we regard
<)
V(w0 (0, TW):AW) € MY, (1 ) (B0 203 B) 8
then we may also regard
&)

V(p, Wy (0(1), T(l))§ Ql(z)) - M:_i17(g,ep7(gc))(ﬂ§ p; Ql(l)Q %)22?‘5(1)-
Moreover
V(p,wp; (0, TW):2®)) €V (p, 1oy (o), 7)) W), (2-339)

We can show that (2.339) is a C™-map in the same way as the proof of Lemma
2.133. (Actually the proof is easier since there is no coordinate change of the source
and so $12 is the identity map in the situation of Case 2.)

Furthermore an element (), v, (@) ;¢ € B)) of V(p,wp; (o), 7W); AW) is in
V(p,p; (0, 7M);A)) if and only if

Sp vy (o(D),T(1));2A(D) 9, o, (ITJ':LC; c€PB)) = o' € gp’,.op;(o(nﬂ—(l));m(z). (2.340)

We put q* = (9,4, (@, ;¢ € B)). By Lemmas 2.64 and 2.98, dg+s induces an
isomorphism:

Tq+V(p7mp§(0(1)77(1));9[(1)) ~ (gpvmv%(ﬂmaﬂl))?m(l))q+

Ty+ V(p, wp; (0, T ); A@)

(gpvmp;(t’(l),T(l));m(m)q+
We have thus obtained a coordinate change in this case.

The other two cases are as follows.
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Case 3: The case 15;(,1) C 1[)'5,2) and A1) = AR The stabilization data m(l) is
induced from m,(f).
Case 4: The case 117,(31) ) 711’1(32 and AL = AP, The stabilization data m,(f) is

induced from m( ).

Let us explain the notion that ‘stabilization data m( ) is induced from m(2).’
Suppose w,(J ) ¢ 711’1(32) Let
2 (2
Qo = [ WU (23
veC?(Gy) veCo(Gy)

be the fiber bundle (2.156) that is a part of the data included in m,(f). Here U@ ((x,U
117,(,2))\,) is an open neighborhood of (g, U w,(,z))v in M, 1, 4@ orin M‘;VM(VQ).
(They are contained in the top stratum of the Deligne-Mumford moduli spaces.)

Forgetful map of the marked points in 117,(,2) \u’ign

forget, : M

induces a map

o) — M

o+ 1,00+ o164+

etc. We put
forget, (T ((rp U ;™)) = B (5 i) ).
We take B ((r, U u?él))v) C BWF((x, U U?I(,l))v) that is a neighborhood of (r, U

u_z"(,l))v such that there exists a section

secty : WD ((r, Uiil")y) — forget( B ((r, Uw?)y)).- (2.342)
Then we can pull back (2.341) by sect = (sect,) to obtain a fiber bundle
. (€] (1) —»( )
() M, I 9@ ud’)). (2.343)
veCO(Gy) veC9(Gy)

Moreover we can pull back a trivialization of the fiber bundle (2.341) to one of the
fiber bundle (2.343). Thus we obtain a coordinate at infinity of (r, U w(l))v.

Definition 2.136. We call the coordinate at infinity obtained as above the coor-

dinate at infinity induced from m( ),

We also take codimension 2 submanifolds D,(:i) that are included as a part of

the stabilizaton data m,gl), so that D'(:i) = D’(fi) fori=1,..., #u’)’él). We thus have

obtained a stablization date m,(,l). We call it the stablization data induced from
(2

1o,

We now construct a coordinate change of the Kuranishi structures in Case 3. In
Definition 2.93 we defined a forgetful map

1)
foget%,%*;u?p,u?; : Mk—i1 (0,0, (@C))(ﬁ;p;ﬂ; %)66771(2’

%Mkil (4,65 (L)) (,B,p A BT, 7o
Here we shrink the base space of (2.341) so that this map is well-defined. We need
to extend the core of the domain and replace €y by € in the same way as in Lemma

2.133. We then obtain a stabilization data, which we denote by m(z) .
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Taking w, = 1B£2)_ and w, = 117;(,1) and B~ = B we have

o
forgety o2 g - Mk+1 (06 (2 (ﬂQp;QL;SB)eéj*(z)
(1)

p . . . _
k+1,(6,659,(£.)) (B; ;2 %)EO,T“)'

o

— M

It induces a map

2 2 —(1 1
(@ F\GD o

k+17(57£;2)7(56))(ﬁ;p;9l;%) ;72 kan (0o (o) PP A B, oy (2:344)

which is a strata-wise differentiable open embedding by Proposition 2.95. We denote
the map (2.344) by P19.

Lemma 2.137. @15 is of C™-class in a neighborhood of p U wp2).

Proof. The proof is similar to the proof of Lemma 2.133. We use Lemma 2.26 which
is a parametrized version of Propositions 2.19 and 2.23. Let

ie [I 2@ ual).)

veCo(Gy)

xp Jw _’(2)

and forget(y) =r =1, U u7£1). Let UM~ ((xp U 16(1)) ) be a neighborhood of p.
)

Let sect(1), be the section we chose in (2.342). It gives a stabilization data .
We take

sectiz)v : Qu X DO ((w T )) = B (5 U a))
such that the following condition is satisfied.

Condition 2.138. (1) forget(sectiz)v(£,0v)) = 9.
(2) sect(y) is a diffeomorphism onto an open neighborhood of ..

Pulling back mf) by sect(o) we have a Q = [] Qy-parametrized family of stabiliza-

tion data, which we call tﬁff). We denote the image of sect(2) , by 22— ((;puw,(f))v).

We use m,gl) in the same was as in the proof of Lemma 2.133 to obtain

0 T~ 6. T
. H cm(( oo K+R(1> Na%, 1)), (X,L))

v ,(1) v,(1)
veOGy) (2.345)
X H VO™ ((rp Udip)v)
veC9(Gy)

x (TM, 00] x (TM, 0] x §).

(Here we put — in V= (p, mél), (o), 7(M); 2A) to clarify that this space uses B~ ((r,U

wp)v)-)
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We use mfg ) to obtain

V7 (py 0y (0, 7520
= I e i) KL 00, ). (X. 1)
veCo(gy)

X H B3 ((xp Udp)v)
veCo(Gy)
X ((T®, 00] x ((T®), 00] x §").
Let X(1,m), X(2,2m) be the spaces in the right hand side of (2.345), (2.346) re-
spectively.

(2.346)

We apply Lemma 2. 26 to the family of coordinates at infinity tﬁ(Z) and the
coordinate at infinity mp Yo gives estimates of the map ®15 defined in (2.177) and
O 7.0 35 In (2.178).

We define $12 : X(2,2m) — X(1,m) by

H12(u, sectz) (&, p), (T,0)) = (wo v, 75, Pra(&, p, T, 6)). (2.347)

By construction we have
1205 =W o gro. (2.348)
Lemma 2.26 implies that $12 is a C™-map. Moreover ) and 2 are C™-

embeddings. Therefore @1 is a C™-map on V= (p, m,()z); (0, 7). ). The proof
of Lemma 2.137 is complete. O

We go back to the construction of coordinate change in Case 3. By requiring the
transversal constraint at all the marked points, @12 induces a required coordinate
change ¢12. Since AM = A it is easy to find the bundle map (15 that has the
required properties.

Remark 2.139. Note that the map (2.344) and the coordinate change 12 we
obtain are independent of the choice of the section of (2.342). But ¢12 depends on
the codimension 2 submanifolds we take, since the process to take trans depends
on them. We use the coordinate at infinity (or the map sect, of (2.342)) only to
prove that 1o is of C™-class.

Using the fact that the map (2.344) is a local diffeomorphism the construction
of the coordinate change in Case 4 is an inverse of one in Case 3.

We have thus constructed the coordinate change in the 4 cases above. The
general case can be constructed by a composition of them.

Let us be given (mgl), 2AM) and (m](f), 2(2)). We say that the pair ((m,(,”, AW, (m'(f), 2A(2)))

is of Type 1,2,3,4, if we can apply Case 1,2,3,4, respectively. We say the coordinate
change obtained the coordiate change of Type 1,2,3,4, respectively.

Lemma 2.140. For given (1o (1)7Ql(1)) and (m,(JG),Ql(G)) with W N @) =, there
exist (1o ) ) for Jj=2,...,5 such that:

The pair ((1o,, Y Ql(l ); (1o, (2) Ql( )) is of type 2,

The pair ((to,, ( ),( ())) is of type 1,

The pair (o, ( ®)), (roy, (4) )Y) is of type 3,
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The pair ((1‘05,4), Ql(4)), (mff’),ﬂ@))) is of type 4,
The pair ((m,(,5),9l(5)), (m,(JG),Ql(G))) is of type 1.

Proof. We put (1, 2 AR = (m,(gl)7Ql(6)) and AU) = A©) for all j =2,...,6.
Lot a® — o) U g
(any) coordinate at infinity for rp, U wf,‘*). The codimension 2 submanifolds are
determined from the data given in m,gl) and mgﬁ). We thus defined (m,(;l), AW,
We take the coordiates at infinity that is induced from mff) so that the set
of additional marked points are u_)',(jl) and (6). We thus obtain (m,(jg)7§2l(3)) and

(mff’), ), respectively. It is easy to see that they have required properties. [

. (Note this is a disjoint union by assumption.) We take

Remark 2.141. We need the hypothesis W _'(1) N w,3 = in Lemma 2.140. Other-
wise it might happen that w(l) S} but Dél) #+ D(ﬁ)

By Lemma 2.140 we can define a coordinate change for the pairs (mff), 2AM) and

(ml(f), 2(?)) as the composition of 5 coordinate changes. We have thus constructed
the required coordinate change

121 V(1087 (0, T A®) — V(p,wp”; (0, 7D )

in case w(l) N w(2) 0.

In general cases we take m,(g ) such that w _'(1) N wgo) w;(f) N” = and put
P12 = ¥10 © P02-
The proof of Proposition 2.131 is complete. (]

We remark that in the proof of Lemma 2.140 we made a choice of coordinate at
infinity of r, U 13£4). We also take m,(go) at the last step of the proof of Proposition
2.131. However the resulting coordinate change is independent of these choices if

we shrink the domain. Namely we have:

Lemma 2.142. We use the notation in Proposition 2.131. If two different choices
of (00 2.7 T(2 TV (5 = 1,2) and (14, 3,) (j = 1,2) are made, then there exists
(0(3),T(3)) such, that (0, T®)) < (o7 727) (j = 1,2) and

(12, P12) = (¥32, Plo)
on V(p,10;”; (o), T6)); ().
Proof. We first prove the next lemma.

Lemma 2.143. Let w ”(1) *(2). Let m(i’j) i =1,2, 7 = 1,2 be the stabilization

data at p such that the addztwnal marked points associated to m( w9 s E)'U)

We assume that ((ro ](f 1),91), (t’o,(,Z 2),91)) is type 3.1
Let ¢ jyir,j) be the coordinate change from the coordinate associated with

m,(f/’j') (4,9)

to one associated with vo,>"". Then we have

P(1,1)5(1,2) © P(1,2);(2,2) = P(1,1);(2,1) © P(2,1);(2,2) (2.349)

19Namely we assume that the coordinate at infinity of w{"") is induced by that of mff’Q) and
the submanifolds we assigned in Definition 2.57 (2) coincide each other when they are assigned to

the same marked points.
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on a small neighborhood of p in the Kuranishi chart assciated with m§,2’2). The same
equality holds for O ;i j1)-

(2) ~ =)

The same conclusion holds when w,” C Wy’ and replace ‘type 3 by ‘type 4°.

Proof. This lemma as well as several other lemmas that appear later, is a conse-
quence of the following general observation.

We consider an open subset &« C My ¢y of the Deligne-Mumford moduli
space. Let

T MU) - U

be the restriction of the universal family to U. Suppose we have a topological space
= consisting of pairs (r,u’) where r € U and v’ : 7=1(xr) — X is a smooth map.
Here we emphasis that we regard = as a topological space and do not need to use
any other structure such as smooth structure.

Suppose (V;, E;, 8;,1;) is a Kuranishi charts at p. We assume that the coordinate
change ;; is defined as follows: Suppose that there exists a homeomorphism ®; :
V; — Z onto an open neighborhood of ¢ with ¢ = ®;(p) for all of ¢ and

pji=®; 0@,
holds on a neighborhood of p. Then we have

Y12 © Y23 = P13

on a neighborhood of p. This observation is obvious.

Remark 2.144. Later we will use a slightly more general case. Namely we consider
the case when there are V;; and ®;; : V;; — E for (4,5) = (1,1),...,(1,m)
and (4,7) = (2,1),...,(2,n). We assume Vi1 = Vo1 and Vi, = Va,. Supoose
r = ®; ;(p) is independent of ¢, j and ®; ; is a homeomorphism onto a neighborhood
of r. We put: ¢ jyi,j+1) = (IDE} o ®; j+1. Then we have

¥(1,1)(1,2) © " " CPA,m—1)(1,m) = £(2,1)(2,2) © " P(2,n-1)(2,n)

on a neighborhood of p. This is again obvious.

Now we apply the observation above to the situation of Lemma 2.143. The role
of = is taken by
m;2,2)
k41,(0,682,(£.))
We note that this set depends on the coordinate at infinity. However Lemma 2.132
implies that it is independent of the coordinate at infinity on a neighborhood of p.
We have thus proved (2.349).

Note the bundle maps @; j);(i7,;/) are nothing but the identity maps on the fiber
in our situation. The proof of Lemma 2.143 is complete. (]

M (B p; A; B rons

6077'(2) .

Lemma 2.142 for the case u7§,1) N 117,(,2) = () is immediate from Lemma 2.143.

Let us prove the general case. We need to prove the independence of the coordi-
nate change of the choice of m'(Jo). Let mf,o’l), m'(Jo
assume w;l)ﬂzﬁf,o’i) = ng)ﬂzD'éO’i) = ( fori = 1,2. We first assume wéo’l)ﬁwgo’Q) =0
in addition. We put u_i;(jo) = 117,(30’1) U w,ﬁo’”. We take a stabilization data m,ﬁf’) o)
that the codimension 2 submanifolds are induced by mgo’i). Then, ¢(g4),0 are com-
position of coordinate change of type 3 and of type 1 and g (o) are composition

2 he two such choices. Namely we
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of coordinate change of type 4 and of type 1. Therefore from the first part of the
proof we have

©1(0,1) © ¥P(0,1)2 = ¥P1(0,1) © P(0,1)0 © L0(0,1) © ¥L(0,1)2
= 10 © Y02 = ¥1(0,2) © ¥(0,2)2

as required.?’

To remove the condition @*Y N> = =0it sufﬁces to remark that there exists
) such that @{ Nl = @t Na? = 0 and GOV nal = @2 NP =
(). The proof of Lcmma 2.142 is comploto. O

Now we prove the compatibility of the coordinate transformations stated in
Proposition 2.131.

Lemma 2.145. Let (mff), A9 be a pair of stabilization data at p and AY) C &(p),
for j =1,2,3. Suppose AN D AR DAG) £ @ and let (o), TM)) be admissible for
(iAW),

By Proposition 2.131 we have admissible (02, T3) and (03, T®) such that
the coordinate change

(1j»215) = Vb, 0§75 (0, T);2D) = V(p, wf; (0, 7)) 23

exists if (09), TW) > (0, 7). (Here j =2,3).
By Proposition 2.131 there exists admissible (o), T™) such that a coordinate
change

(923, P23) = V(p, 085 (0, T); 2A®)) = V(p,0; (0, TR)); 2)

exists if (o), TH) > (0 7).

Now there exists (00, T®)) with (0, T®)) < (0W), TU) (j = 3,4) such that

we have

(¢13, P13) = (P12, P12) © (P23, P23) (2.350)
on V(p, mp ,(0(5),7'(5));91(3)),
Proof. We first prove the case when u_)'(l) w,(f), u’;’ég) are mutually disjoint.

We note that we may assume A1) = Ql(z 2A®3). In fact the coordinate change
of type 2 (that is the coordinate change which replaces 2 by its subset 27), is
defined by inclusion of the domains so that 2~ is obtained from 2 by the equation
(2.340). This process commutes with other types of coordinate changes. So we
assume AN = A2 = YB) =9,

We also note that the composition of two coordinate changes of type j (for
j=1,...,4) is again a coordinate change of type j.

Now using Lemma 2.140, we can find mff’j) 1 =1,2,3, j = 2,...,6 such that
(mff’j), m(i’jﬂ)) is as in the conclusion of Lemma 2.140 and

12 32 (1) (1,6) (2,2) _ ,(2) (2,6) _

(3,6)
Wp 7 =MWy " =17, 0y 7 =1, 7 =10, 10y

_ 1o 3)

=1, .

20Here #1(0,1) 18 the coordinate change from the Kuranishi chart associated with (0 Y to the
one associated with w . The notation of other coordinate changes are similar.
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Then
P12 = ¥P(1,2)(1,3) © L(1,3)(1,4) © P(1,4)(1,5) © P(1,5)(1,6)>

P23 = $(2,2),(2,3) © P(2,3)(2,4) © P(2,4)(2,5) © P(2,5)(1,6)>
P13 = ¥©(3,2)(3,3) © ¥P(3,3)(1,4) © P(3,4)(3,5) © ¥P(3,5)(3,6)"
Therefore we can apply the general observation mentioned in the course of the proof
of Lemma 2.143 in the form of Remark 2.144 to prove Lemma 2.145 in our case.
In fact we can take = as follows. We consider 1E;(,M) for i = 1,2,3 and put
Wy = 117,(31’4) U 1E£2’4) U u_)"(a3’4). We take (any) coordinate at infinity of r, U @,. We
take the codimension 2 submanifolds D, ; (that is a part of the data 1o, ) so that they

coincide with those taken for mg), 1 =1,2,3. (Note we use the assumption that
u')',(,l), 117,(32), u'i,(,g) are mutually disjoint here.) We have thus defined the stabilization

data to,. Then
== M:L,(e,e;“,(ec))(ﬁ;p;Q[; B) o7
where Kff) = F#W,.
We finally remove the condition that wf,”, 1H£2), 117]5,3) are mutually disjoint. We
take u')',(f), u')',(f) such that

ay) nal? =0 =af) N

for i = 1,2,3 and 117;(,4) N u_il(f)) = (. We also take codimention two transversal
submanifolds D; for each of those additional marked points. We have thus obtained

4) (5

the stabilization data to, ", 1, ). Then we have

P12 © P23 = P15 © P52 © P24 O P43 = P15 © P54 © P43 = P15 © P53 = P13
Here the first and the last equalities are the definitions. The second and the third

equalities follow from the case of Lemma 2.145 which we already proved. The proof
of Lemma 2.145 is complete. (I

2.9. Coordinate change - II: Coordinate change among different strata.
In this subsection we construct coordinate changes between the Kuranishi charts
we constructed in Proposition 2.125 for the general case. Let p(1) € Myt1,0(8).
We take a stabilization data v,y at p(1) and AL C €(p(1)). We use them to
define Kuranishi neighborhood V (p(1),1y1); (6D, 7M); AM) given in Definition
2.124. Let

V(1) 10,1500, TM)2A) :5;(11),%(1);(0(1),T<1>);91<1>(0)/FP(1) = Miq1.(B)  (2:351)

be the map in Proposition 2.125. We assume that p(2) is contained in its image.
We will define the notion of induced stabilization data at p(2). We recall that
the stabilization data tv,(;) includes the fiber bundle (2.156)

O Mo udya)) = [ IV (@) Udpy)y).  (2.352)
veC?(Gy (1)) veC(Gy (1))

Here m(U((;p(l) U Wy(1))v) is a neighborhood of (x,(1) U Wy(1))y in the Deligne-
Mumford moduli space Mg, +1,¢,+¢,,,,- The product in the right hand side of
(2.352) is identified with a neighborhood of r, (1)Ut (1) in the stratum M1 ¢4e, ) (gp(l)uwp(l))
of the Deligne-Mumford moduli space M1 ¢4¢ We denote this neighborhood

by B(xp(1) U Wy(1))-

p(1)”"
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Condition 2.146. We consider a symmetric stabilization wy(2) on ry(2), an element
a0 € V(rp(1) U Wy(1)) and (59,(55,00))) € (TH, 0] x (TM, 0] x §) that satisfy
the following two conditions.

(1) xp(2) U Wp(2) = B(00: S5, (5§, 6o))-
(2) p(2)Utdiy (o) satisfies the treansversal constraint at all marked points. Namely
for each i = 1,...,£,1) we have

Up(2) (Wp(2),i) € Dp(1),i-

Here Dy(1),; is a codimension 2 submanifold included in the stabilization
data ro,,(1y. (We remark #Wp0) = #Wy(1) = Lp(1)-)

An element of I'y(q) is regarded as an element of the permutation group &y, "
So it transforms w,(2) by permutation. The group I'y (1) acts also on the set of pairs

00; 50, §C, 50 . We then have the following:
07 X0

Lemma 2.147. The set of triples (wy(2), 00; gg, (53, 50)) satisfying Condition 2.146
consists of a single T'y(1y-orbit.

Proof. This is an immediate consequence of Proposition 2.102. (]

We continue the construction of the induced stabilization data at p(2). Let
9p(2)ui, o, De the combinatorial type of p(2) U2y In general it is different from
the combinatorial type Gp)yua,,, of p(1) U (). In fact the graph Gp(2)Uid, (o) 1
obtained from the graph Gp1)uw,,, by shrinking all the edges e such that So.e 7# co.
We denote by Cl’ﬁn(gp(l)uwm)) the set of edges e with Sy # co. We have

Cl(gp(l)uwp(l)) = Cl,ﬁn(gp(l)uu_"p(l)) U Cl(gp(2)ui)‘”(2))- (2353)

Here the right hand side is the disjoint union. Choose AS € R+ that is sufficiently
smaller than Sy .. (We may take for example AS = 1.)
Let U2 (xp(g)UUjp(g)) be a neighborhood of xp(g)U’Lﬁp(Q) in the stratum Mk+175+€p(1) (gp(z)uwp@))
of the Deligne-Mumford moduli space M1 ¢4¢ We can take them so that there
exists an identification

p(1)°

V) (ry(2) U p(2)) =B (1) U (1))

x II ((So,e — AS, Sp.e +AS) x [0,1])
eec&‘ﬁﬂ(g"“’“%(n) (2.354)
x H ((So,efAS, SO,e+AS) X Sl)

eECcl’ﬁn(gp(nump(l))

Let ¥ be a vertex of gp(z)uwm). We take the subgraph gp(l)uwm),v of the graph
Qp(l)uwp(l) as follows. There exists a map gp(1)uwp(1) — gp@)uwp(z) that shrinks the
edges e with Sy # 00. An edge e € Cl(gp(l)uwp(l)) is an edge of Gy(1)uw, v if it
goes to the point ¥ by this map, or it goes to the edge containing ¥ by this map.
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Then we have

T3 ((1p(2) U bp(2))7)

= 11 T (rp1) U Tpy)v)
Veco(gp(l)ump(l),v)
x 11 ((So.e — AS, So.c + AS) x [0,1]) (2.355)
ceCé’ﬁ“(gp(nuwp(l),v)
X 11 ((So,e — AS, Sp.e + AS) x SH).

eng’ﬁ“(Qp(l)ump(l) )

The universal family over the Deligne-Mumford moduli space restricts to a fiber
bundle

T Dﬁ(z)((xp(g) U wp@))v) — m@)((;‘p@) @] wp(g))v). (2356)

The fiber at (0;.5°, (5, 6)) of this bundle, which we denote by ¥
union of the following three types of 2 dimensional manifolds.

(0:50 (5 4y 18 the

(I) For each v € C’O(gp(g)uwpm) we consider the core K7v that is contained
in ¥,,. (Here oy € m(l)((;p(l) U Wp(1))v) is a compoent of o and ¥, is a
Riemann surface corresponding to this element o .)

(1) If e € C! (Gp(2)u, (2 )» S0,e = 00 and e goes to an outgoing edges of v, we
have [0, c0) x [0, 1].
Ifee Cg(gp(z)uﬁm)), So,e = 00 and e goes to an incoming edge of v, we
have (—o0,0] x [0,1].
IfeeC! (gp(g)uf,m)), So,. = 0o and e goes to an outgoing edge of ¥, we
have [0, 00) x S1.
Ifee C(}(gp(g)uwp@)), So,e = 00 and e goes to an incoming edge of ¥, we
have (—oo, 0] x St.
(ID) If e € C! (Gp@)Uidy ) Soe # 00, we have [=55¢,55] x [0,1]. If e €
Ce(Gp(2)ud,))» Soe # 00, we have [=5S,55.] x S'.

Definition 2.148. The core K+ of E(U.go (3e.)) is the union of the subsets of type
I or type III.

On the complement of the core, the fiber bundle (2.356) has a trivialization, that is
given by the identification of the subsets of type II with the standard set mentioned
there. This trivialization preserves complex structures.

This trivialization extends to the subsets of type I. In fact, such an extension is
a part of the data included in the coordinate at infinity of t,(;). Note that this
extension of trivialization does not respect the fiberwise complex structure.

Note, however, that this trivialization does not extend to the trivialization of
the fiber bundle (2.356) if there exists an edge e € C(Gp(2)uw, ) With So.e 7# oo
In fact, there exists an S! factor in (2.355) that corresponds to such an edge e and
our fiber bundle has nontrivial monodromy around it, that is the Dehn twist at the
domain [—5S50 ¢, 550,¢] x S.

Therefore to find a coordinate at infinity that satisfies Definition 2.10 (5) we need
to restrict the domain. We take a sufficiently small Af (for example Af = 1/10)
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and put
V((tp(2) U Wy(2))v)
= II B((xp(1) U Tp(1))v)
vEC® Gy, 1) v)
X 11 ((So.e — AS, Sp.e + AS) x [0,1])
€0 ™ (Gyyv, (1) )
x 11 ((So.c — AS, Sp.e + AS) x (Bp.c — MY, 0o.c + AD)).

eECg'ﬁn(qu)ump(l),V)
(2.357)
(Note rp(2) U2y = D (0p; 58, (55, 50)) and 6p e is a component of 973).)
We consider the fiber bundle

T Sﬁ((;p(g) U ’ll_;p(g))v) — Q]((}:p(g) U Iﬁp(g))v) (2.358)
in place of (2.356).

Now we can extend the trivialization of the fiber bundle defined in the comple-
ment of the core, to the trivialization that is defined everywhere. (But it does not
preserve the complex structures.) We have thus defined a coordinate at infinity of
p(2).

We take the codimension 2 submanifolds Dy (1) ; that is a part of to,(;) and put

Dp(2),i = Dy(1),i-

Definition 2.149. The stabilization data at p(2) that is obtained as above is called
the stabilization data induced by v, (1).

Remark 2.150. There is more than one ways of extending the trivialization of
the fiber bundle that is given on the part of type I and type II to the whole space.
However the way to do so is determined if we take the following two families of
diffeomorphisms.

(1) A family of diffeomorphisms from the rectangles [—5S5,, 5S5.] x [0, 1] to [0, 1] x
[0, 1] so that they are obvious isometries in a neighborhood of 9[5S, 55.] x
[0,1]. Here the parameter is Se € (Spe — AS, Sp.e + AS).

(2) A family of diffeomorphisms from the annuli [~5S,, 55.] x S* to [0,1] x S*
so that they are obvious isometries in a neighborhood of {55} x S* and
is the rotation by 6, in a neighborhood {5S.} x S!. Here the parameter is
Se € (Sp,e —AS, Spe +AS) and e € (0pe — AB, 0y e + AD).

Such families of diffeomorphisms obviously exist. We can take one and use it
whenever we define the induced coordinate at infinity. In that sense the notion
of induced coordinate at infinity and of induced stabilization data is well-defined.
(Namely it can be taken independent of p(1) for example.)

In Subsection 2.2, we discussed how the parametrization changes when we change
the coordinate at infinity. There we defined a map ¥1o. (See (2.168).) The following
is obvious from definition. We use the notation in Propositions 2.19 and 2.23.

Lemma 2.151. If we take the induced core on )y then D15 = Uyo. Moreover
0y T is the identity map on the core K.

The first main result of this subsection is the following.
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Proposition 2.152. Let p(1) € Myy1,(8) and take a stabilization data vo,c1y at
p(1) and admissible (0, T(M)). Let p(2) be in the image of (2.351). We take the
induced stablization data vo,(2). Let A C €(p(2)) € &(p(1)).

Then there exists an admissible (00 ,’T( )) such that if (02, T?) < (082), 76(2))
there exists a coordinate change
(P12, P12) : VI(P(2), 0p(2); (0(2) 7—(2)) ) — V(p(1),0,01); ( b T(l)) 2).
Proof. We have maps
Glu™ B (0 Vi, ety (60 (Bs p(1); 20)) x (T 00] x ((TM, 00] x S1)

o
_>Mkill)(fépu),(éc))(B;p( i)y, 7 ( |
2.359
and

GLu® B (9 Views (.4, (6) (B P(2): ) % (TH, 00] x (T, 00] x 5

0, (2) : )
— Mk-if(@ 1y (Le ))(ﬁap( )7 )5012,7_‘(2)
(2.360)
by the gluing constructions at p(1) and at p(2) respectively. (More precisely for a
given €2, the map (2.360) is defined by choosing 0(?) small and 7 large.)
By the assumption and Proposition 2.102, there exists (g . such that
- o rans
(r(2)U Wp(2)» (wp(Q c)) € Mki(ll)(/ gp(1)7(gc))(ﬁ§p(1)§m)zo)h7ﬂ—(1)~
We observe
(P(2) U dp(2): (Wp(2).0)) € My g, 00 (BP0, Feo
and the image of (2.360) defines a neighborhood basis when we move € 5. Therefore

by taking €p > small and 7@ large, we may assume that

Wy (2
M35 )(e ep(l),(gc))(ﬂ; p(2); Ql)eo T

p (1)
- Mkif (6,515 (£e)) y (Bip(1); ) | 7

and this is an open embedding. By construction, the element of the thickened
moduli space M::f)(e toai(t ))(5; p(2);2A),, , 7 satisfies the transversal constrain
(6L (25 (Le 25

(2.361)

at all additional marked points with respect to to,(;) if and only if the transver-
sal constraint at all additional marked points with respect to tv,(z) is satisfied.

Therefore o
p(2) trans
MkJrl,(f’ZP(l)’(Zc))(ﬁ’ ( )’ )60 2, 7@

Wp(1) . .9\t
C M 0 (B P E
and this is an open embedding. We thus can define a continuous strata-wise C"-
map 12 as the inclusion map. It is an open embedding of C"™-class strata-wise.

(2.362)

Lemma 2.153. @15 is of C™-class.
Proof. The proof is similar to that of Lemma 2.133. We repeat the detail for com-

pleteness. Let V (p(5), wp(j); (09, 71); 2A) be the inverse image of V (p(5), W, (jy; (00), TW);

by Glu¥). (Here j = 1,2). It suffices to show that
1o = (Glu(l))_1 o Glu® :V(p(Z),mp@);( @) 7@y, 20
= V(p(1), wy(a); (0, 7W); 21)

2A)
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is of C™-class. We obtain maps

= I (KSR KRN, 1), (X, L))
veC%(Gy(1y) (2363)

<] By Uibpy)e) x (TY,00] x (TW), 00] x S
veCY9(Gy(1y)

in the same way as (2.336) for j = 1,2. We remark here that we take the graph
Gp(1) for the case j = 2 also. By applying Theorem 2.72 we find that (2.363) is an
C™-embedding for j = 1.

We will prove that (2.363) is a C™-embedding for j = 2 also. It follows from
Theorem 2.72 applied to the gluing at p(2) that F? is of C™-class. We put 3 =
(3’52), ;2)). Here 352) (resp.S;Q)) is a map to the factor in the second line (resp.
third line). It suffices to show that 3?) is a C™-embedding on each of the fiber
of 5&2). Note that the factors of the third line parametrize the complex structure
of the source. The fact that 352) is an embedding on the fiber of T, = oo follows
from Theorem 2.72 applied to the gluing at p(1). Then we apply Theorem 2.72 to
the gluing at p(2) to show that 39) is an embedding on the fiber of ng) if 7(2) is
sufficiently large.

Now using the obvious fact that 5o P1o = 3(2), we conclude that @i is a
C™-embedding. O

Remark 2.154. Contrary to the case of the proof of Lemma 2.133, we do have
FW o @1o = F?. This is because we are using the coordinate at infinity v, 2) that
is induced from ;) and so the parametrization of the core is the same.

We thus have defined 5. We define @12 = @12 X identity. It is easy to see
that @12 is I'y(2)-equivariant. Other properties are also easy to prove. The proof of
Proposition 2.152 is now complete. O

Remark 2.155. In Lemma 2.147 we proved that the two choices of () are trans-
formed each other under the I'y(;) action. More precisely we have the following.
The action of I'y1) is given by the permutation of the marked points wy. If
v € ['y(2) the permutation of @) gives an equivalent element. Namely there exists
a biholomorphic map rp2) U W2y — tp(2) U YW(2)-

In case v ¢ I'p(2), Tp(2) U W2y is not biholomorphic to r,(2) U (o). Each of the
choice 3y and y1(2) induces a stabilization data at p(2), which we write v (2) and
Y1 (2) respectively. They define the coordinate changes. We remark that there is a
canonical diffeomorphism

o rans ~ Yo A . rans
Mkj;(f,)(e,ép(l),(lc)) (57 P(2)§ Q[)Zo‘zj—(z) = Mk+‘1’,((2£?,lp(1) J(€e)) (ﬂv p(2)a Q[)Zo,zﬂim)

by permutation of the marked points. Namely we have
7 V(p(2), 10p02); (0@, TE);2) = V(p(2), y10p(9); (07, T); 2).

On the other hand 7y € I'y(1) acts on V(p(1), top(1y; (0P, 7™M); ). Since our con-
struction is I'y(1) equivariant we have

YO P12 = P1207.
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Here 12 in the left hand side uses 2y and 12 in the right hand side uses YOy (2)-
This is the same as the case of coordinate change of the charts of orbifolds.

Combined with the result of the last subsection, Proposition 2.152 implies the
following.
Corollary 2.156. Let p(1) € Myi14(B). We take a stabilization data v,y at
p(1) and admissible (oD, 7)),

Let p(2) be in the image of (2.351). We take a stablization data vo,(9) at p(2).

Then there exists an admissible (062),76(2)) such that the following holds for
AW C ¢(p(4)) with AZ € AW,

For any (0, 7®?) < (0(()2)7 76(2)) then there exists a coordinate change (p12,$12)
from the Kuranishi chart V(p(2),mp(2);(0(2),T(2));Ql(2)) to the Kuranishi chart

V(p(1)7 mp(l)v (0(1)7 T(l))7 m(l))
Proof. Let to’ ) be the stabilization data at p(2) induced by to,(1y. Then the re-

p(2
quired coordinate change is obtained by composing the three coordinate changes

associated to the pairs, ((ty1), AM), (0,01, A?)), ((mp(l)ﬂ[@)),(m;@)ﬂl(z))),
((m;(g)vm(z)), (mp(g),ﬂ@))). They are obtained by Proposition 2.131, Proposition
2.152, Proposition 2.131, respectively. O

Remark 2.157. By construction the coordinate change given in Corollary 2.156
is independent of the choices involved in the definition, in a neighborhood of p(2).

We next prove the compatibility of the coordinate changes in Corollary 2.156.
Proposition 2.158. Let p(1) € Myy10(B). We take a stabilization data v,y at
p(1) and admissible (o1, 7)),

Let p(2) be in the image of (2.351). We take a stablization data o,y at p(2).

Let (062),76(2)) be as in Corollary 2.156.

Then there exists ez = e7(p(1),10p(1),P(2), W0y(2)) with the following properties
for each (02, T@) < (o, ).

Let p(3) € My11,.4(8). We assume d(p(2),p(3)) < e7.2" Then for any stabiliza-
tion data my(s) at p(3), there exists admissible (0(()3), 76(3)) such that if (03, TG)) <
(083),76(3)) and AY) C €(p(4)) (5 = 1,2,3) with AL D AP DA then we have
the following.

(1) There exists a coordinate change

(23, P23) : VI(p(3), 0,(3); (0(3)77-(3))39‘(3)) — V(p(2), 0y(2); (0(2)’ 7-(2))52[(2))
as in Corollary 2.156.

(2) There exists a coordinate change

(13, @13) : V (p(3), wpga); (0, T);A) = V(p(1), 10y0)5 (1), T 2M)
as in Corollary 2.156.

(3) We have

(¢13, P13) = (P12, P12) © (P23, P23)-

Here

(P12, P12) : V(p(2), 10p(2); (02, TE)A@) - V(p(1), wp1y; (00, TW); 2AM)

214 here is any metric on My ¢(8).
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is the coordinate change in Corollary 2.156.

Proof. By the same reason as in the case of Proposition 2.152 we may assume
AW = AR = AG) = A, So we will assume it throughout the proof.
We first prove the following.

Lemma 2.159. Let mél()m be the stabilization data at p(2) induced by wy1) and

m(lé) the stabilization data at p(3) induced by o
data induced by 1o, (1.

p(2) Then 1o ()) is the stabilization

The proof is obvious.

Lemma 2.160. Let mél()) = (1) and m;l(%), }(]1(2))) be as in Lemma 2.159. We

denote by (pij, $ij) (for 1 <i < j <3) the coordinate changes induced by the pair

1 1
(mfo(z)’ m;(n(}))‘ Then we have

(¢12, P12) © (P23, P23) = (P13, P13) (2.364)
in a neighborhood of p(3).

Proof. We can choose €y ; (j = 1,2,3) such that

)
(3) t
Mttty (BP0

)

C M0yt (B P50
e
€ Mty oy (BT
The maps (2.364) are all induced by this inclusion in a neighborhood of p(3). Hence
the lemma. d

The proof of the next lemma is the main part of the proof of Proposition 2.158.

Lemma 2.161. Let p( ) € Miy1.0(B) and let mg(é), m(( 9y be two stabilization data

at p(2). Suppose a ro ))—admzsszble (0?1, 7'(21)) is given. Take an w2

p(2 p(2
(05 (22) T(22)) such that if (022, T(?2)) < ( 7'(22)) then there exists a coordinate
change

(Pean)(22) Banyzz) + V(R(2), 0005 (032, TED):20) = V(p(2), m{: (02D, TEV);

as in Proposition 2.131.

) -admissible

Then there exists eg = eg(p(2), m'gl(é), m;Q()Q), (0D 7YY (622 T(R2)) such that
if p(3) € Myy1.6(8), d(p(2),p(3)) < es the following holds.
1)

(1) There exists a stabzlzzatwn data m at p(3) induced from m;l()Q) and a

p(3)
p(3) at p(3) induced from m(())

(2) There exists a m(()g) admissible (o 831) T(3 )) such that if (0 TGD) <

(0831) 7'(31)) then the cooridinate change

(P21)31), P1)31)) + V(P(3), ;(,1(23) (0D, TEV)2A) = V(p(2), 0 ,(Jl()) (o1, TCY);

stabilization data m

as in Proposition 2.152 exists.

2A)

2A)
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(3) There exists a w2 _admissible (0(()32), 0(32)) such that if (0032 TG2) <

p(3)
(0832), 76(32)) then the cooridinate change

(Plaz)a2), P2 62) * VR(3), i (002, TED):90) = V(p(2), 1010y 5 (022, TE2); 21)

as in Proposition 2.152 exists.

(4) There exists a mf(g)—admissible (0832)/, 0(32)/) such that if (032, T27) <

(0632)',76(32)/) then the cooridinate change
(P, P e2) - VRE), i (002, TED)90) — V(p(3), wi); (01, TED); 20)

as in Proposition 2.131 exists.

(5) Suppose (0(32)//77-(32)//) < (0(()32)1776(32)/) and (0(32)//,7-(32)//) < (0632)’76(32))'
Then we have

(Pa1)(22)s P(21)(22)) © (P(22)(32)5 P(22)(32))

. . (2.365)
= (90(21)(31), @(21)(31)) o (<P(31)(32)7 @(31)(32))

on V (p(3), mycy; (327, T32)7);91).

Remark 2.162. The statement (1) above was proved at the begining of this sub-
section. The statements (2) and (3) above were proved by Proposition 2.152. The
statement (4) above was proved by Proposition 2.131. So only the statement (5) is
new in Lemma 2.161.

Lemma 2.161 = Proposition 2.158. Let m;l()z) be the stabilization data at p(2) in-

duced by Oy (1)-
We apply Lemma 2.161 to m§)1()2) and mf&) = tp(2)- We then obtain €. This
€g is e7 in Proposition 2.158. Suppose p(3) € Mgi1.0(8), d(p(2),p(3)) < es. We
obtain mél(;), mff(;) from Lemma 2.161 (1).

Using the pair of stabilization data (1), m§71()2)) we obtain the coordinate change
(¢1(21), P1(21)) by Proposition 2.152.

Using the pair of stabilization data (mf(g,)) ,My(3y) we obtain the coordinate change
(¢(32)3, P(32)3) by Proposition 2.131.

Now by using Lemma 2.161 (5) we have

(P1(21)s P121)) © (P21)(22)5 P21)(22)) © (P(22)(32), P(22)(32)) © (P(32)3, P(32)3)
= (p121)> P1(21)) © (P(21)(31)s P21)(31)) © (P(31)(32)> P(31)(32)) © (¥ (32)3, P(32)3)
(2.366)
in a neighborhood of p(3).
By definition of (12, $12), (a3, P23) given in the proof of Corollary 2.156, we
have
(©1(21), P1(21)) © (P(21)(22)> P(21)(22)) = (P12, P12) (2.367)
and
(0(22)(32), P(22)(32)) © (P (32)3, P(32)3) = (P23, P23)- (2.368)

On the other hand, by Lemma 2.160 (121, P1(21)) © (¢(21)(31), P(21)(31)) is the co-
ordinate change given by Proposition 2.152. By Lemma 2.145, ((31)(32), $(31)(32)) ©
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(©(32)3, P(32)3) is the coordinate change given by Proposition 2.131. Therefore, by
the definition given in the proof of Corollary 2.156,

(@13, P13) = (P1(21)s P1(21)) © (P(21)(31)5 P(21)(31))
o (¢(31)(32), P(31)(32)) © (¥ (32)3: P(32)3)-
Proposition 2.158 follows from (2.366)-(2.369). O

(2.369)

Proof of Lemma 2.161. By definition, the coordinate change (y(21)(22), P(21)(22)) 18
a composition of finitely many coordinate changes that are one of the types 1,3,4.
(The notion of coordinate changes of type 1,3,4 is defined right before Lemma
2.140.) Therefore it suffices to prove the lemma in the case when (¢(21)(22), P(21)(22))
is one of types 1,3,4. We prove each of those cases below.

Case 1: (¢(21)(22), P(21)(22)) 18 of type 1.
We use the notation in the proof of Proposition 2.131 with p being replaced by
p(2) or p(3).
By Lemma 2.132 we have
o2 (1)

[
Mk+(12)(€ Ep,(ec))(ﬁ; p(2); m)s(’m,?ﬁ@)’ - Mk.iiiig’g‘,’(gc))(ﬁ; P(Q); m)eoy%fuy (2-370)

(Here we replace g, € in (2.332) by €g 2, €5 5. We also put £, = £,(9) = £y(3).) Also
by Lemma 2.132 we have
@) )

o
Mk+(13>(€ 0.0 (B PB) )y 7 C Mki(li)(é,ep,(ec))w;9(3)39‘)60,3,7«3» (2.371)

(Here we replace €o, € in (2.332) by €03, € 3.)
By the definition of type 1 we use the same codimension 2 submanifolds to put

the transversal constraint. Therefore we have
(2)- o)

(2 . . trans . trans
Mkili(f,ép,(fc))(ﬁ’p@)’Ql)egﬂ,f(zw C Mk+1 (bt B P2 A) 2%, (2.372)

and
) 6 ) "
P . . rans . . rans
Mk+1,(£,lp 7(fc)) (ﬂa p(?’)? Q[)Eé,?’,f(:”/ - Mk+1 (/ pp 7(/ )) (Bv p(3)7 9’[)6(1)3)"71(111) . (2373)

On the other hand, by (2.362) we have

@ w
Mk-&p-;g)(é Ly,(Le ))(ﬁ p( ) ):aanw) - M}g:_f (£,Lp,(£e ))(187 ( )7 ):a;%—(z)- (2-374)

Note that the stabilization data to' ()2)

are obtained by extending the core of the coordinate at infinity included in to

and to (3)_ appearing in (2.372) and (2.373)

(2)
p(2)

and mp(é), respectively. Therefore by further extending the core we may assume

that m)(f(:)s)_ is induced from w2~ Therefore again by (2.362) we have

p(2)
@~ @)=
M ey B PES S50, € M) (B2 )5, (2:375)

By deﬁnition, the coordinate Changes ()0(21)(22), @(31)(32), (,0(21)(31), @(22)(32) are the
inclusion maps (2.372), (2.373), (2.374) and (2.375) in neighborhoods of p(2), p(3),
p(3), p(3), respectively. The lemma is proved in this case.

Case 2: Void.
Case 4: (p(21)(22), P(21)(22)) 1s of type 4.
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We have @'%), > @) . Therefore @'" > w'?) . It follows that ( D )
' p(2) p(2) p(3) p(3) : ¥ (31)(32)) P(31)(32)
is also of type 4. We have the followmg commutative diagram.
@ fotgetmyg‘;u_)(l() e (2)

(2 ) . . P @) Pp(2) ) . .
Mii1,062), 0y PP W, 70 My, ey PP W 70

Je Je

(L) forgety wa *<1(),3) ~(2()3) @
p(3) . . o p(3) . . o
Mk+1,(£l§1()s>,(€c))(ﬂ’p(g)’m)ﬁéf“” Mk+1 (0653, ))(ﬂ,p(S),i’l)eg_’T(z),

(2.376)
We note that we use the same codimension 2 submanifold to put transversal con-
straint. Therefore (2.376) induces:

(1) fatgﬂﬂ L) (2 (2)
- -
p(2) trans v (20 (2) p(2) trans
Mk+1 (, 221()2)’(4 (ﬁv ( )7 )60 T(1) Mk+1 (, sz()z),(f (ﬂa ( )7 )60 T(2)
Je Je
@ forget, oo @) @
Py (3) trans RIORSIE) p(3) trans
k+1,(2, 6511()3) (g))(ﬂ7 ( )7 )e 7—(1)/ MkJrl (, 6;2()3) (Z))(/87 ( )a ) 7—(2)/
(2.377)
The commutativity of (2.377) is Lemma 2.161 in this case.
Case 3: (p(21)(22), P(21)(22)) 18 of type 3.
We obtain the following commutative diagram in the same way.
&) forget, o 5@ L) @
Pp(2) trans By (2) 7 (2) Wy (2) trans
Mk:+1 (, 4’1&),(@ (ﬂ? ( )7 )Eo T(1) Mk:+1 (, eéz()z))(e (ﬁv ( )7 )E(J T(2)

Je e

fotget (2) -1
0,05 o)t A Tos) i o)t
rans rans
Mg, e PPEATF0, M1, oo P PO F
(2.378)
All the above arrows are diffeomorphisms locally. This implies the lemma in this
case. The proof of Lemma 2.161 is complete. (]
The proof of Proosition 2.158 is complete. g

2.10. Wrap-up of the construction of Kuranishi structure. In this subsec-
tion we complete the proof of Theorem 2.3. We will prove the case of My41,¢(5).
The case of M{!(a) is the same.

In this subsection we fix a stabilization data tv, at p for each p and always use
it. We also take 2 = €(p) unless otherwise specified. So we omit them from the
notation of Kuranishi chart. We write @ = (0, 7). Thus we write

(V(930), Epio)s S(p:0)+ Vo))
to denote our Kuranishi neighborhood. R
For simplicity of notation we denote by 1(p.o) the composition of 9.5y and the
projection & D)(O) — 5(p 2) (0)/Ty.
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The next lemma is the main technical lemma we use for the construction.
Lemma 2.163. There exist finite subsetsP; = {p(4,4) |i=1,...,N;} C Mp41.(5)
for j =1,2,3 and admissible 9(j,1,4) > 09(4,2,1) for j =1,2,3, i =1,...,N; such
that they satisfy the following properties.

(1) If  =1,2,3 then
N

U 46600620 85600026 (0) = Mit1,.(8).
i=1
(2) The following holds for j > j'. If

.. ol 1
P 1) € YipirinaGr 24 (i 2a) (0))s
then there exists a coordinate change
So(j’,i’),(j,i) : V(p(jv Z), D(], 1, 7’)) — V(p(]lv Z/)’ D(]/v ]-7 Z/))

as in Corollary 2.156.
(3) Letj=1o0r2, i1,...,0im € {1,...,Nj41}. Suppose

N 7 -1
ﬂ ¢(p(j+1,in);0(j+1,1,in))(5(p(j+1,in);a(j+1,1,in))(0)) # 0,
n=1

then there exists i independent of n such that
p(] + 17in) € w(p(j,i);b(j,Q,i))(ﬁajl(j’i);g(j’zi))(o))
foranyn=1,... ,m.
(4) Leti; € {1,...,N;}. If
p(3,i3) € 1/;(9(272'2);0(2,272'2))(5631(2,¢2);o(2,2,12))(0))

and
. 7 -1
p(2,i2) € w(p(l,il);a(l,z,il))(5(,3(1,,‘1);3(1,2’1-1))(0))a
then there exists a coordinate change
P(1,i1),(3,i3) * V(p(377/3)30(3) 1713)) - V(p(lall)va(lv 1711))

as in Corollary 2.156. Moreover we have
P(1,i1),(25i2) © P(2,i2),(3,i3) = P(1,i1),(3,is) (2.379)
everywhere on V(p(3,43);0(3,1,13)).

Proof. For eachp € M1 ¢(5), we take admissible d(p, 1;1) > d(p, 1;2) > 3(p, 1; 3).
Then we have Py = {p(1,7) | i =1,..., N1} such that

Ny
U ¢(p(1,i);o(p(1,i),1;3))(ﬁajl(l,i);a(p(l,i),l;g))(0)) = Mi11.0(8). (2.380)

i=1
We put (1, 1,7) =0(p(1,4),1;1), 9(1,2,4) = 0(p(1,7),1;2). Then, since

7 —1
¢(P(1ai);D(P(1»i)71?3))(ﬁ(p(l,i);D(p(l,i),l;S)))(0)) (2.381)

- ’(/}(P(lviﬁa(lv?vi))<5631(1,i);a(1,2,i))(0))’
Lemma 2.163 (1) hods for j = 1.
For each p € My y10(8) we take an admissible 9(p,2;1) so that the following
conditions hold.
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Condition 2.164. (a) If p € zﬁ(p(l,i);a(l,gﬂ))(5(_131(171,);3(172711))(0)), then there ex-
ists a coordinate change
P(1),2p) * VI(050(p, 2:1)) = Vi(p(L,4);0(1,1,4))

as in Corollary 2.156.
(b) If

~ 1 ~ —1
w(p;a(pa;l))(5(p;a(p,2;1))(0)) N ’(/}(P(lvi)@(P(lﬂ)»lﬁ))(5(p(1,i);0(p(1,i),1;3))(O)) # 0
then

7 1 7 1
¢(P§D(P72?1))(S(p;b(p,Q;l))(O)) < ¢(p(1,i);b(xﬂ(1yi)-,1;2))(5(p(1,¢);a(p(17¢),1;2))(0)>‘

(c) Let eg(p) be the positive number we define below. If an element q €
M}H.Lg(ﬂ) satisfies q € w(p;a(p,Q;l))(5(_,313(,3)2;1))(0))7 then d(p, q) < eg(p).

Here eg(p) is defined as follows. For each ¢ = 1,..., N7 we put p(1) = p(1,4),
p(2) = p and apply Proposition 2.158. We then obtain €7(i,p). We define

Eg(p) = min{67(i,p) | 1=1,..., Nl}

The existence of such d(p, 2; 1) is obvious. Furthermore for each p € My410(3), we
take 9(p, 2;2),0(p, 2;3) such that 9(p,2;1) > 0(p,2;2) > 0(p,2;3). Then we have
PBo = {p(2,4) | i=1,..., Na} such that

No
- -1
U Peinm@i ) 65@omen s (0) = Mii(B). (2.382)

i=1
We put 9(2,1,4) = 2(p(2,4),2;1), 9(2,2,i) = d(p(2,4),2:2). Then (2.382) and
0(p,2;2) > 9(p,2;3) imply Lemma 2.163 (1) for j = 2. Lemma 2.163 (2) for
(4,4") = (2,1) follows immediately from Condition 2.164 (a).

Sublemma 2.165. Lemma 2.163 (3) holds for j = 1.
Proof. Suppose

0 -1
m 1/’(13(27%);0(271,%))(ﬁ(p(z,z‘n);a(zl,in))(O)) # 0.

n=1

Then (2.380) implies that there exists ¢ such that

7 -1
n w(p(Z,in);D(Zl,in))(5(p(2,in);a(2,1,z‘n))(O))

n=1
7 —1
NP1 (1:0),13) (S (o(1,0750(p(1,0),153)) (0) 7 0.
Therefore Condition 2.164 (b) and (2.381) imply
7 —1 7 -1
w(P(Qﬂ'n);D(Zlvin))(5(p(2,in);0(2,17in))(O)) C ’/’(p(l,i);a(m,i))(5(p(1,¢);a(1,2,i))(0))
for any n. In particular
p(2,in) € &(p(l,i);a(l,li))(5(:31(171');0(1’2,2'))(0))

as required. (Il

For each p € Mjy10(8) we take an admissible 9(p,3;1) so that the following
condisions hold.
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Condition 2.166. (a) If p € 1/3(;,(2”;0(2)2@))(5(_131(271);3(2727i))(0)), then there ex-
ists a coordinate change
Pa),@p V0, 3:1)) = VI(p(2,1);0(2,1,4))

as in Corollary 2.156.

(b) If

~ _1 ~ 1

Pi0(0,3:) 5 (po(p3:1)) (0)) N V(p(2,0050(0(2,0),2:3) (8(p(2,09:0(p(2,0),2:37) (0)) 7# 0

then

7 1 7 1
¢(p;0(p,3;1))(5(p;a(p,3;1))(0)) < ¢(p(27i);0(9(27i),2;2))(5(p(2,i);a(p(2,i),2;2))(O))'
(¢) Void
(d) Let (i1,42) be an arbitrary pair of integers such that
7 -1
pe w(P(27i2)§3(272;i2))(E(p(2,i2);b(2,2712))(O))7
p(2,i2) € 1/)(;:(1,1‘1);0(1,2,11))(5(:31(1,i1);a(1,2,i1))(0))-
Then
o(p, 3;1) < 0(iy, iz).
Here the right hand side is defined below.
(e) Under the same assumption as in (d), there exists a coordinate change
i, 3p) VP00, 3;1)) — VI(p(1,41);0(1,1,41))
as in Corollary 2.156.
The definition of 9(i1,2) is as follows. We put p(1) = p(1,71) and p(2) = p(2,i2)
and p(3) = p. We also put (o), 7M) =2(1,1,41), (0, T?) =0(2,1,is). Using
Condition 2.164 (c) we can apply Proposition 2.158 to obtain (083), 76(3))7 which we

put a(il, ig).
Existence of d(p, 3;1) is obvious. Furthermore for each p € M1 ¢(5), we take

0(p, 3;2) with 9(p,3;1) > 9(p,3;2). Then we have P3 = {p(3,i) | ¢ = 1,..., N3}
such that
Ny
U D(p(3,0)0(p(3,0),3:2)) (5 (p(3.0)0(p(3.0) 3:2))) (0)) = M1, (B)- (2.383)
i=1

We put D(Sa 1, Z) - 0(]3(3, i)a 3; 1)7 0(37 2, Z) - D(p(3> i)? 3; 2)

Now Lemma 2.163 (1) for j = 3 follows from (2.383). Lemma 2.163 (2) for
(7,7) = (3,2),(3,1) follows from Condition 2.166 (a),(e). The proof of Lemma
2.163 (3) for j = 2 is the same as the proof of Sublemma 2.165.

Finally Lemma 2.163 (4) is a consequence of Condition 2.164 (¢), Condition 2.166
(d)(e), and Proposition 2.158. The proof of Lemma 2.163 is complete. O

Proof of Theorem 2.3. We start the construction of a Kuranishi structure on My.1 ¢(5).
Let p € My+1.0(8). There exists i(p) € {1,..., N3} such that

P € Yip(3,i00))0 (b (3,i(2)),3:2)) (S(p(3.1 ()0 (6 (31i0)).3:2)) (0)) -
We take any such i(p) and fix it. Choose p € V(p(3,i(p));0(3,1,i(p))) such that

Pip(3,i(p))0(p(3,i(p)),3:2)) (P) = b
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We have an embedding
@ Ee C E(p(3,i(p)i0(p(3,i(1)),3:2))
cel(p)

of vector bundles. (This is because €(p) C €(p(3,i(p))).) We take a neighborhood
V, of p in the set

Wy = {U € V(p(3,i(p)); 0(3, 1,i(P))) | S(p(3.itm)0p(3.i00),3:20) (0) € ED 5c}
cel(p)

such that V; is I'y invariant. The sum €D c¢(,) e defines a I'y equivariant vec-
tor bundle on V, that we dente by FE,. The restriction to V, of the section

S(p(3,i(p)2(p(3,i(p)),3:2)) AN the map Yip(s,i(p))s0(p(3,i(p)),3:2)) (divided by Ly(zicp)))
is our s, and v,. We can show easily that (V,,,T'y, Ey, 5,,%,) is a Kuranishi chart
of p.
We next define coordinate changes. Let q € 1y (s, ' (0)). It implies €(q) C €(p).
We note that i(p) may be different from i(q). On the other hand, we have

" —1
w(P(&i(P));D(&Li(P)))(E(p(S,i(p));D(&l,i(p)))(O))

" -1
N P06 1i@)) 83,0000 Lica)) (0) 7 0-

In fact, q is contained in the intersection. Therefore by Lemma 2.163 (3), there
exists i(p, q) such that

. . 7 1
p(3,i(p)), p(3,i(q)) € dj(P(27i(P7Q))§3(2»27i(PvQ)))(5(p(2,i(p,q));0(2,2,i(p,q)))(0))'

Therefore by Lemma 2.163 (2), we have coordinate changes:

Pp(2,i(p,q9))(3,i(p)) * V(p(B’ Z(p))v 0(3’ 15 Z(p))) - V(p(2, Z(pv CI)), 0(27 1’ Z(pv CI)))
and

@(p(ll(p,q))(&l(q)) : V(p(?’v Z(q))v 0(37 1) Z(q))) — V(p(27 Z(pv q))’ 3(27 ]-7 Z(pv q)))
We write them sometimes as ¢ (pq)p, P(pq)q for simplicity.
By the compatibility of ¢ with coordinate changes,

4 € Pp2,i(p,0) i) (Vo) N 0(p(2,i(p,0) 3,i(@) (Va)-
‘We consider

Wé”z{nev<p<2,z'<p,q>>;a<271,z'<p,q>>> S i@ Lieo)®) € sc}.
cel(q)

Both @(p(@,i(p.a) i) (Vi) N Wa) and @gp(o.ip.a))(3,i(a)) (Va) are open subsets of
Wé2). This fact is proved by dimension counting and by the fact that ¢ (2.i(p,q))(3,i(p))
and ©(p(2,i(p,q))(3,i(q)) are embeddings.
We put
-1
Voa = Plp(2,i(p.a))3.i(a) (Po@ir.0)@3.i0) (Va) N W) (2.384)
and
-1
Pra = P(p(2,i(p,a))(3,i(p)) © Pp(2,i(p,2))(3,i(a)) (2.385)
We can define @pq by using @p2,i(p,q))3,i(p)) A P(p(2,i(p,q))(3,i(q))- We have thus
constructed a coordiate change. )
We finally prove the compatibility of coordinate changes. Let q € v, (s, ' (0)),

and t € g (s4'(0)). We then obtain i(p,q), i(p,t), i(q,t) as above.
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We note that
7 -1
w(P(Qﬂ'(P:CI))§0(2727i(p7Q)))(ﬁ(p(2,i(p,q));D(Z,Z,i(p,q)))(O))
7 —1
2 w(P(&i(q))?b(&lvi(q)))(5(p(3,i(q));D(S,l,i(q)))(0))
D wq(sq_l(O)) St
Therefore
7 -1
Pp(2.i(p.a)(2,2.i(0.0) (S (p(2,i(p.00):0(2,2,i(p.0))) (0))
7 —1
NV P(p(2,i(0,9):0(2:2,6(a0,0)) S (2,100 0(2,2,(p,0))) (0))

7 -1
N w(P(Qvi(Pvt))W(ZZ“P"’)))(s(p(2,i(p,t));a(2,2,i(p,t)))(0))
is nonempty. Therefore Lemma 2.163 (2) and (3) imply that there exists i(p, q,t)
such that we have coordinate changes:

i(p,9));2(2, L,i(p, q)))
Vi(p(L,i(p,q, )) (1, 1,i(p, q,v)))

P(p(1i(p.a.0))(2,i(a,v)) ‘/( (2,i(q,v));9(2,1,i(q,v)))
V(p(L,i(p,q,v));0(1, 1,4(p, 9, 7))

Plp(1i(p,a.9)(2,i(p0) * "( (2,4(p, v)); (2 Li(p,v)))
Vi(p(L,i(p,q,v)); (1, 1,i(p, g, v))).

We write them as ©(pqe)(pq)> P(par)(qr)> P(par)(pr)- BY Lemma 2.163 (4) we obtain
Pp(1,i(p,a,0))(3i(p)) 'V(P( i(p)); 0(3,1,i(p)))

Po(L,i(p,a,0)) (2,i(p,) * "( (2,

)

V(p(L,i(p, q,v));0(1, 1,i(p, q,v)))
P(p(Li(p.a.1))(3.i()) ( (3,4(9));0(3,1,4(q)))

V(p(L,i(p,a,v));0(1,1,i(p, q,¢)))
P(p(1i(p,a,1) (3,i(x)) * ( (3,i(v));0(3, 1,4(v)))

Vi(p(1,i(p,q,t));0(1, 1,i(p, q, v))).

We write them as ©(pqe)ps Pipar)qr Ppqo)e-
By Lemma 2.163 (4) we have

P(par)(pa) © Ppa)p = P(pav)p P(par)(pa) © P(pa)a = P(par)as
P(par)(ar) © P(ar)g = P(par)qs Ppar)(gr) © Par)r = P(par)e
P(pav)(pr) © Ppr)r = P(par)rs Ppav)(pr) © Ppr)p = Plpav)p-
Now we calculate:
Ppq © Par = ‘P(_plq)p © P(pa)q © ‘P(_qlt)q © P(qv)e
= ‘Pqut)p © P(pqr)(pa) © P(pa)q © SﬁGlt)q ° w@zt)(qr) © P(pqu)e
= Plpacyp © Plpave
= ga(pi)p °© So(iplqt)(pr) © Ppqr)(pr) © Ppr)e
= ‘P(_plr)p © Plpr)r = Ppr-

Note (2.379) holds everywhere on V (p(3,i3);0(3,1,43)). Therefore we can perform
the above calculation everywhere on goq*tl(qu) N Vye. (The maps appearing in the
intermidiate stage of the calculation are defined in larger domain.)
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The proof of the consistency of the bundle maps ¢pq, @qc, Ppe is the same by

using P(pqe)e €te.
The proof of Theorem 2.3 is now complete. (]

3. APPENDIX

3.1. Proof of Proposition 2.19. In this subsection we prove Propositions 2.19,
2.23 and Lemma 2.26. It seems likely that there are several different ways to prove
them. We prove the proposition by the alternating method similar to those in the
proof of Theorems 1.10, 1.34, 2.70, 2.72.

In view of Lemma 2.151, it suffices to prove them in the case r = 9)y. So we
assume it throughout this subsection.

We start with describing the situation. We consider the universal bundle (2.154).
The base space U(x,) is a neighborhood of r,, in the Deligne-Mumford moduli space.
Suppose we have two coordinates at infinity, which we write w(j), j = 1,2. We
denote the universal bundle (2.154) over U(x,) that is a part of w(j) by

7@ ) B(x,). (3.386)

Actually 7V = 72 but we distinguish them.?? The fiber at the base point g, is
written as E\(,J) and the fiber at p, € V(ry) is written as Eff’(]).
We have an isomorphism

P12 smfj’ - szg) (3.387)

of fiber bundles that preserves fiberwise complex structures and marked points.
Such an isomorphism is unique since we assumed 1, to be stable.

By Definition 2.10 (5) we have a trivialization:

) 20 % V(r,) — MY (3.388)

The map gps,j ) is a diffeomorphism of fiber bundles of C'*-class, and preserves the
complex structure on the neck (ends). Moreover it preserves I'y-action and marked
points.

Let p = (py). The restriction of the composition (gos,l))_l op190 905,2) to the fiber
at py € U(zy) becomes a diffeomorphism

uf (5P, 5§) = (=M, ). (3.389)

We note that u? is a diffeomorphism and is biholomorphic in the neck region.
(Note that the complex structure of the neck region is fixed by the definition of
coordinate at infinity.) It is also biholomorphic (everywhere) with respect to the
family of complex structures, j,gl), j,(,z) parametrized by p.

The map (3.389) preserves the marked points and is I'y-equivariant. We also
assume the image of the neck region by uf is contained in the neck region. (We

can always assume so by extending the neck of the coordinate at infinity (1) of

)

the source.) Hereafter we write n00) = (E\(/j),jf()j)) in case we do not need to write

j gj ) explicitly.

221, prove Lemma 2.26, we need to consider a parametrized family and so the parameter £
should be added to many of the objects we define. To simplify the notation we omit them.
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Remark 3.1. We fix a trivialization as a smooth fiber bundle since it is important
to fix a parametrization to study p derivative of the p-parametrized family of maps
from the fibers.

In (2.171) we introduced the map

)—>E

U(Uz,fzﬁé) : E(Uz’fz,éé (91.71,61)

Here the marked bordered curves X, (j = 1,2) are obtained by gluing AL

2T5,05)
in a way parametrized by 1;,7},6;. The idea of the proof is to construct the map
0 (s T ) by gluing the maps u? using the alternating method. In this subsection
we use the notation u, p in place of v, 1.

We introduce several function spaces. Let

N=p= (pv) € H m(Fv)'

veC9(G;)

We write E’%’(‘g) using the notation used in the gluing construction in Subsection
2.5. ’

We use the decomposition (2.217) and (2.220) with coordinate (2.218). The
domain (2.222) are also used. We use the bump functions (2.223)-(2.227).

On the function space

L2, 5(20®); (ue) Txe M) @ A™) (3.390)
we define the norm
IslZz :Z/ ev.s|V*s[2volye. (3.391)
T k=0/Ev

We modify Definition 2.73 as follows.
Definition 3.2. The Sobolev space

L2, 1,5((20),050@)); () T W), (uf) Tons M)
consists of elements (s, ¥) with the following properties.

(1) ¥ = (ve) where e runs on the set of edges of v and

0
Vo = 01877_8 + C2877§e
(in case e € CL(G)) or
0
Ve = CaTe

(in case e € CL(G)). Here ¢, c1,c2 € R.
(2) The following norm is finite.
-\ 112
.

m—+1

:Z/K|Vks|2volgi+ S feel?
k=0 * Kv

e: edges of v

(3.392)

m—+1

+ Z Z / evs| V(s — Pal(ve))|*volse.
e-th end

k=0 e: edges of v
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Here Pal is defined by the canonical trivialization of the tangent bundle on
the neck region.

In case v € C2(G,) we use the function space L$n+1,5(257(2); (u@)*TEﬁ/’(l)) in
place of L2, ., (20,050 ®): (ug) TSV, (ug) Toxe ).
We do not assume any condition similar to Definition 2.75 and put
L 5((20®, 057 @) (uf) T2, () ToL D)

= P Los(20®,0500); () T, (uf) Tz M)
veC(Gy) (3.393)

& P L2000 @) TseW).
veCd(Gy)

The sum of (3.390) over v is denoted by
L2, 5(2P®; (u?) TS D @ A%,

We next define weighted Sobolev norms for the sections of various bundles on
p,(2) P (2) o .
Zfﬁ . Here ET*,g was denoted by Ef,g in Subsection 2.5. Let
1L xs(2) g5,(2) P(1) gy’ (1)
C2 (ET,§ 3827?’9" ) - (Ef/ﬁ_'/ 7827:/’0_'/ )
be a diffeomorphism that sends each neck region of the source to the corresponding
neck region of the target. We first consider the case when all T, # oco. In this case

ZPTJ%) is compact. We consider an element

,(2 ,(2 * (1 * (1
s € L3n+1<(zs‘—v‘7(§)7 82;‘,(0"))7 (ul) TZ%/7(§'/)7 (ul> Taz%/fé‘/))
Since we take m large the section s is continuous. We take a point (0,1/2), in the

e-th neck. So s((0,1/2)e) € Tur((0.1 /2)e)zg,’(01,) is well-defined.

We use a canonical trivialization of the tangent bundle in the neck regions to
define Pal below. We put
m—+1
2 _ ko2
Il =2 30 [ IV sPvolse
k=0 v v
m—+1

F3 S [ el VHGs - Pal(s(0.1/2)0)) Ptedr, (339
k=0 e-th neck ’

e

+> 15((0,1/2)e)]1

For a section s € Lfn(E’%’(;); (u’)*TE;I’((;/) ® A% we define

Hs”ii,a = Z/E er,s|VEs[>vols,.. (3.395)
k=0 T

We next consider the case when some of the edges e have infinite length, namely
T, = co. Let CL (G, T) (resp. CL™(G,,T)) be the set of elements e in C}(G,)
(resp. CL(G,)) with T, = oo and CH0(G. T) (resp. CLin(G, T')) be the set of
elements C1(G,) (vesp. CL(G,)) with T, # co. Note the ends of EpTa,g correspond two
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to one to CLM(G,, T) U CL (G, T). The ends that correspond to an element of
CLnf (G T is ([-5Ts, 00) x [0, 1])U(—00, 5T,] x [0, 1]) and the ends that correspond
to CL (G, T') is ([=5T%, 00) x S1) U (—00,5T] x S'). We have a weight function
ev.5(Te, te) oOn it.

Definition 3.3. An element of

,(2 ,(2 * /, 1 * /, 1
L (S5, 050 (w0 (w) Tosl ()

is a pair (s,¥) such that:
(1) sis a section of (u’ )*TE;;,’%) on ZPTJ(QE) minus singular points z, correspond-
ing to the edges e with T, = oo. 7
2) s is locally of L2, class.
3) On 9522 the restriction of s is in (u’)*T@Z’i’(p.
7,0 .0
4) ¥ = (ve) where e runs in CH"(G, T) and v, is as in Definition 3.2 (1).
5) For each e with T, = oo the integral

(
(
(
(

m+1 0o
3 / / 0.5 (Tor 1)V (5(7s o) — Pal(v0))[2dradte
k=070t

. (3.396)

0
+ Z/ /ev’g(Te,te)|Vk(s(Te,te)—Pal(ve))\gdﬂadte
k=0 Y —® te

is finite. (Here we integrate over t, € [0,1] (resp. t. € S*)ife € CLI"(G,, T)
(resp. e € Ccl’i“f(gp,f)).
(6) The section s vanishes at each marked points.

We define
I, 97, = (3:304) + SoB3%)+ Y el (3.397)
eecl,inf(gp”f) eecmnf(gpj')
An element of
(2 * (1
L s (S35 () T8 ) @ A1)

is a section s of the bundle (v )*TZ;,’%) ® A®! such that it is locally of L2 -class

and
> / / ev.5| V5 (Te, to)Pdrodt
k=070t

o (3.398)
+) / / ey 5|VE (5(Te, to)|2dredte
k=07 —° te
is finite. We define
||s|\2L3M =(3.395)+ > (3.398). (3.399)

e€CLinf(g, T

For a subset W of 5" or EPTJ’(;) we define HS”L;J(WCZ&(”)’ ||s||L§n,6(WC2,JTJ<;))

by restricting the domain of the integration (3.394), (3.395), (3.397) or (3.399) to
wW.
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We consider maps u? : (2@ 050®) = (200 ox0M) in (3.389), for all v.
We write u? = (uf).

We next define a vector space that corresponds to a fiber of the ‘obstruction
bundle’ in our situation. Let u’ : (25‘(2),825’(2)) — (25/’(1),825,’(1)) be a diffeo-
morphism that sends each of the neck region of the source to the corresponding
neck region of the target. We define

Ef(u') € To(KL®, () T @ A™)

as follows.
We may identify U(x,) as an open subset of certain Euclidean space. Let e, €
Ty UV(ry). We define

’ d — / v
3 (W, ey) = — (@7 )| (3.400)
dt 0
Here 8777 is the & operator with respect to the complex structure jf()}lt e (on
the target) and j,(,z) (on the source). We thus obtain a map:

I (') Ty Blxy) — L2, 5(20@; () T2 D @ A, (3.401)
Since the complex structure is independent of p on the neck region, the image of

(3.401) is contained in I‘O(Kg’(z), (u’)*TEffl’(l) ® A%Y), that is, the set of smooth
sections supported on the interior of the core.

Definition 3.4. We denote by E?(u’) the image of (3.401).

We consider the linearization of the Cauchy-Riemann equation associated to the
biholomorphic map v’ that is

Dord Ly 41 5((5012,050); (u) T, (o) T8 M)
— L2, 5(20@; () T2 @ A,

Lemma 3.5. Ifu' is sufficiently close to u? then the kernel of (3.402) is zero and
we have

(3.402)

(D, d) ® EL(u) = L2, 5(Z0®); (u)*TEe D @ A%, (3.403)

Proof. We first consider the case v’ = u?, that is a biholomorphic map. Then the
kernel is identified with the set of holomorphic vector fields on X#:(2) that vanish
on the singular points and marked points. Such a vector field is necessary zero by
stability.

By the standard result of deformation theory, the cokernel is identified with the
deformation space of the complex structures, since £ is biholomorphic. Therefore
(3.403) holds.

We then find that the conclusion holds if «’ is sufficiently close to u® so that
D, is close to D,r0 in operator norm and Ef(u') is close to Ef(uf), in the sense
that we can choose their orthonormal basis that are close to each other. (I

Remark 3.6. ‘Sufficently close’ is a bit imprecise way to state the lemma. In the
case we apply the lemma, we can easily check that the last part of the proof works.

We next take a map
E:{(z,0) eTEW | |jv] < e} - 2D (3.404)
such that
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(1) E(2,0) = z and
d
—E(z,t = .
o (z,tv) . v
(2) If (z,v) € TOXM then E(z,v) € 95,
(3) E(z,v) = z 4+ v on the neck region.

—

Now we start the gluing construction. Let (T, 6) € (159, 00] x (1%, 0] x S1). For
k=0,1,2,..., we will define a series of maps

£:(2) gy:(2) P(x)+(1) P(r)>(1)
Urgw  CFg 0855 ) = (B0 g OZF gin) (3.405)
af /’,(2) 97(2) p(N)V(l) p(N)v(l)
W g o (EO0R0E) — (BT 08, (3.406)
(we will explain p(,), T*) and 6%) below) and elements
p 5P
“Eam S Ev(“V,T*,a‘;(N)) (3.407)
(1)
Bnrf ooy € Lans(E0@i(@ o0 ) TR @A) (3.408)
Moreover we will define V% Tov () for v € C°(G), ATY G mve R for e € C1(G)
and A94§(N) Lo ERforec Cl(g) We put
v = AT . 9 for e € C1(G)
T,0,(k),v,e T,0,(k),v,e 87—6 ’ o )
0 0
P — ATP 9 P 1
VG e = Tf,@,(n),v,e o T,y vre B for e € C.(G).

P ;
T,§,v,(n))’ (Uf,é,(n),v,c)) becomes an element of

L2 5 (2@, 080 @) (@ oo VTR (@ VIS D).

v TG (ke 7 g0 Uy 7 G (-1 Tim) )
The vectors T and %) are determined by AT?, . ATE and
T, 0, (1),v,e’ T,0,(k—1),v,e
AG; B (1w’ AQ;G ety 8 follows. For each e let v, (e) and v_,(e) be the
verticies for which e is outgoing (resp. incoming) edge. We put:
(k) — 14
107%) = 10T, — Z ATE 5 oo T > N (3.409)
(k) — 14
9 9 + Z A9T 0,(a),ve(e),e AGT 0,(a),v_(e),e’ (3410)

Remark 3.7. As induction proceeds, we will modify the length of the neck region
a bit from T, to Te(n). We also modify 6, (that is the parameter to tell how much
we twist the S! direction when we glue the piecies to obtain our curve) to 08"

The elements p(.y = (py,(x)) is defined from e” inductively as follows.

v,T,,(x)
jp(ﬁ 1)( f§(m 1)>pv (k) — Pv, (nfl)) = es7f7§7(n)' (3411)

So Te(ﬂ), 6" and Pv,(x) depend on p.T.0.
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Remark 3.8. The construction of these objects are very much similar to that of
Subsection 2.5. Note that (1), X)) plays the role of (X, L) here. (In fact 9%
is a Lagrangian submanifold of ¥(1).) However the construction here is different
from one in Subsection 2.5 in the following two points.

(1) We will construct a map u that not only satifies du = 0 mod EP but is
also a genuin holomorphic map. The linearized equation (3.402) is not
surjective. We will kill the cokernel by deforming the complex structure of
the target. Namely p # p(,) in general.

0 _
(2) We do not require ATT Ty (e)e ATT By (e0 OF AGO 5 () ve ()0
AGL . This condition corresponds to Devg, (V, Ap) = 0 that we

6,0,(k),v_ (e),e
put in Definition 2.75. Here we did not put a similar condition in (3.393).

Instead we deform the complex structure of the target again. Namely
Te'{) # T, Gé'{) # 0, in general.

Now we start the construction of the above objects by induction on k.

Pregluing: Since u? : 3¢’ @ 5 50 i5 biholomorphic and sends the neck region

to the corresponding neck region, there exists AT 75O ve © R for e € C*(G) and
AH%&(O)’V,C € R for e € CL(G) such that
[u?(Te, te) — (Te + ATE 7 0 otet AGT 7.0 )| < Cype— el (3.412)
Note that in case e € C1(G) we put AHT TOwe =
We identify the e-th neck region of EPT<(")) (0 ()N) with

(5T, + sATS .y, 5T + sAT, ()] x [0,1] or S,

where
K

0
sA e (”) OATT,(;,(a),w_ (e),e’

€ (") Z ATﬂ 0, a),v_,(e),e’

We also denote

SO0 H)_Z eTé’(a)v,_(e),

— — 4
SO0 () = Z: Aafﬁ,(a),v_, (e)e’

We use the symbol Té as the coordinate of the first factor. The symbol te ) denotes
the coordinate of the second factor that is given by

t) =t + sAO

e, (k)

in case e € C1(G,). Here t, is the canonical coordinate of S*. In case e € CL(G,),
(k)
") — ¢,

We have
7 = 70— 5T, + sATS .y = 7!/ + 5T + sAT, .. (3.413)

e

(Hence 7/ = 7!/ + 10T, — sATS, + AT, =7/, + 1078 See (3.409).)

e,(k
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In case e € C1(G,) we also have

10 =t + sA0S ) =t — O + 5007, (3.414)

(Hence t, =t — 68", See (3 410).)
We define the map 1dp () % from the e-th neck of E’l (q) to the e-th neck of X7 (1)

() ()
by
2T (s te) o (70, 400) = (st (3.415)
We now put:
.0 T, 7.0
I X:zs(usF@) ldg (To) )+ Xe, eoa(uf] v_ (e) lde 0) ) + 1d§ (TO) on the e-th neck
Hoo uy on K.
(3.416)

XS Xg ’% 7 (0) on the e-th neck if e is outgoing
Err” PO = x*ﬁ pﬂ T the e-th neck if e is incoming (3.417)
0 on K,.

Step 1-1: Let id, . be the identity map from the neck region of 25,2) to the neck
region of . (It does not coicide with u? there.) We set:

ve(e)e _ v (e)e _
Afﬁ,(o) (SATT 0y, 540 o)), ATﬂﬁ)(O) (sAT, {0), 580, ))- (3.418)

(In case e € C5(Gy) we set sAOS ) = sAf 7, = 0.) We then define

dT 0,0) — 44, ot A;fg(o) (3.419)

Now, we put

P
Uy F.6,0) ()
X;s(Te —Te,te) u% 7.(0) (Teste) + X:B(Te — T, te)idzﬂ;ee’(())
if z = (7o, te) is on the e-th neck that is outgoing
= Xea(Te = Teste)ufy 5 o () + xS a(Te — Ter te)idy
if 2z = (7e,te) is on the e-th neck that is incoming
P .
uv,f,ef,(o)(z) if z € K.
(3.420)
Definition 3.9. We define V? G () for v € C%(G,) and real numbers ATf . W () o
P 1 p p
ATf,é‘,(l),Vﬁ(e),e fore € C*(G,) and A9T~7§,(1)7vg(e)7e, AHf@(l),VH(e),e fore € CL(Gy)

so that the following conditions are satisfied.

Dge VL ) —En’ = o EEJ(W

. 5.8.(0) ( T,0,v,(1) ,T,6,(0) eV,T,e,(o) (3.421)

70,0)
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and 8
. 14 14 —
L (VTT@,vqe),(l)(Te’ te) = AL 61y o), eﬁ%) -0
5 (3.422)
. 14 14 —
LN (Vf,e‘,vﬁ(ex(l)(%’ te) = AT 50 v 0. 8Te> -0
ifee C& (gp);
B 0
li [ AT” — AG” o0 | =
Tegnoo (VT797V(_(8),(1)(T6’ te) — 0,(1),ve(e),e O 6T,0,(1),v4_(e),e ate> 0
o 0
. P P - P
Te1—1>r£100 (VT,GTV*)(e)a(l)(Te’ e) ATT 0,(1),v—(e),e 7, AHT 0,(1),v—(e)e Ot ) v
(3.423)

if e € CH(Gy).

The unique existence of such objects is a consequence of Lemma 3.5.
We define p(;) by (3.411).

Step 1-2:
Definition 3.10. We define u
(1) If z € K, we put
P — (e P
ul 4(1)(2;) = E(uiﬁ,(o)’ Vf7§)v7(1)(z)). (3.424)
(2) If 2 = (Te, te) € [-5T%,5T0) % [0,1] or S, we put

uf 5(1)(2') as follows. (Here E is as in (3.404).)

P
7.4, (Terte)

:Xf:_(e), (Te’ )(VfOVH(e) (1)(7—9 ) (AT (1)7A9<; ))
+X7 (e)vA(Te’ e)(V’f’qu(c)( )(7'e e) — (A e(l),AGG(l)))

+ 'U/T‘ 5(0) (Tea te)'

(3.425)

Here we use the coordinate (Te(l) tél)) given in (3.413) and (3.414) for the target.

We remark that 7.”) = — ATY ;). Therefore, in a neighborhood of {57} x
[0,1] x ST, (3.424) and (3.425) are consistent.

Step 1-3: We recall that p, (1) is defined by

300 (@af w70y P Py, (0)) = 5T,§,(1) (3.426)
(Note py () = 0.)
Step 1-4:
Definition 3.11. We put
X 0u %5’(1) on e-th neck if e is outgoing
ErrV oW ijau%é’(l) on e-th neck if e is incoming (3.427)
;0( ) on K.

We extend them by 0 outside a compact set and will regard them as elements of

the function space L2, (Zp (), (47 rro ) g A% where @”

e )) Fob g will

v, T,0,(1)
be defined in the next Step.
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We thus come back to Step 2-1 and continue. We obtain the following estimate

by induction on k. We put R, = 57 + 1.

Lemma 3.12. There exist Tp,,Com,y ..., Camy€1,m > 0 and 0 < p < 1 such that
the following inequalities hold if T, > Ty, for all e. We put Tipin = min{7T, | e €

C(Gp)}-
(02 0 i) o ey < ok
H(v%ﬁ,v,e,(n))u < Camp"™
H“%eiw - “%oian‘ L2, (K Came™
‘EﬁrsTo<a> ey S

‘ e%ef(ﬁ) 12 (KDYt Comp"™~

AT 5 (el < CrmpTT

HA T ywel| < CamHT

(3.428)

(3.429)

(3.430)

Cs mer,mpe” Tmin , (3.431)

(3.432)

(3.433)

(3.434)

The proof is the same as the proof of Proposition 2.87 and so is omitted. We

note that (3.432) and (3.411) imply

o) — ol < Cogupn e Toin,

Therefore the limit .
lim pey = p'(p, T',0)

K— 00
exists. (3.433) and (3.434) imply that
_ p
HILH;O 5ATH 5 (K),v,e 5ATT,§7(w)7V,e
and
_ p
HILH;O 5A9'f 5 (K),v,e 5A0T 0,(c0),v,e

converge. We put

T (p, T, 0) = T+5AT 7 (o)’

Then (3.430) imlies that

converges to a map

uP (EP ,(2) 3211(3 ) — (ZP "(p,T,6),(1)

Té’(oo) 76"’ T(p,T,0),0" (p, T, T

=

o (b,
52 O

(3.435)

in L2, topology. (Note the union of (K\(, ))+R for various v covers E’%(;l’@).) The

formula (3.431) then implies that u% 7. (c0)
Therefore, using the notation in Proposition 2.19 we have

612(p7 fa 5) = (p,(p7 fa 5)’f/(p, fa 5/)3 5/(07 fa 5))

Using the notation in Proposition 2.23 we have

2 =ul
Y, 1.0) uT,e,(oo)'

is a biholomorphic map.

(3.436)

(3.437)
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The T, etc. derivative of the objects we costructed enjoy the following estimate.

Lemma 3.13. There exist Tp,, C1o,m, - - - s C16,m, €2,m > 0 and 0 < u < 1 such that
the following inequalities hold if To > T,, for all e.
Let eg € C1(G,). Then for each kr, kg we have

naIle olkel o , ,
vﬁ aTET ag%e aTeo ((Vf,g,v,(n))’ (vf,g,v,e,(n))>

2 P,(2)
Lm+17\ET\7\E9\7n71,5(2" )

< ClO,mﬂK71675TCOa
(3.438)
8\ET| 6|E9| )
n9 Y 9 e w=1y—0T, 3.439
H P oTkr 9gke T, UF e, )| S CrimiT e (3.439)
olFl giksl g
H P 9TFr 99 OTe, U 5 () < Crame™"0,
oTtr 96t 7 m+41—|Ep|—|Egl—n—1 6((K\('2)))+ﬁ)
T ) ’
(3.440)
Hvz 8“6?*' lef‘ a I'I"D - -
OTkr §gke OTc, — Vv 1:0,(x) (20 @) (3.441)

m—|kp|—|kg|—n—1,8

—6T.,
)

K
< Ciz mea,mite

H L olkrl glkel g

k—1_—6T,
P OTEr o OTeg T-0.5) < Cramp” e, (3.442)

(K

m—|kp|—|kg|—n—1

oFrl gkl 9 o

va 8TkT 89k9 (9T T.0,(k),v,e < Cls,mﬂ e 0, (3443)
Lol gkl g o

0 ST g TTa “0T.5, 00| < Cromi™ e (3.444)

for |kz| + |ko| +n < m — 11.
Let ey € CL(Gy). Then the same inequalities as above hold if we replace % by
€0

9
00,

eg !
The proof is mostly the same as that of Proposition 2.88. The difference is the
following point only. We remark that in (3.438), (3.439), (3.440), (3.441) the norm

is L2 1 Rl [Ro|—m_1,6 DOTIL. On the other hand, in (2.271), (2.272), (2.273),
m T 1] n—
(2.274), the norm was L? norm. The reason is as follows. We

m+1— ‘k‘T| ‘kgl 1 5
remark that in our case
K

1
(K) S ATp
T Z A (a) v (e),e ]_0 (a),v_, (e),e

is p dependent. When we study p derivative in the mductive steps, we need to take
p derivative of

P _ (%) (%)
W, 1 5 0 (7o = 10T 1+ 609)
tc.. Then there will be a term including 7’ or ¢/ derivative of 115 T ()"
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Except this point the proof of Lemma 3.13 is the same as the proof of Proposition
2.88 and so is omitted.
Proof of Proposition 2.19. We note that (2.275) and (3.411) imply

ozl glkel g

k—1_—06T,
— — m ¢ 44
P OTFr dgFs OTeg ™) < Cirnit” e (3:49)

- p)

~

)

and the same formula wtih 52— replaced by 52— if eg € C1(G,). (3.436), (3.445
ep eq
(3.443) and (3.444) imply (2.169).

O

Proof of Proposition 2.23. This is an immediate consequence of (3.437) and (3.440
O

~—

Proof of Lemma 2.26. This is a parametrized version and the proof is the same as
above. (]

3.2. From C"™ structure to C* structure. In this subsection we will prove that
the Kuranishi structure of C"-class, which we obtained in Section 2, is actually of
C*>-class.

We consider the embedding §) (see the formula (2.336)) which we constructed
in the proof of Lemma 2.133. Here we fix m.

Lemma 3.14. The image of §) is a C° submanifold.

Proof. We first note several obvious facts. Let 91 be a Banach manifold and X C 9t
be a subset. Then the statement that X is a C™ -submanifold of finite dimension is
well-defined. And the C™ -structure of X as a submanifold is unique if exists. Here
m' is one of 0,1,...,00. Moreover X is a C'°°-submanifold if and only if for each
p € X and m/ there exists a neighborhood U of p such that U N X is a submanifold
of C™ -class.

Now we prove the lemma. Let ¢ be in the image of ) and take any m/. Let o,
be the stabilization data at p that we used to define F1). We take the stabilization
data tog on g that is induced by tv,. We define Glue at g using the stabilization
data w,. Then, as in the proof of Lemma 2.153, we obtain

§@ Vg, wq; (o), T 2))
- JI o™ (KSR KN, (X, L))
vECY(Gq) (3.446)
X H B ((xp Uy, ) x (T, 00] x (T, 0] x ).
veC9(Gy)

Let us denote the target of FU) by X(j). The map @ is a Cm/-embedding. We
define 7y, 1 X(2) — X(1) so that it is the identity map for the second factor and
the inclusion map

C™ (K KR 010804, (X, 1)) = C™ (KSR KR 01 08,,4), (X, L)
for the first factor. This map is of C*° class. We note that
Tmm 0 D =FW 0 p19,

since we use the induced stabilization data for q. We already proved that (12 is a
diffeomorphism of C™-class to an open subset. Moreover ) is an embedding of
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C™ _class. Therefore a neighborhood of q of the image of 1) is a submanifold of
C™ _class. The proof of Lemma 3.14 is complete. O

We define a C™ structure of the Kuranishi neighborhood so that 1 is a dif-
feomorphism to its image.

Lemma 3.15. The coordinate change 12 we defined is a diffeomorphism of C>-
class.

Proof. We prove the case of @12 in Lemma 2.133. We consider the following com-
mutative diagram.
e
~ 1 Sm/ 1 1
Vip g (00, 7MY ) 2oy —2 X)) —— X

ep—_

Tc Tmz T:m (3.447)

3’(2)

‘7(137\“0;(32);(0(2),7'(2));91)50,7*-@) ety x () P— x5
Here
0= [ o (KSR K0 0%,0), (X, L))
v 0
€CG%) ) ) ) (3.448)
X H B((rp Uty )y) x (TP, 00] x (T®, 00] x §*)
veCo(G,)

is the space appearing in (2.336), (2.337) and the map Séil, is defined as in (2.363).
(We include 2m’ in the notation to specify the function space we use.) The space
%2,) and the map Sg? are similarly defined. The two maps )15 in the vertical arrow
are given by
ﬁl?(“v (pv T, 0))) = (u o U(p,fﬁ)a @12(;), T, 0))

The maps in the horizontal lines are of C'*° class by definition. The map $)12 in the
second vertical line is of O™ class by Sublemma 2.134. The map $12 in the third
vertical line is one used in the proof of Lemma 2.133. Therefore @15 is of C™ _class
at p. Note we can start at arbitrary point q in the image of 2 and prove that
Y19 is of C™ -class for any m’ at any point ¢, by using the proof of Lemma 3.14.
This implies the lemma in the case of p12 in Lemma 2.133.

In the other cases, the proof of the smoothness of the coordinate change is
similar. O

We have thus proved that the Kuranishi structure we obtained is of C*°-class.

3.3. Proof of Lemma 2.56.
Proof of Lemma 2.56.

Sublemma 3.16. There exists a finite dimensional smooth and comapct family I
of pairs (X,u’) such that each element of My.y1.0(8) appears as its member.

Proof. Run the gluing argument of Section 2.5 at each point p € M1 (8) using
an obstruction bundle data given at that point. We then obtain a neighborhood
of each p in a finite dimensional manifold. We can take finitely many of them to
cover My41,¢(8) by compactness. a
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We take a finite number of p, so that (2.203) is satisfied. For each c and N € Z
we take E. n C @, Fo(Int K™% ur TX ® A%") that is isomorphic to the N copies
of E. as the I'y_ vector space and E. C E. n.

We consider the space of I'y -equivariant embeddings o. : E. — E.n in the
neighborhood of the original embedding. Each o, determines a perturbed E. which
we write E7¢.

The condition that E7¢(q) N E7 (q) # {0} for some q € M such that q U @, is
€p. close to p. defines a subspace of the set of (0¢)cce’s whose codimension depends
on the number of ¢’s, the dimension of F. and the dimension of 9t and N. By
taking N huge, we may assume that such (o.).ce is nowhere dense. Namely the

conclusion holds after perturbing F. by arbitrary small amount in F. y. O
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