
§35. Normally polynomial perturbations.

The main purpose of this section is to prove Theorem 34.11. For this purpose,
we need to first recall some notations and lemmas from [FuOn01] whose proofs we
duplicate here for readers’ convenience.

35.1. Fiberwise polynomial sections.

Let M be a manifold and Γ a finite group. Let E1, E2 be real vector bundles over
M on which Γ acts. The action of Γ on M is trivial. We assume that the action
of Γ on E1 is effective. We pull back E2 to the total space of E1 by the projection
π : E1 → M and denote it by Ẽ2. Let D be a sufficiently large integer.

Definition 35.1. A section s of Ẽ2 is said to be a fiberwise polynomial section of
degree ≤ D, if its restriction to each fiber π−1(x) ⊂ E1 is a polynomial of degree
≤ D.

We put Iv = {γ ∈ Γ | γv = v}. For each subgroup Γ′ ⊆ Γ, we put

E=
1 (Γ′) = {v ∈ E1 | Iv = Γ′}.

It follows that E=
1 (Γ′) is a smooth submanifold of E1. Let x ∈ M denote V1 = E1x,

V2 = E2x for the fibers at x of E1x and E2x respectively. Let V Γ′

i be the Γ′ invariant
part of Vi. We define

(35.2) i(Γ′) = dimV Γ′

1 − dimV Γ′

2 .

The main technical result we use in this section is the following :

Proposition 35.3. Let D be sufficiently large. Then for any generic fiberwise
polynomial section s of degree ≤ D, we have

(35.4) dim(s−1(0) ∩ E=
1 (Γ′)) = dim M + i(Γ′),

and that s−1(0) ∩ E=
1 (Γ′) is a smooth submanifold of E=

1 (Γ′).
Moreover s−1(0)/Γ has a triangulation compatible with smooth structures on

s−1(0) ∩ E=
1 (Γ′).

Proof. Let PolyD
Γ (V1, V2) be the set of all Γ-equivariant polynomial maps P : V1 →

V2 of degree ≤ D. There is an evaluation map

ev : PolyD
Γ (V1, V2) × V1 → V2.

We first consider the case Γ′ = {1}. We put V =
1 (1) = {v ∈ V1|Iv = {1}}. We note

that V =
1 (1) is an open subset of V1.

1



2

Lemma 35.5. Suppose the action of Γ on V1 is effective. Then ev is a submersion
on PolyD

Γ (V1, V2)×V =
1 (1) for sufficiently large D. In particular, the space ev−1(0)∩

(PolyD
Γ (V1, V2) × V =

1 (1)) is a smooth manifold of dimension

dim(ev−1(0) ∩ (PolyD
Γ (V1, V2) × V =

1 (1))) = dimV1 + dimPolyD
Γ (V1, V2) − dimV2.

Lemma 35.5 is an easy consequence of the following.

Sublemma 35.6. Let v ∈ V1 and w ∈ V2. We assume Iv = {1}. Then there exists
a Γ-equivariant polynomial map P : V1 → V2 such that P (v) = w.

Proof. Without loss of generalities, we may assume that V2 is an irreducible (over
R) Γ module. We put

W =
⊕
γ∈Γ

R[γ]

and define a Γ action on it by

g
(∑

cγ [γ]
)

=
∑

cγ [γg−1].

Since W is a regular representation of Γ, there exists a surjective Γ linear map
Ψ : W → V2. We choose wγ ∈ R such that :

Ψ
(∑

wγ [γ]
)

= w.

Since Iv = {1}, there exists an (R valued) polynomial f on V1 such

f(γv) = wγ

for each γ ∈ Γ. We put

P (x) = Ψ

(∑
γ

f(γx)[γ]

)
for x ∈ V1. It is straightforward to see that P has the required property. ¤

Two bundles E1, E2 → M induce a bundle PolyD
Γ (E1, E2) → M whose fiber is

PolyD
Γ (V1, V2). We may identify a fiberwise polynomial section of degree ≤ D with

a section of the bundle PolyD
Γ (E1, E2). We consider the evaluation maps

C∞(M ; PolyD
Γ (E1, E2)) × E=

1 (1) ev1−→ PolyD
Γ (E1, E2) × E=

1 (1) ev2−→ E2.

Here ev1(ζ, v) = (ζ(π(v)), v). By Lemma 35.5, the set ev−1
2 (0) is a smooth subman-

ifold of PolyD
Γ (E1, E2)×E=

1 (1) of codimension dim V2. Since ev1 is a submersion we
find that ev−1

1 (ev−1
2 (0)) is a smooth submanifold of codimension dim V2.



3

We next consider the map

π : ev−1
1 (ev−1

2 (0)) → C∞(M ; PolyD
Γ (E1, E2))

induced by the projection. Then this map is a Fredholm map of index

dim E1 − dimV2.

By the Sard-Smale theorem, the set of regular values is residual and so dense. We
take a regular value of π. It corresponds to a normally polynomial section s of Ẽ2.
Since we have the identity

s−1(0) ∩ E=
1 (1) = ev−1

1 (ev−1
2 (s)) ∩ π−1(0),

s−1(0) ∩ E=
1 (1) becomes a smooth manifold with its dimension given by

dim E=
1 (1) − rank E2 = dimM + rank E1 − rank E2 = dimM + i(Γ′).

Here we use the fact that E=
1 (1) is an open subset of E1 for the first equality. This

proves that for the case of Γ′ = {1}, s−1(0)∩E=
1 (Γ′) is smooth with dimension given

by (35.4).
To prove the latter for general Γ′ we need to use somewhat more complicated

argument. We define
E⊇
2 (Γ′) = {v ∈ E2|Iv ⊇ Γ′}.

We pull it back to E=
1 (Γ′) and denote it by Ẽ2(Γ′). For given x ∈ M , we consider

the fiber
PolyD

Γ (E1, E2)|x = PolyD
Γ (V1, V2)

and define a linear subspace V ⊇
2 (Γ′) of V2 by

V ⊇
2 (Γ′) = {v ∈ V2 | Iv ⊇ Γ′}.

We obtain an evaluation map

(35.7) ev : PolyD
Γ (V1, V2) × V =

1 (Γ′) → V ⊇
2 (Γ′)

by the restriction. Recall that

V =
1 (Γ′) = {v ∈ V1|Iv = Γ′} (6= V Γ′

1 ).
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Lemma 35.8. The map (35.7) is a submersion.

Proof. Let v ∈ V =
1 (Γ′). It suffices to show that the linear map : PolyD

Γ (V1, V2) →
V ⊇

2 (Γ′), P 7→ P (v) is surjective. Let N(Γ′) be the normalizer of Γ′ in Γ. We put
H(Γ′) = N(Γ′)/Γ′. Then H(Γ′) acts freely on V =

1 (Γ′). Also H(Γ′) acts on V ⊇
2 (Γ′).

Let w ∈ V ⊇
2 (Γ′). By Sublemma 35.6, we find an H(Γ′) invariant polynomial map

P1 : V =
1 (Γ′) → V ⊇

2 (Γ′) such that P1(v) = w. P1 is also N(Γ′)-invariant.
Since Iv = Γ′, it follows that γ(v) ∈ V =

1 (Γ′) if and only if γ ∈ N(Γ′). Therefore
there exists a polynomial map P2 : V1 → V ⊇

2 (Γ′) such that

(35.9) P2(γv) =
{

P1(γv) = γP1(v) if γ ∈ N(Γ′),
0 if γ /∈ N(Γ′).

Note that P2 is not Γ invariant. If we define P ∈ PolyD
Γ (V1, V2) by

P (x) =
1

#N(Γ′)

∑
γ∈Γ

γ−1P2(γx),

then P is obviously Γ-invariant. The N(Γ′)-invariance of P1 and (35.9) imply that
P (v) = w. The proof of Lemma 35.8 is complete. ¤

Using Lemma 35.8, we derive that s−1(0) ∩ E=
1 (Γ′) is a smooth submanifold of

E=
1 (Γ′) for a generic Γ′-invariant fiberwise polynomial sections s of degree less than

equal to D. And it follows that (35.4) also holds similarly as in the case Γ′ = {1}
that we have already discussed.

We finally prove that s−1(0)/Γ has a triangulation compatible to the smooth
structures on each stratum. We again consider the evaluation map

ev : PolyD
Γ (V1, V2) × V1 −→ V2.

This map is real analytic : In fact, this is the reason why we consider the notion
of normally polynomial mappings here in this chapter. Hence Z = ev−1(0) and
Z/Γ are real analytic sets. Therefore Z/Γ has a Whitney stratification. We have
a fiber bundle over M whose fiber is Z. We denote it by Z → M . The Whitney
stratification of Z/Γ induces a Γ invariant Whitney stratification of Z. Therefore Z
has a Γ invariant simplicial decomposition such that each stratum is a sub-complex.
(See [BCR98], for example.) On the other hand, since the evaluation map

C∞(M ; PolyD
Γ (E1, E2)) × E1 −→ PolyD

Γ (E1, E2) × E1

is a submersion, the map

(x, v) 7→ (s(x), v) ; E(1) = M × E(1) → PolyD
Γ (E1, E2) × E1
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is transverse to each simplex of Z ⊂ PolyD
Γ (E1, E2) × E1 for generic

s ∈ C∞(M ; PolyD
Γ (E1, E2))

by the Thom transversality theorem. For such s, the set s−1(0)/Γ has a compatible
triangulation. The proof of Proposition 35.3 is now completed. ¤

35.2. Normal bundle and normally polynomial sections.

Let X be an orbifold and E be an orbi-bundle on it. (See the end of Definition
A1.33 for the definition of orbi-bundle.) Let Γ be an abstract group. We put

X
∼=(Γ) = {x ∈ X | Ix

∼= Γ}.

Here Ix is defined as follows: We identify a neighborhood of x locally as Vx/Γx: Let
x̄ be the element of Vx corresponding to x: Then Ix is the group of elements of Γx

fixing the point x̄. We remark that X
∼=(Γ) is a smooth manifold.

In §A1.6, we define an element of Sh(X∼=(Γ),Γ) on X
∼=(Γ), which we call standard

stack structure on X
∼=(Γ). (See Example-Definition A1.80.) We also define a normal

bundle NX∼=(Γ)X (Definition A1.91).
For each orbi-bundle E on X, we can define a restriction E|X∼=(Γ) to X

∼=(Γ).
(See Definition A1.95.)

We remark that the normal bundle NX∼=(Γ)X and the restriction E|X∼=(Γ) are
vector bundles on the standard stack structure on X

∼=(Γ) in the sense of Definition
A1.86 and is not necessary a vector bundle in the usual sense on the topological
space X

∼=(Γ). (An example where NX∼=(Γ)X is not a vector bundle in the usual
sense is in Example A1.65.)

By Lemma A1.96 we have an orbifold (NX∼=(Γ)X)/Γ and by Lemma A1.97 the
orbifold (NX∼=(Γ)X)/Γ is diffeomorphic to a neighborhood of NX∼=(Γ)X in X as
an orbifold. We alert that the ‘total space’ of the vector bundle NX∼=(Γ)X over
stack is not a well-defined notion. On the other hand, the quotient (NX∼=(Γ)X)/Γ
is well-defined as a point set also.

Actually in §A1.6 we give a detail of the construction of the normal bundle
NX∼=(Γ)X and of the restriction E|X∼=(Γ) only in case X is a good orbifold, that is
a global quotient of a manifold by a group action. So in this book we use only this
case. (We can construct NX∼=(Γ)X and E|X∼=(Γ) in general however.)

In order to define and study normally polynomial sections of orbifold and more
generally of Kuranishi structure, we first generalize Proposition 35.3 to the case
of vector bundle in the sense of Definition A1.86. We consider (M, [{hij}, {γijk}])
where [{hij}, {γijk}] ∈ Sh(M ;G). Let F = ({Fi}, {gF

ij}) and E = ({Ei}, {gE
ij})

be vector bundles on [{hij}, {γijk}] ∈ Sh((M,U);G) where U = {Ui} is an open
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covering of M . (In later application F will be the normal bundle and E be the
obstruction bundle.)

We assume that the G action on the fiber of Fi is effective. Then F/G is an
orbifold by Lemma A1.96. We pull back E to F/G. It is easy to see that the pull
back π∗E is an orbi-bundle on F/G.

By Lemma A1.98 and a discussion right before that, the set of G equivari-
ant smooth maps of degree ≤ D, C∞(M ; PolyD(F , E)G), is well-defined. Let
s ∈ C∞(M ; PolyD(F , E)G). Then it is easy to see that s induces a (single val-
ued) section of the pull back orbi-bundle π∗E on F/G. Hereafter we regard an
element of C∞(M ; PolyD(F , E)G) as a section of π∗E .

Let Γ be an abstract group. Let (F/G)∼=(Γ) be as before. (Note F/G is an
orbifold.) We consider a connected component (F/G)∼=(Γ)k of it. We take [p, v] ∈
F/G where p ∈ Ui ⊂ M , v ∈ Fi. We remark that Iv

∼= Γ.
We put

(35.10) i(Γ; k) = dim(Fi)Iv
p − dim(Ei)Iv

p .

Here (Fi)p is the fiber of the vector bundle Fi at p and

(Fi)Iv
p = {w ∈ (Fi)p | ∀g ∈ Iv g · p = p}.

Proposition 35.3bis. For each sufficiently large D and generic smooth section s
of C∞(M ;PolyD(F , E)G) the set s−1(0) ⊂ F/G has the following properties.

For each abstract group Γ, the intersection (F/G)∼=(Γ)k ∩ s−1(0) is a smooth
manifold of dimension dimM + i(Γ; k).

Moreover s−1(0) has a triangulation which is compatible with the smooth struc-
tures of (F/G)∼=(Γ)k ∩ s−1(0).

If there is a compact subset K0 of M and a section of s0 satisfying the conclu-
sion above on a neighborhood of K0, we may perturb it to s so that s satisfies the
conclusion everywhere and s coincides with s0 on K0.

The proof is the same as the proof of Proposition 35.3.
We next proceed to the study of normally polynomial section of orbi-bundle

on an orbifold X. Let E be an orbi-bundle on X. For each abstract group Γ
and a connected component X

∼=(Γ)k of X
∼=(Γ) we define d(Γ; k) as follows. Let

p ∈ X
∼=(Γ)k and Vp/Γp be its neighborhood. Here Γp

∼= Γ. The orbibundle E
defines a Γp equivariant vector bundle on Vp.

(35.11) d(Γ; k) = dim X
∼=(Γ)k − dimEΓ

p .

It is independent of p and depends only on Γ and k since the right hand side is
integer valued and continuous on X

∼=(Γ).
We remark that

d(Γ; k) = dimM + i(Γ; k)

for X = F/G and in the situation of (35.10).
We next define the notion of normally polynomial section of s of E on X.



7

Definition 35.12. A single valued section s of an orbi-bundle E on an orbifold X
is said to be a normally polynomial section if the following holds for each abstract
group Γ.

We identify a tubular neighborhood Tube(X∼=(Γ)) of X
∼=(Γ) with (NX∼=(Γ)X)/Γ.

We put
K

∼=(X; Γ) = X
∼=(Γ) \

∪
Γ′⊃Γ

Tube(X∼=(Γ′)).

Then there exists a section sΓ ∈ PolyD(NX∼=(Γ)X,E|X∼=(Γ))Γ such that sΓ induces
s on a neighborhood of K

∼=(X; Γ) in Tube(X∼=(Γ)).

Proposition 35.13. For any normally polynomial section s of E there exists a
sequence of normally polynomial sections sε converging to s in C0 topology, such
that the following holds.

For each Γ the intersection X
∼=(Γ) ∩ s−1

ε (0) is a smooth manifold of dimension
d(Γ; k). Moreover s−1

ε (0) has a triangulation which is compatible with the smooth
structures of X

∼=(Γ) ∩ s−1
ε (0).

If there is a compact subset K0 of X such that s has the properties above on a
neighborhood of K0, we may choose sε so that it coincides with s on K0.

Note to state Proposition 35.13, we use the fact that NX∼=(Γ)X exists as a bundle
over stack, which we prove in detail only in case X is a good orbifold. So we will
use Proposition 35.13 only in that case.

Proof. We are going to construct sε on

Wm = U(K0) ∪
∪

#Γ′≥m

Tube(X∼=(Γ′))

by downward induction on m. Here U(K0) is a sufficiently small neighborhood of
K0. We remark we will prove by induction that the section sε on Wm satisfies the
conclusion for arbitrary finite group Γ and not only for finite group Γ′ with #Γ′ ≥ m.
(Note Tube(X∼=(Γ′)) ∩ X

∼=(Γ) can be nonempty for #Γ′ ≥ m and #Γ < m.)
We assume X is compact for simplicity. (We can prove noncompact case by an

obvious modification of the argument.) Then for sufficiently large m the set Wm is
U(K0) and we can put sε = s.

We assume that we have constructed sε on Wm+1. Let Γ′ be a group of order
m. We have already sε on

∪
Γ′′⊃Γ′ Tube(X∼=(Γ′′)). Hence we can extend it to a

neighborhood of Tube(X∼=(Γ′)) by Proposition 35.3bis. Thus the induction works.
The proof of Proposition 35.13 is complete. ¤

Now we are going to use Proposition 35.13 to study X
∼=(Γ), where X is a space

with Kuranishi structure. We first define the notion of normally polynomial sec-
tion of the obstruction bundle of Kuranishi structure. Before doing so, we need a
digression.
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We recall that in the proof of Lemma A1.97 (tubular neighborhood theorem),
we use Riemannian metric and exponential map on our orbifold. If we change the
Riemannian metric we use, then the diffeomorphism (NX∼=(Γ)X)/Γ ∼= Tube(X∼=(Γ))
changes. Of course, the diffeomorphism does not change up to isotopy. However the
notion of section being normally polynomial is not invariant of smooth isotopy. So
we need to fix the Riemannian metric in order to define it. We also need to fix an
isomorphism between pullback of the restriction π∗(E|X∼=(Γ)) with the restriction
of E to Tube(X∼=(Γ)). We specify the choice of them below.

Let X be a space with Kuranishi structure with tangent bundle. We fix a good
coordinate system as in Lemma A1.11 and use the notation there. We take a
Riemannian metric gp on Vp for each p ∈ P such that gp is Γp invariant. We
moreover assume that φpq : (Vpq, gq) → (Vp, gp) is a totally geodesic and isometric
embedding of Riemannian manifold. We can easily construct such gp by induction
on the order < on P .

For each p ∈ P we consider the (good) orbifold Vp/Γp and an orbibundle Ep/Γp

on it. Let Γ be any abstract group (of finite order). We then obtain a standard stack
structure on N(Vp/Γp)∼=(Γ)(Vp/Γp) by applying Definition-Example A1.80 to X̃ = Vp,
G = Γp, Γ = Γ etc. The choice of our metric gp determines a diffeomorphism from
(N((Vp/Γp)∼=(Γ))(Vp/Γp))/Γ to a neighborhood Tube((Vp/Γp)

∼=(Γ)) of (Vp/Γp)
∼=(Γ) in

Vp/Γp by Lemma A1.97.
By Definition A1.95 we have a vector bundle Ep|(Vp/Γp)∼=(Γ) on (Vp/Γp)

∼=(Γ), on
which we equip with the standard stack structure.

We next fix a family of connections ∇p on Ep for each p ∈ P . We assume that
the bundle embedding φ̂pq : (Eq,∇q)|Vpq → (Ep,∇p) is totally geodesic. Namely
we assume that the image of φ̂pq is preserved by ∇p parallel transport and the
restriction of ∇p to the image of φ̂pq coincides with ∇q. Such family of connections
can be constructed also by induction on p ∈ P with respect to the order <.

Note π∗(E|(Vp/Γp)∼=(Γ)) is an orbi-bundle on the orbifold (N(Vp/Γp)∼=(Γ)(Vp/Γp))/Γ.
Then we can use the parallel transport of ∇p along the gp minimal geodesic to obtain
an isomorphism between π∗(E|(Vp/Γp)∼=(Γ)) and the restriction of Ep to the tubular
neighborhood Tube((Vp/Γp)

∼=(Γ)).
We thus fixed two identifications. We use them to define the notion of section sp

of Ep/Γp on Vp/Γp being normally polynomial. (Definition 35.12).
We also use the Riemannian metric gp and the exponential map to define a diffeo-

morphism between the normal bundle Nφpq(Vpq)(Vp) and the tubular neighborhood
Tube(φpq(Vpq)) of φpq(Vpq) in Vp. We use ∇p to define an isomorphism of the pull
back bundle π∗(Ep|φpq(Vpq)) on Nφpq(Vpq)(Vp) and the restriction of Ep to the tubular
neighborhood Tube(φpq(Vpq)). These identifications are used in Definition A1.21 to
define compatibility of (multi)sections of Eq and of Ep.

Definition 35.14. Let s = {sp} be the system of single valued sections sp of Ep.
Assume that they are compatible in the sense of Definition A1.21. We say that it
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is a normally polynomial section if φ̂pqsq = spφpq and if it is a normally polynomial
(local) section for each p ∈ P . For each Γ and a connected component Vp(Γ)k of
Vp(Γ), we define d(Γ; p; k) by the formula (35.11).

Proposition 35.15. Let X be given a Kuranishi structure that has a tangent bun-
dle in the sense of Definition A1.14. Let {(Vp, Ep,Γp, ψp, sp)}p∈P be a good coordi-
nate system. Then there exists a family of normally polynomial sections sε = {sε

p}
parameterized by ε so that Xsε

=
∪

p(s
ε
p)

−1(0) has the following properties for any
Γ.

(1) Xsε

∼= (Γ) :=
∪

p(s
ε
p)

−1(0) ∩ V
∼=
p (Γ) is a smooth manifold.

(2) The dimension of Xsε

∼= (Γ) is d(Γ; p; k), which depends only on the connected
component of Xsε

∼= (Γ).
(3)

∪
p(s

ε
p)

−1(0)/Γp has a triangulation compatible with the smooth structures of
Xsε

∼= (Γ).
(4) limε→0 sε = s, where s is the Kuranishi map of the given Kuranishi structure.

Proof. The proof is by induction on p ∈ P with respect to the order <. If p is
minimal, we apply Proposition 35.13 to obtain sε

p. Let us assume that we have sε
q

for every q < p. We consider sε
q and the image φpq(Vpq). We restrict sε

q on the
image φpq(Vpq) and use the embedding φ̂pq to obtain a section of Eq|φpq(Vpq) → Vpq.
We can extend it to its neighborhood, so that the compatibility in the sense of
Definition A1.21 is satisfied. We remark that this extended section is normally
polynomial since the part we added is linear. In fact our choice of diffeomorphism
of normal bundle with tubular neighborhood is designed so that it is compatible
with the coordinate change. Also the connection ∇p is chosen to be compatible
with coordinate change.

Moreover the required properties (1) - (4) above are satisfied on the tubular
neighborhood Nφpq(Vpq) if it is satisfied by sε

q.
Now we can use Propositions 35.13 to obtain the section sε

p. The proof of Propo-
sition 35.15 is complete. ¤


