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This is an answer to question 4.
In the questions posted on March 14, question 4 concerns only the case of mod-

uli space of pseudo-holomorphic curve of genus 0 with one marked point and the
homology class is primitive. So there is no bubble. If the question is only on this
particular case it seems to us that there is nothing more to reply than what we
wrote on March 21. (Surjectivity, injectivity, smoothness etc. that is mentioned
in March 23’s post is an immediate consequence of implicit function theorem, that
is certainly a standard result in this case.) On the other hand, in the post on
March 23, ‘gluing’ is mentioned. (Line 7 of the paragraph starting Q4.) This is
contradictory. So we gave up replying the question word by word but explain the
construction of Kuranishi structure on the moduli space of pseudo-holomorphic
curve in general.

Our construction of Kuranishi charts does not use Fredholm theory at infinity.
We do not understand what means ‘slicing’, the word that appeared in the post

on March 23.
There is a well-established technique to find the moduli space as a manifold

with boundary in certain situation. It was used by Donaldson in gauge theory
(in his first paper [D1] to show that 1 instanton moduli of ASD connection on 4
manifold M with b+(2) = 0 has M as a boundary.) In this method we take some
parameter (that is the degree of concentration of the curvature in the case of ASD
equation and the parameter T in the situation of section 1 below). We consider the
submanifold where that parameter T is large, say T0. We throw away everything
where T > T0. Then the part T = T0 becomes the boundary of the ‘moduli space’
we obtain. It was more detailed in a book by Freed and Uhlenbeck [FU] in the gauge
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theory case. Abouzaid used this techniqe in his paper [Ab] about exotic sphere in
T ∗Sn, including the case of corners. At least as far as the results in [FOn1] are
concerned we can use this technique since we need to study moduli space of virtual
dimension 0 and 1 only to prove all the results in [FOn1]. In other words we can use
something like Theorem 1.10 for large and fixed T , but does not need to estimate
the T derivative or study the bahavior of the moduli space at T =∞. The reason
is as follows. In case we consider codimension 2 or higher corner, then since the
virtual dimension of the moduli space is 1 or 0, the restriction to that corner has
negative virtual dimension. So after generic multivalued perturbation the zero set
on the corner becomes empty. So all we need is to extend multivalued perturbation.
(The C0 extention is enough for this purpose.) For codimension 1 boundary and
the case of moduli space of virtual dimension 1, after generic perturbation we have
isolated zero of the perturbed moduli space. So, for large T0, Theorem 1.10 or its
analogue implies that the zero on the ‘boundary T = T0’ corresponds one to one to
the zero at the actual boundary (T =∞). So we do not need to see carefully what
happens in a neighborhood of the set T =∞. (All we need is to extend this given
perturbation at T = T0 to the inside.) This argument is good enough to establish
all the results in [FOn1].

As we mentioned explicitly in [FOn1, page 978 line 13] our argument there, in
analytic points, is basically the same as [MS]. (Let us remark however the proof
of ‘surjectivity’ that is written in [FOn1, Section 14] is slightly different from one
in [MS].) So the novelity of [FOn1] does not lie in the analytic point but in the
general strategy, that is

(1) To define some general notion of ‘spaces’ that contain various moduli spaces
of pseudo-holomorphic curves as examples and work out transversality issue
in that abstract setting,

(2) Use multivalued abstract perturbation, that we call multisection.

When we go beyond that and prove results such as those we had proved in
[FOOO], we need to study the moduli spaces of higher virtual dimension and study
chain level intersection theory. In that case we are not sure whether the above
mentioned technique is enough. (It may work. But we did not think enough about
it.) It is not the way we had taken in [FOOO].

Our method in [FOOO] was using exponential decay estimate ([FOOO, Lemma
A1.59]) and use s = 1/T as the coordinate on the normal direction to the stratum to
define smooth coordinate of the Kuranishi structure. We refer [FOOO, subsection
A1.4] and [FOOO, subection 7.1.2] where this construction is written.

Below, we provide more details of the way how to use alternating method to
construct smooth chart at infinity following the argument in [FOOO, subsection
A1.4].

1. A simple case

1.1. Setting. We will describe the general case in Section 2. To simplify the no-
tation and clarify the main analytic point of the proof we prove the case where we
glue holomorphic maps from two stable bordered Riemann surfaces to (X,L) in
this section.
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Let Σi be a bordered Riemann surface with one end. (i = 1, 2.) We identify
their ends as follows.

Σ1 = K1 ∪ ((−5T,∞)× [0, 1]),

Σ2 = ((−∞, 5T )× [0, 1]) ∪K2.
(1.1)

Here Ki are compact and ±∞ are the ends. We put

ΣT = K1 ∪ ((−5T, 5T )× [0, 1]) ∪K2. (1.2)

We use τ for the coordinate of the factors (−5T,∞), (−∞, 5T ), or (−5T, 5T ) and
t for the coordinate of the second factor [0, 1].

Let X be a symplectic manifold with compatible (or tame) almost complex
structure and L be its Lagrangian submanifold.

Let

ui : (Σi, ∂Σi)→ (X,L), i = 1, 2

be pseudo-holomorphic maps of finite energy. Then, by the removable singularity
theorem that is now standard, we have asymptotic value

lim
τ→∞

u1(τ, t) ∈ L (1.3)

and

lim
τ→−∞

u2(τ, t) ∈ L. (1.4)

The limits (1.3) and (1.4) are independent of t.
We assume that the limit (1.3) coincides with (1.4) and denote it by p0 ∈ L.
We fix a coordinate of X and of L in a neighborhood of p0. So a trivialization

of the tangent bundle TX and TL in a neighborhood of p0 is fixed. Hereafter we
assume the following:

Diam(u1([−5T,∞)× [0, 1])) ≤ ε1, Diam(u2((−∞, 5T ]× [0, 1])) ≤ ε1. (1.5)

The maps ui determine homology classes βi = [ui] ∈ H2(X,L).
We take Kobst

i a compact subset of the interior of Ki and take

Ei ⊂ Γ(Kobst
i ;u∗i TX ⊗ Λ0,1) (1.6)

a finite dimensional linear subspace consisting of smooth sections supported in
Kobst
i .
For simplicity we also fix a complex structure of the source Σi. The version

where it can move will be discussed later. We also assume that Σi equipped with
marked points ~zi is stable. The process to add marked points to stabilize it will be
discussed later also. Let

Dui∂ : L2
m+1,δ((Σi, ∂Σi);u

∗
i TX, u

∗
i TL)→ L2

m,δ(Σi;u
∗
i TX ⊗ Λ01) (1.7)

be the linearization of the Cauchy-Riemann equation. Here we define the weighted
Sobolev space we use as follows.

Definition 1.1. ([FOOO, Section 7.1.3])1 Let L2
m+1,loc((Σi, ∂Σi);u

∗
i TX;u∗i TL)

be the set of the sections s of u∗i TX which is locally of L2
m+1-class, (Namely its

differential up to order m+ 1 is of L2 class. Here m is sufficiently large, say larger
than 10.) We also assume s(z) ∈ u∗i TL for z ∈ ∂Σi.

1In [FOOO] Lp1 space is used in stead of L2
m space.
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The weighted Sobovel space L2
m+1,δ((Σi, ∂Σi);u

∗
i TX, u

∗
i TL) is the set of all pairs

(s, v) of elements s of L2
m+1,loc((Σi, ∂Σi);u

∗
i TX;u∗i TL) and v ∈ Tp0L, (here p0 ∈ L

is the point (1.3) or (1.4)) such that

m+1∑
k=0

∫
Σi\Ki

eδ|τ±5T ||∇k(s− Pal(v))|2 <∞, (1.8)

where Pal : Tp0X → Tui(τ,t)X is defined by the trivialization we fixed right after
(1.4). (Here ± is + for i = 1 and − for i = 2.) The norm is defined as the sum of
(1.8), the norm of v and the L2

m+1 norm of s on Ki. (See (1.26).)
L2
m,δ(Σi;u

∗
i TX ⊗Λ01) is defined similarly without boundary condition and with

out v. (See (1.28).)

When we define Dui∂ we forget v component and use s only.

Remark 1.2. The positive number δ is chosen as follows. (1.3) and a standard
estimate implies that there exists δ1 > 0 such that∣∣∣∣ ddτ ui

∣∣∣∣
Ck

(τ, t) < Cke
−δ1|τ |, (1.9)

for any k. We choose δ smaller than δ1/10.
(1.9) implies

(Dui∂)(Pal(v)) < Cke
−δ1|τ |/10.

Therefore (1.7) is defined and bounded.

It is a standard fact that (1.7) is Fredholm.
We work under the following assumption.

Assumption 1.3.

Dui∂ : L2
m+1,δ((Σi, ∂Σi);u

∗
i TX, u

∗
i TL)→ L2

m,δ(Σi;u
∗
i TX ⊗ Λ01)/Ei (1.10)

is surjective. Moreover the following (1.12) holds. Let (Dui∂)−1(Ei) be the kernel
of (1.10). We define

Devi,∞ : L2
m+1,δ((Σi, ∂Σi);u

∗
i TX, u

∗
i TL)→ Tp0L (1.11)

by

Devi,∞(s, v) = v.

Then

Dev1,∞ −Dev2,∞ : (Du1
∂)−1(E1)⊕ (Du2

∂)−1(E2)→ Tp0L (1.12)

is surjective.

Let us start stating the result. Let

u′ : (ΣT , ∂ΣT )→ (X,L) (1.13)

be a smooth map. We consider the following condition depending ε > 0.

Condition 1.4. (1) u′|Ki is ε-close to ui|Ki in C1 sense.
(2) The diameter of u′([−5T, 5T ]× [0, 1]) is smaller than ε.
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We take ε2 sufficiently small compared to the ‘injectivity radius’ of X so that
the next definition makes sense. 2 For u′ satisfying Condition 1.4 for ε < ε2 :

Iu′ : Ei → Γ(ΣT ; (u′)∗TX ⊗ Λ01)

is the complex linear part of the parallel translation along the short geodesic (be-
tween ui(z) and u′(z). Here z ∈ Kobst

i ). We put

Ei(u
′) = Iu′(Ei). (1.14)

The equation we study is

∂u′ ≡ 0, mod E1(u′)⊕ E2(u′). (1.15)

Remark 1.5. In the actual construction of Kuranishi structure, we take several
ui’s and take Ei’s for each of them. Then in place of E1(u′)⊕E2(u′) we take sum
of finitely many of them. Here we simplify the notation. There is no difference
between the proof of Theorem 1.10 and the corresonding result in case we take
several such ui’s and Ei’s. See [Fu2, pages 4-5] and Section 2.

Theorem 1.10 describes all the solutions of (1.15). To state this precisely we
need a bit more notations.

We consider the following condition for u′i : (Σi, ∂Σi)→ (X,L).

Condition 1.6. (1) u′i|Ki is ε-close to ui|Ki in C1 sense.
(2) The diameter of u′1([−5T,∞) × [0, 1]), (resp. u′2((−∞, 5T ]) × [0, 1])) is

smaller than ε.

Then we define

Iu′i : Ei → Γ(Σi; (u′i)
∗TX ⊗ Λ01)

by using parallel transport in the same was as Iu′T . (This makes sense if u′i satisfies

Condtion 1.6 for ε < ε2.) We put

Ei(u
′
i) = Iu′i(Ei). (1.16)

So we can define an equation

∂u′i ≡ 0, mod Ei(u
′
i). (1.17)

Definition 1.7. The set of solutions of equation (1.17) with finite energy and
satisfying Condition 1.6 for ε = ε2 is denoted byMEi((Σi, ~zi);βi)ε2 . Here βi is the
homology class of ui.

Remark 1.8. In the usual story of pseudo-holomorphic curve, we identify ui and
u′i if there exists a biholomorphic map v : (Σi, ~zi)→ (Σi, ~zi) such that u′i = ui ◦ v.
In our situation where Σi has no sphere or disk bubble and has nontrivial boundary
with at least one boundary marked points (that is τ = ±∞), such v is necessary
the identity map. Namely Σi has no nontrivial automorphism.

2More precisely we assume that

{(x, y) ∈ X ×X | d(x, y) < ε2} ⊂ E({(x, v) ∈ TX | |v| < ε}),

where E : {(x, v) ∈ TX | |v| < ε} → X is induced by an exponential map of certain connection of
TX. See (1.30).
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The surjectivity of (1.11), (1.12) and the implicit function theorem imply that if

ε2 is small then there exists a finite dimensional vector space Ṽi and its neighborhood
Vi of 0 such that

MEi((Σi, ~zi);βi)ε2
∼= Vi.

Since we assume that Σi is nonsigular the group Aut((Σi, ~zi), ui) is trivial. (In the
case when there is a sphere bubble, the automorphism group can be nontrivial.
That case will be discussed later.)

For any ρi ∈ Vi we denote by uρii : (Σi, ∂Σi)→ (X,L) the corresponding solution
of (1.17).

We have an evaluation map

evi,∞ :MEi((Σi, ~zi);βi)ε2 → L

that is smooth. Namely

evi,∞(u′i) = lim
τ→±∞

u′i(τ, t).

(Here ± = + for i = 1 and − for i = 2.)3 We consider the fiber product:

ME1((Σ1, ~z1);β1)ε2 ×LME2((Σ2, ~z2);β2)ε2 . (1.18)

The surjectivity of (1.12) implies that this fiber product is transversal so is

V1 ×L V2.

And an element of V1 ×L V2 is written as ρ = (ρ1, ρ2).

Definition 1.9. Let β = β1 + β2. We denote by ME1+E2((ΣT , ~z);β)ε the set of
solutions of (1.15) satisfying the Condition 1.4 with ε2 = ε.

Theorem 1.10. For each sufficiently small ε3 and sufficiently large T , there exist
ε1, ε2 and a map

GluT :ME1((Σ1, ~z1);β1)ε2 ×LME2((Σ2, ~z2);β2)ε2 →ME1+E2((ΣT , ~z);β)ε1

that is a diffeomorphism to its image. The image contains ME1+E2((ΣT , ~z);β)ε3 .

The result about exponential decay estimate of this map is in Subsection 1.4.
(Theorem 1.34.)

1.2. Proof of Theorem 1.10 : 1 - Bump function and weighted Sobolev
norm. The proof of Theorem 1.10 was given in [FOOO, Section 7.1.3]. The expo-
nential decay estimate of the solution was proved in [FOOO, Section A1.4] together
with a slightly modified version of the proof of Theorem 1.10. Here we follow the
proof of [FOOO, Section A1.4] and give its more detail. As mentioned there the
origin of the proof is Donaldson’s paper [D2], and its Bott-Morse version in [Fu1].

We first introduce certain bump functions. First let AT ⊂ ΣT and BT ⊂ ΣT be
the domains defined by

AT = [−T − 1,−T + 1]× [0, 1], BT = [T − 1, T + 1]× [0, 1].

We may regard AT ,BT ⊂ Σi. The third domain is

X = [−1, 1]× [0, 1] ⊂ ΣT .

We may also regard X ⊂ Σi.

3This is a consequence of the fact that ui is pseudo-holomorphic outside a compact set and
has finite energy.
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Let χ←A , χ→A be functions on [−5T, 5T ]× [0, 1] such that

χ←A (τ, t) =

{
1 τ < −T − 1

0 τ > −T + 1.
(1.19)

χ→A = 1− χ←A .
We define

χ←B (τ, t) =

{
1 τ < T − 1

0 τ > T + 1.
(1.20)

χ→B = 1− χ←B .
We define

χ←X (τ, t) =

{
1 τ < −1

0 τ > 1.
(1.21)

χ→X = 1− χ←X .
We extend these functions to ΣT and Σi (i = 1, 2) so that it is locally constant
outside [−5T, 5T ]× [0, 1]. We denote them by the same symbol.

We next introduce weighted Sobolev norm and its local version for sections on
ΣT or Σi as follows.

We define ei,δ : Σi → [1,∞) of C∞ class as follows.

e1,δ(τ, t)


= eδ|τ+5T | if τ > 1− 5T

= 1 on K1

∈ [1, 10] if τ < 1− 5T

(1.22)

e2,δ(τ, t)


= eδ|τ−5T | if τ < 5T − 1

= 1 on K2

∈ [1, 10] if τ > 5T − 1

(1.23)

We also define eT,δ : ΣT → [1,∞) as follows:

eT,δ(τ, t)



= eδ|τ−5T | if 1 < τ < 5T − 1

= eδ|τ+5T | if −1 > τ > 1− 5T

= 1 on K1 ∪K2

∈ [1, 10] if |τ − 5T | < 1 or |τ + 5T | < 1

∈ [e5Tδ/10, e5Tδ] if |τ | < 1.

(1.24)

We remark that the weighted Sobolev norm we use for L2
m,δ(Σi;u

∗
i TX ⊗ Λ01) is

‖s‖2L2
m,δ

=

m∑
k=0

∫
Σi

ei,δ|∇ks|2volΣi . (1.25)

For (s, v) ∈ L2
m+1,δ((Σi, ∂Σi);u

∗
i TX, u

∗
i TL) we define

‖(s, v)‖2L2
m+1,δ

=

m+1∑
k=0

∫
Ki

|∇ks|2volΣi

+

m+1∑
k=0

∫
Σi\Ki

ei,δ|∇k(s− Pal(v))|2volΣi + ‖v‖2.

(1.26)
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We next define weighted Sobolev norm for the sections on ΣT . Let

s ∈ L2
m+1((ΣT , ∂ΣT );u∗TX, u∗TL).

Since we take m large s is continuous. So s(0, 1/2) ∈ Tu(0,1/2)X ⊗ Λ01 is well
defined. There is a canonical trivialization of TX in a neighborhood of p0 that we
fixed right after (1.4). We use it to define Pal below. We put

‖s‖2L2
m+1,δ

=

m+1∑
k=0

∫
K1

|∇ks|2volΣ1 +

m+1∑
k=0

∫
K2

|∇ks|2volΣ2

+

m+1∑
k=0

∫
[−5T,5T ]×[0,1]

eT,δ|∇k(s− Pal(s(0, 1/2)))|2volΣi

+ ‖s(0, 1/2)‖2.

(1.27)

For
s ∈ L2

m((ΣT , ∂ΣT );u∗TX ⊗ Λ01)

we define

‖s‖2L2
m,δ

=

m∑
k=0

∫
ΣT

eT,δ|∇ks|2volΣ1 . (1.28)

These norms were used in [FOOO, Section 7.1.3].
For a subset W of Σi or ΣT we define ‖s‖L2

m,δ(W⊂Σi), ‖s‖L2
m,δ(W⊂ΣT ) by restrict-

ing the domain of the integration (1.28) or (1.27) to W .
Let (sj , vj) ∈ L2

m+1,δ((Σi, ∂Σi);u
∗
i TX, u

∗
i TL) for j = 1, 2. We define the inner

product among them by:

〈〈(s1, v1), (s2, v2)〉〉L2
δ

=

∫
Σi\Ki

〈〈(s1 − Palv1, s2 − Palv2〉〉

+

∫
Ki

〈〈s1, s2〉〉+ 〈〈v1, v2〉〉.
(1.29)

We also use an exponential map. (The same map was used in [FOOO, pages 410-
411].) We take a diffeomorphism

E = (E1,E2) : {(x, v) ∈ TX | |v| < ε} → X ×X (1.30)

to its image such that

E1(x, v) = x,
dE2(x, tv)

dt

∣∣∣∣
t=0

= v

and
E(x, v) ∈ L× L, for x ∈ L, v ∈ TxL.

Furthermore we may take it so that

E(x, v) = (x, x+ v) (1.31)

on a neighborhood of p0.
To find such E, we take linear connection ∇ (that may not be a Levi-Civita

conneciton of a Riemannian metric) of TX such that TL is parallel with respect to
∇. We then use geodesic with respect to ∇ to define an exponential map. We then
define E such that t 7→ E2(x, tv) is a geodesic with initial direction v.

Note we may take ∇ so that in a neighborhood of p0 it coincides with the
standard trivial connection with respect the coordinate we fixed. (1.31) follows.
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1.3. Proof of Theorem 1.10 : 2 - Gluing by alternating method. Let us
start with uρ = (uρ11 , u

ρ2
2 ) ∈ME1((Σ1, ~z1);β1)ε2 ×LME2((Σ2, ~z2);β2)ε2 . Here ρi ∈

Vi and corresponding map (Σi, ∂Σi) → (X,L) is denoted by uρii . Let ρ = (ρ1, ρ2).
We put

pρ = lim
τ→∞

uρ11 (τ, t) = lim
τ→−∞

uρ22 (τ, t).

Preglueing:

Definition 1.11. We define

uρT,(0) =


χ←B (uρ11 − pρ) + χ→A (uρ22 − pρ) + pρ on [−5T, 5T ]× [0, 1]

uρ11 on K1

uρ22 on K2.

(1.32)

Note we use the coordinate of the neighborhood of p0 to define the sum in the
first line.

Step 0-3:

Lemma 1.12. If δ < δ1/10 then there exists eρi,T,(0) ∈ Ei such that

‖∂uρT,(0) − eρ1,T,(0) − eρ2,T,(0)‖L2
m,δ

< C1,me
−δT (1.33)

Moreover

‖eρi,T,(0)‖L2
m(Ki) < ε4,m. (1.34)

Here ε4,m is a positive number which we may choose arbitraly small by taking Vi to

be a sufficiently small neighborhood of zero in Ṽi.
Moreover eρi,T,(0) is independent of T .

Proof. We put

ei,T,(0) = ∂uρi ∈ Ei.

Then by definition the support of ∂uρT,(0)− eρ1,T,(0)− eρ2,T,(0) is on [−5T, 5T ]× [0, 1].

Moreover it is estimated as (1.33). �

Step 0-4:

Definition 1.13. We put

Errρ1,T,(0) = χ←X (∂uρT,(0) − eρ1,T,(0)),

Errρ2,T,(0) = χ→X (∂uρT,(0) − eρ2,T,(0)).

We regard them as elements of the weighted Sobolev spaces L2
m,δ((Σ1, ∂Σ1); (uρ1)∗TX⊗

Λ01) and L2
m,δ((Σ2, ∂Σ2); (uρ2)∗TX ⊗Λ01) respectively. (We extend them by 0 out-

side compact set.)
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Step 1-1: We first cut uρT,(0) and extend to obtain maps ûρi,T,(0) : (Σi, ∂Σi) →
(X,L) (i = 1, 2) as follows. (This map is used to set the linearized operator (1.36).)

ûρ1,T,(0)(z)

=


χ←B (τ − T, t)uρT,(0)(τ, t) + χ→B (τ − T, t)pρ if z = (τ, t) ∈ [−5T, 5T ]× [0, 1]

uρT,(0)(z) if z ∈ K1

pρ if z ∈ [5T,∞)× [0, 1].

ûρ2,T,(0)(z)

=


χ→A (τ + T, t)uρT,(0)(τ, t) + χ←A (τ + T, t)pρ if z = (τ, t) ∈ [−5T, 5T ]× [0, 1]

uρT,(0)(z) if z ∈ K2

pρ if z ∈ (−∞,−5T ]× [0, 1].

(1.35)
Let

Dûρ
i,T,(0)

∂ : L2
m+1,δ((Σi, ∂Σi);(û

ρ
i,T,(0))

∗TX, (ûρi,T,(0))
∗TL)

→ L2
m,δ(Σi; (ûρi,T,(0))

∗TX ⊗ Λ01)
(1.36)

be the linearization of Cauchy-Riemann equation.

Lemma 1.14. We put Ei = Ei(û
ρ
i,T,(0)). We have

Im(Dûρ
i,T,(0)

∂) + Ei = L2
m,δ(Σi; (ûρi,T,(0))

∗TX ⊗ Λ01). (1.37)

Moreover

Dev1,∞ −Dev2,∞ : (Dûρ
1,T,(0)

∂)−1(E1)⊕ (Dûρ
2,T,(0)

∂)−1(E2)→ TpρL (1.38)

is surjective.

Proof. Since ûρi,T,(0) is close to ui in exponential order this is a consequence of

Assumption 1.3. �

Note Ei(u
′
i) actually depends on u′i. So to obtain a linearized equation of (1.15)

we need to take into account of that effect. Let ΠEi(u′i)
be the projection to Ei(u

′
i)

with respect to the L2 norm. Namely we put

ΠEi(u′i)
(A) =

dimEi∑
a=1

〈〈A, ei,a(u′i)〉〉L2(K1)ei,a(u′i), (1.39)

where ei,a, a = 1, . . . ,dimEi(u
′
i) is an orthonormal basis of Ei(u

′
i) which are sup-

ported in Ki.
We put

(Du′i
Ei)(A, v) =

d

ds
(ΠEi(E(u′i,sv))(A))|s=0 (1.40)

Here v ∈ Γ((Σi, ∂Σi), (u
′
i)
∗TX, (u′i)

∗TL). (Then E(u′i, sv) is a map (Σi, ∂Σi) →
(X,L) defined in (1.30).)

Remark 1.15. We use an isomorphism

Γ(Σi; E(u′i, sv)∗TX ⊗ Λ01) ∼= Γ(Σi; (u′i)
∗TX ⊗ Λ01) (1.41)
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to define the right hand side of (1.40). The map (1.41) is defined as follows. Let
z ∈ Σi. We have a path r 7→ E(u′i(z), rsv(z)) joining u′i(z) to E(u′i, sv)(z). We use
a connection ∇ such that TL is parallel to define a parallel transport along this
path. Its complex linear part defines an isomorphism (1.41).

We remark the same isomorphism (1.41) is used also to define Du′i
∂. Namely

(Du′i
∂)(v) =

d

ds
(∂E(u′i, sv))|s=0

where the right hand side is defined by using (1.41).

We put

Π⊥Ei(u′i)
(A) = A−ΠEi(u′i)

(A).

The equation (1.17) is equivalent to the following.

Π⊥Ei(u′i)
∂u′i = 0 (1.42)

We calculate the linearization

∂

∂s
Π⊥Ei(E(u′i,sV ))∂E(u′i, sV ))

∣∣∣∣
s=0

,

to obtain the linearized equation:

Du′i
∂(V )− (Du′i

Ei)(∂u
′
i, V ) ≡ 0 mod Ei(u

′
i). (1.43)

We remark that

∂ûρi,T,(0) − eρi,T,(0)

is exponentially small. So we use the operator

V 7→ Dûρ
i,T,(0)

∂(V )− (Dûρ
i,T,(0)

Ei)(e
ρ
i,T,(0), V ), (1.44)

as an approximation of the linearlization of (1.42).

Lemma 1.16. We put Ei = Ei(û
ρ
i,T,(0)). We have

Im(Dûρ
i,T,(0)

∂−(Dûρ
i,T,(0)

Ei)(e
ρ
i,T,(0), ·))+Ei = L2

m,δ(Σi; (ûρi,T,(0))
∗TX⊗Λ01). (1.45)

Moreover

Dev1,∞−Dev2,∞ : (Dûρ
1,T,(0)

∂ − (Dûρ
1,T,(0)

E1)(eρ1,T,(0), ·))
−1(E1)

⊕ (Dûρ
2,T,(0)

∂ − (Dûρ
2,T,(0)

E2)(eρ2,T,(0), ·))
−1(E2)→ TpρL

(1.46)

is surjective.

Proof. (1.34) implies that (Dûρ
1,T,(0)

E1)(eρ1,T,(0), ·) is small in operator norm. The

lemma follows from Lemma 1.14. �

Remark 1.17. Note (1.34) is proved by taking Vi in a small neighborhood of

0 (in Ṽi) with respect to the Cm norm. (Note Vi ⊂ MEi((Σi, ~zi);βi)ε2 and Vi
consists of smooth maps.) However we can take Vi that is independent of m and
the conclusion of Lemma 1.16 holds for m. In fact the elliptic regularity implies
that if the conclusion of Lemma 1.16 holds for some m then it holds for all m′ > m.
(The inequality (1.34) holds for that particular m only. However this inequality is
used to show Lemma 1.16 only.)
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We consider

Ker(Dev1,∞ −Dev2,∞)

∩
(

(Dûρ
1,T,(0)

∂ − (Dûρ
1,T,(0)

E1)(eρ1,T,(0), ·)))
−1(E1)

⊕ (Dûρ
2,T,(0)

∂ − (Dûρ
2,T,(0)

E2)(eρ2,T,(0), ·))
−1(E2)

)
.

(1.47)

This is a finite dimensional subspace of

Ker(Dev1,∞−Dev2,∞)∩
2⊕
i=1

L2
m+1,δ((Σi, ∂Σi); (ûρi,T,(0))

∗TX, (ûρi,T,(0))
∗TL) (1.48)

consisting of smooth sections.

Definition 1.18. We denote by H(E1, E2) the intersection of the L2 orthonormal
complement of (1.47) with (1.48). Here L2 inner product is defined by (1.29).

Definition 1.19. We define (V ρT,1,(1), V
ρ
T,2,(1),∆p

ρ
T,(1)) as follows.

(Dûρ
i,T,(0)

∂)(V ρT,i,(1))−(Dûρ
i,T,(0)

Ei)(e
ρ
i,T,(0), V

ρ
T,i,(1))

+ Errρi,T,(0) ∈ Ei(û
ρ
i,T,(0)).

(1.49)

Dev∞(V ρT,1,(1)) = Dev−∞(V ρT,2,(1)) = ∆pρT,(1). (1.50)

Moreover

((V ρT,1,(1),∆p
ρ
T,(1)), (V

ρ
T,2,(1),∆p

ρ
T,(1))) ∈ H(E1, E2).

Lemma 1.16 implies that such (V ρT,1,(1), V
ρ
T,2,(1),∆p

ρ
T,(1)) exists and is unique.

Lemma 1.20. If δ < δ1/10, then

‖(V ρT,i,(1),∆p
ρ
T,(1))‖L2

m+1,δ(Σi)
≤ C2,me

−δT , |∆pρT,(1)| ≤ C2,me
−δT . (1.51)

This is immediate from construction and the uniform boundedness of the right
inverse of Dûρ

i,T,(0)
∂ − (Dûρ

i,T,(0)
Ei)(e

ρ
i,T,(0), ·).

Step 1-2: We use (V ρT,1,(1), V
ρ
T,2,(1),∆p

ρ
T,(1)) to find an approximate solution uρT,(1)

of the next level.

Definition 1.21. We define uρT,(1)(z) as follows. (Here E is as in (1.30).)

(1) If z ∈ K1 we put

uρT,(1)(z) = E(ûρ1,T,(0)(z), V
ρ
T,1,(1)(z)) (1.52)

(2) If z ∈ K2 we put

uρT,(1)(z) = E(ûρ2,T,(0)(z), V
ρ
T,2,(1)(z)) (1.53)

(3) If z = (τ, t) ∈ [−5T, 5T ]× [0, 1] we put

uρT,(1)(τ, t) =χ←B (τ, t)(V ρT,1,(1)(τ, t)−∆pρT,(1))

+ χ→A (τ, t)(V ρT,2,(1)(τ, t)−∆pρT,(1)) + uρT,(0)(τ, t) + ∆pρT,(1).
(1.54)

We recall that onK1 we have ûρ1,T,(0)(z) = uρT,(0)(z) and onK2 we have ûρ2,T,(0)(z) =

uρT,(0)(z).

Step 1-3: Let 0 < µ < 1. We fix it throughout the proof.
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Lemma 1.22. There exists δ2 such that for any δ < δ2, T > T (δ,m, ε5,m) there
exists eρi,T,(1) ∈ Ei with the following properties.

‖∂uρT,(1) − (eρ1,T,(0) + eρ1,T,(1))− (eρ2,T,(0) + eρ2,T,(1))‖L2
m,δ

< C1,mµε5,me
−δT

(Here C1,m is the constant given in Lemma 1.12.) Moreover

‖eρi,T,(1)‖L2
m(Ki) < C3,me

−δT . (1.55)

Proof. The existence of eρi,T,(1) satisfying

‖∂uρT,(1)−(eρ1,T,(0)+eρ1,T,(1))−(eρ2,T,(0)+eρ2,T,(1))‖L2
m,δ(K1∪K2⊂ΣT ) < C1,mµε5,me

−δT /10

is a consequene of the fact that (1.43) is the linearized equation of (1.42) and the
estimate (1.51). More explicitly we can prove it by a routine calculation as follows.
We first estimate on K1. We have:

∂(E(ûρ1,T,(0), V
ρ
T,1,(1)))

= ∂(E(ûρ1,T,(0), 0)) +

∫ 1

0

∂

∂s
∂(E(ûρ1,T,(0), sV

ρ
T,1,(1)))ds

= ∂(E(ûρ1,T,(0), 0)) + (Dûρ
1,T,(0)

∂)(V ρT,1,(1))

+

∫ 1

0

ds

∫ s

0

∂2

∂r2
∂(E(ûρ1,T,(0), rV

ρ
T,1,(1)))dr.

(1.56)

We remark ∥∥∥∥∫ 1

0

ds

∫ s

0

∂2

∂r2
∂(E(ûρ1,T,(0), rV

ρ
T,1,(1)))dr

∥∥∥∥
L2
m(K1)

≤ C3,m‖V ρT,1,(1)‖
2
L2
m+1,δ

≤ C4,me
−2δT .

(1.57)

We have

Π⊥E1(E(ûρ
1,T,(0)

,V ρ
T,1,(1)

))

= Π⊥E1(ûρ
1,T,(0)

) +

∫ 1

0

∂

∂s
Π⊥Ei(E(ûρ

1,T,(0)
,sV ρ

T,1,(1)
))ds

= Π⊥E1(ûρ
1,T,(0)

) − (Dûρ
1,T,(0)

E1)(·, V ρT,1,(1))

+

∫ 1

0

ds

∫ s

0

∂2

∂r2
Π⊥E1(E(ûρ

1,T,(0)
,rV ρ

T,1,(1)
))dr

(1.58)

We can estimate the third term of the right hand side of (1.58) in the same way as
(1.57).

On the other hand, (1.56) implies that∥∥∥∂(E(ûρ1,T,(0), V
ρ
T,1,(1)))− eρ1,T,(0)

∥∥∥
L2
m(K1)

≤ C6,me
−δT . (1.59)
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Therefore, using (1.58) and (1.51), we have∥∥∥∥Π⊥E1(E(ûρ
1,T,(0)

,V ρ
T,1,(1)

))∂(E(ûρ1,T,(0), V
ρ
T,1,(1)))

−Π⊥E1(ûρ
1,T,(0)

,0)∂(E(ûρ1,T,(0), V
ρ
T,1,(1)))

−Π⊥E1(E(ûρ
1,T,(0)

,V ρ
T,1,(1)

))(e
ρ
1,T,(0)) + Π⊥E1(ûρ

1,T,(0)
,0)(e

ρ
1,T,(0))

∥∥∥∥
L2
m(K1)

≤ C7,me
−2δT .

(1.60)
Therefore using (1.58) we have:

‖Π⊥E1(E(ûρ
1,T,(0)

,V ρ
T,1,(1)

))∂(E(ûρ1,T,(0), V
ρ
T,1,(1)))

−Π⊥E1(ûρ
1,T,(0)

,0)∂(E(ûρ1,T,(0), V
ρ
T,1,(1)))

+ (Dûρ
1,T,(0)

E1)(eρ1,T,(0), V
ρ
T,1,(1))‖L2

m(K1) ≤ C8,me
−2δT

(1.61)

By (1.49) and Definition 1.13, we have:

∂(E(ûρ1,T,(0), 0)) + (Dûρ
1,T,(0)

∂)(V ρT,1,(1))

− (Dûρ
1,T,(0)

E1)(eρ1,T,(0), V
ρ
T,1,(1)) ∈ E1(ûρ1,T,(0))

(1.62)

on K1.
(1.61) and (1.62) imply

‖Π⊥E1(E(ûρ
1,T,(0)

,V ρ
T,1,(1)

))∂(E(ûρ1,T,(0), V
ρ
T,1,(1)))

−Π⊥E1(ûρ
1,T,(0)

,0)∂(E(ûρ1,T,(0), V
ρ
T,1,(1)))

+ Π⊥E1(ûρ
1,T,(0)

,0)∂(E(ûρ1,T,(0), 0))

+ Π⊥E1(ûρ
1,T,(0)

,0)(Dûρ
1,T,(0)

∂)(V ρT,1,(1))‖L2
m(K1) ≤ C9,me

−2δT

(1.63)

Combined with (1.56) and (1.57), we have

‖Π⊥E1(E(ûρ
1,T,(0)

,V ρ
T,1,(1)

))(∂(E(ûρ1,T,(0), V
ρ
T,1,(1))))‖L2

m(K1)

≤ C10,me
−2δT ≤ C1,me

−δT ε5,mµ/10,
(1.64)

for T > Tm if we choose Tm so that C10,me
−δTm < C1,mε5,mµ/10.

It follows from (1.59) and (1.64) that

‖ΠE1(E(ûρ
1,T,(0)

,V ρ
T,1,(1)

))(∂(E(ûρ1,T,(0), V
ρ
T,1,(1)))− eρ1,T,(0)‖L2

m(K1) ≤ C11,me
−δT .

(1.55) then follows, by selecting

eρ1,T,(1) = ΠE1(E(ûρ
1,T,(0)

,V ρ
T,1,(1)

))(∂(E(ûρ1,T,(0), V
ρ
T,1,(1))− eρ1,T,(0)).

The estimate on K2 is the same.
Let us estimate ∂uρT,(1) on [−T + 1, T − 1]× [0, 1]. The inequality

‖∂uρT,(1)‖L2
m,δ([−T+1,T−1]×[0,1]⊂ΣT ) < C1,mµε5,me

−δT /10

is also a consequece of the fact that (1.43) is the linearized equation of (1.42) and
the estimate (1.51). (Note the bump functions χ←B and χ→A are ≡ 1 there.) On AT
we have

∂uρT,(1) = ∂(χ→A (V ρT,2,(1) −∆pρT,(1)) + V ρT,1,(1) + uρT,(0)) (1.65)
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Note

‖∂(χ→A (V ρT,2,(1) −∆pρT,(1))‖L2
m(AT ) ≤ C3,me

−6Tδ‖V ρT,2,(1) −∆pρT,(1)‖L2
m+1,δ(AT⊂Σ2)

≤ C12,me
−7Tδ.

The first inequality follows from the fact the weight function e2,δ is around e6Tδ

on AT . The second inequality follows from (1.51). On the other hand the weight
function eT,δ is around e4Tδ at AT .4 Therefore

‖∂(χ→A (V ρT,2,(1) −∆pρT,(1)))‖L2
m,δ(AT⊂ΣT ) ≤ C13,me

−3Tδ. (1.66)

Note
Errρ2,T,(0) = 0

on AT . Using this in the same way as we did on K1 we can show

‖∂(V ρT,1,(1) + uρT,(0))‖L2
m,δ(AT⊂ΣT ) ≤ C1,me

−δT ε5,mµ/20 (1.67)

for T > Tm. Therefore by taking T large we have

‖∂uρT,(1)‖L2
m,δ(AT⊂ΣT ) < C1,mµε5,me

−δT /10. (1.68)

(Note the almost complex structure may not be integrable. So the almost complex
structure may not be constant with respect to the flat metric we are taking in the
neighborhood of p0. However we can still deduce (1.68) from (1.67) and (1.66).)

The estimate on BT and on ([−5T,−T −1]∪ [T + 1, 5T ])× [0, 1] are similar. The
proof of Lemma 1.22 is complete. �

Step 1-4:

Definition 1.23. We put

Errρ1,T,(1) = χ←X (∂uρT,(1) − (eρ1,T,(0) + eρ1,T,(1))),

Errρ2,T,(1) = χ→X (∂uρT,(1) − (eρ2,T,(0) + eρ2,T,(1))).

We regard them as elements of the weighted Sobolev spaces L2
m,δ(Σ1; (uρ1)∗TX ⊗

Λ01) and L2
m,δ(Σ2; (uρ2)∗TX ⊗ Λ01) respectively. (We extend them by 0 outside

compact set.)

We put pρ(1) = pρ + ∆pρT,(1).

We now come back to the Step 2-1 and continue. In other words, we will prove
the following by induction on κ.∥∥∥(V ρT,i,(κ),∆p

ρ
T,(κ))

∥∥∥
L2
m+1,δ(Σi)

< C2,mµ
κ−1e−δT , (1.69)∥∥∥∆pρT,(κ)

∥∥∥ < C2,mµ
κ−1e−δT , (1.70)∥∥∥uρT,(κ) − u

ρ
T,(0)

∥∥∥
L2
m+1,δ(ΣT )

< C14,me
−δT , (1.71)∥∥∥Errρi,T,(κ)

∥∥∥
L2
m,δ(Σi)

< C1,mε5,mµ
κe−δT , (1.72)∥∥∥eρi,T,(κ)

∥∥∥
L2
m(Kobst

i )
< C15,mµ

κ−1e−δT , for κ ≥ 1. (1.73)

4This drop of the weight is the main part of the idea. It was used in [FOOO, page 414]. See
[FOOO, Figure 7.1.6].
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Remark 1.24. The left hand side of (1.71) is defined as follows. We define uρT,(κ)

by uρT,(κ) = E(uρT,(κ−1), u
ρ
T,(κ)). Then the left hand side of (1.71) is

‖uρT,(κ)‖L2
m+1,δ((ΣT ,∂ΣT );(uρ

T,(κ−1)
)∗TX,(uρ

T,(κ−1)
)∗TL).

More precisely the claim we will prove is: for any ε5,m we can choose Tm so that
(1.69) and (1.70) imply (1.72) and (1.73) for given T > Tm, and we can choose ε5,m
so that (1.72) and (1.73) for κ implies (1.69) and (1.70) for κ+ 1. (It is easy to see
that (1.69) and (1.70) imply (1.71).)

Below we describe Steps κ-1,. . . ,κ-4.

Step κ-1:
We first cut uρT,(κ−1) and extend to obtain maps ûρi,T,(κ−1) : (Σi, ∂Σi)→ (X,L)

(i = 1, 2) as follows.

ûρ1,T,(κ−1)(z)

=


χ←B (τ − T, t)uρT,(κ−1)(τ, t) + χ→B (τ − T, t)pρ(κ−1) if z = (τ, t) ∈ [−5T, 5T ]× [0, 1]

uρT,(κ−1)(z) if z ∈ K1

pρT,(κ−1) if z ∈ [5T,∞)× [0, 1].

ûρ2,T,(κ−1)(z)

=


χ→A (τ + T, t)uρT,(κ−1)(τ, t) + χ←A (τ + T, t)pρ(κ−1) if z = (τ, t) ∈ [−5T, 5T ]× [0, 1]

uρT,(κ−1)(z) if z ∈ K2

pρT,(κ−1) if z ∈ (−∞,−5T ]× [0, 1].

(1.74)
Let

Dûρ
i,T,(κ−1)

∂ : L2
m+1,δ((Σi, ∂Σi);(û

ρ
i,T,(κ−1))

∗TX, (ûρi,T,(κ−1))
∗TL)

→ L2
m,δ(Σi; (ûρi,T,(κ−1))

∗TX ⊗ Λ01).
(1.75)

Lemma 1.25. We have

Im(Dûρ
i,T,(κ−1)

∂) + Ei = L2
m,δ(Σi; (ûρi,T,(κ−1))

∗TX ⊗ Λ01). (1.76)

Moreover

Dev1,∞ −Dev2,∞ : (Dûρ
1,T,(0)

∂)−1(E1)⊕ (Dûρ
2,T,(0)

∂)−1(E2)→ Tpρ
T,(κ−1)

L (1.77)

is surjective.

Proof. Since ûρi,T,(κ−1) is close to ui in exponential order this is a consequence of

Assumption 1.3. �

We denote

(se)ρi,T,(κ−1) =

κ−1∑
a=0

eρi,T,(a). (1.78)

Lemma 1.26. We have

Im(Dûρ
i,T,(κ−1)

∂ − (Dûρ
i,T,(κ−1)

Ei)((se)
ρ
i,T,(κ−1), ·)) + Ei

= L2
m,δ(Σi; (ûρi,T,(κ−1))

∗TX ⊗ Λ01).
(1.79)
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Moreover
Dev1,∞ −Dev2,∞

:(Dûρ
1,T,(κ−1)

∂ − (Dûρ
1,T,(κ−1)

E1)((se)ρ1,T,(κ−1), ·)))
−1(E1)

⊕ (Dûρ
2,T,(κ−1)

∂ − (Dûρ
2,T,(κ−1)

E2)((se)ρ2,T,(κ−1), ·))
−1(E2)→ Tpρ

T,(κ−1)
L

(1.80)

is surjective.

Proof. ∥∥∥∥∥
κ−1∑
a=0

eρi,T,(a)

∥∥∥∥∥
L2
m(Ki)

< ε4,m + C15,m
e−δT

1− µ
. (1.81)

imply that (Dûρ
1,T,(0)

E1)(eρ1,T,(0), ·) is small in operator norm. The lemma follows

from Lemma 1.25. �

Note Remark 1.17 still applies to Lemma 1.26.

Definition 1.27. We define (V ρT,1,(κ), V
ρ
T,2,(κ),∆p

ρ
T,(κ)) as follows.

Dûρ
i,T,(κ−1)

(V ρT,i,(κ))− (Dûρ
i,T,(κ−1)

Ei)((se)
ρ
i,T,(κ−1), V

ρ
T,i,(κ))

+ Errρi,T,(κ−1) ∈ Ei(û
ρ
i,T,(κ−1)).

(1.82)

Dev1,∞(V ρT,1,(κ)) = Dev2,∞(V ρT,2,(κ)) = ∆pρT,(κ). (1.83)

We also require

((V ρT,1,(κ),∆p
ρ
T,(κ)), (V

ρ
T,2,(κ),∆p

ρ
T,(κ))) ∈ H(E1, E2). (1.84)

Lemma 1.26 implies that such (V ρT,1,(κ), V
ρ
T,2,(κ),∆p

ρ
T,(κ)) exists and is unique.

Remark 1.28. Note in (1.84) we use the same space H(E1, E2) as in Definition
1.19. We may use the orthonormal complement of

Ker(Dev1,∞ −Dev2,∞) ∩
2⊕
i=1

(Dûρ
i,T,(κ−1)

∂ − (Dûρ
i,T,(κ−1)

Ei)((se)
ρ
i,T,(κ−1), ·))

−1(Ei)

instead. The reason why we use the same space as one in Definition 1.19 here,
is that then a calculation we need to do for the exponential decay estimate of T
derivative becomes a bit shorter. Since ûρi,T,(κ) is sufficiently close to ûρi,T,(0), the

unique existence of (V ρT,1,(κ), V
ρ
T,2,(κ),∆p

ρ
T,(κ)) satisfying (1.82) - (1.84) holds by

(1.81).

Lemma 1.29. If δ < δ1/10, and T > T (δ,m) then

‖(VT,i,(κ),∆p
ρ
T,(κ))‖L2

m+1,δ(Σi)
≤ C2,mµ

κ−1e−δT ,

|∆pρT,(κ)| ≤ C2,mµ
κ−1e−δT .

(1.85)

Proof. This follows from uniform boundednes of the inverse of (1.79) together with
κ− 1 version of Lemma 1.22. (That is Lemma 1.31.) �

This lemma implies (1.69) and (1.70).

Step κ-2: We use (V ρT,1,(κ), V
ρ
T,2,(κ),∆p

ρ
T,(κ)) to find an approximate solution uρT,(κ)

of the next level.

Definition 1.30. We define uρT,(κ)(z) as follows.



18 K. FUKAYA, Y.-G. OH, H. OHTA, K. ONO

(1) If z ∈ K1 we put

uρT,(κ)(z) = E(ûρ1,T,(κ−1)(z), V
ρ
T,1,(κ)(z)). (1.86)

(2) If z ∈ K2 we put

uρT,(κ)(z) = E(ûρ2,T,(κ−1)(z), V
ρ
T,2,(κ)(z)). (1.87)

(3) If z = (τ, t) ∈ [−5T, 5T ]× [0, 1] we put

uρT,(κ)(τ, t) =χ←B (τ, t)(V ρT,1,(κ)(τ, t)−∆pρT,(κ))

+ χ→A (τ, t)(V ρT,2,(κ)(τ, t)−∆pρT,(κ))

+ uρT,(κ−1)(τ, t) + ∆pρT,(κ).

(1.88)

We remark that on K1 we have ûρ1,T,(κ−1)(z) = uρT,(κ−1)(z) and on K2 we have

ûρ2,T,(κ−1)(z) = uρT,(κ−1)(z).

(1.71) is immediate from the definition and (1.69) and (1.70), since 0 < µ < 1.

Step κ-3:

Lemma 1.31. For each ε5 > 0 we have the following. If δ < δ2 and T > T (δ,m, ε5)
then there exists eρi,T,(κ) ∈ Ei such that∥∥∥∥∥∂uρT,(κ) −

κ∑
a=0

eρ1,T,(a) −
κ∑
a=0

eρ2,T,(a)

∥∥∥∥∥
L2
m,δ

< C1,mµ
κε5e

−δT .

(Here C1,m is as in Lemma 1.12.) Moreover

‖eρi,T,(κ)‖L2
m(Ki) < C15,mµ

κ−1e−δT . (1.89)

Proof. The proof is similar to the proof of Lemma 1.22 and proceed as follows.
We have:

∂(E(ûρ1,T,(κ−1), V
ρ
T,1,(κ)))

= ∂(E(ûρ1,T,(κ−1), 0)) +

∫ 1

0

∂

∂s
∂(E(ûρ1,T,(κ−1), sV

ρ
T,1,(κ)))ds

= ∂(E(ûρ1,T,(κ−1), 0)) + (Dûρ
1,T,(κ−1)

∂)(V ρT,1,(κ))

+

∫ 1

0

ds

∫ s

0

∂2

∂r2
∂(E(ûρ1,T,(κ−1), rV

ρ
T,1,(κ)))dr.

(1.90)

We remark ∥∥∥∥∫ 1

0

ds

∫ s

0

∂2

∂r2
∂(E(ûρ1,T,(κ−1), rV

ρ
T,1,(κ)))dr

∥∥∥∥
L2
m(K1)

≤ C4,m‖V ρT,1,(κ)‖
2
L2
m+1,δ

≤ C5,me
−2δTµ2(κ−1).

(1.91)



THIRD ANSWER 19

We have

Π⊥E1(E(ûρ
1,T,(κ−1)

,V ρ
T,1,(κ)

))

= Π⊥E1(ûρ
1,T,(κ−1)

) +

∫ 1

0

∂

∂s
Π⊥Ei(E(ûρ

1,T,(κ−1)
,sV ρ

T,1,(κ)
))ds

= Π⊥E1(ûρ
1,T,(κ−1)

) − (Dûρ
1,T,(κ−1)

E1)(·, V ρT,1,(κ))

+

∫ 1

0

ds

∫ s

0

∂2

∂r2
Π⊥E1(E(ûρ

1,T,(κ−1)
,rV ρ

T,1,(κ)
))dr.

(1.92)

We can estimate the third term of the right hand side of (1.92) in the same way as
(1.91).

On the other hand, (1.90) implies that∥∥∥∂(E(ûρ1,T,(κ−1), V
ρ
T,1,(κ)))− seρ1,T,(κ−1)

∥∥∥
L2
m(K1)

≤ C6,me
−δTµκ−1. (1.93)

Therefore

‖Π⊥E1(E(ûρ
1,T,(κ−1)

,V ρ
T,1,(κ)

))∂(E(ûρ1,T,(κ−1), V
ρ
T,1,(κ)))

−Π⊥E1(ûρ
1,T,(κ−1)

,0)∂(E(ûρ1,T,(κ−1), V
ρ
T,1,(κ)))

+ (Dûρ
1,T,(κ−1)

E1)(seρ1,T,(κ−1), V
ρ
T,1,(κ))‖L2

m(K1) ≤ C7,me
−2δTµκ−1.

(1.94)

By (1.82) we have:

∂(E(ûρ1,T,(κ−1), 0)) + (Dûρ
1,T,(κ−1)

∂)(V ρT,1,(κ))

− (Dûρ
1,T,(κ−1)

E1)(seρ1,T,(κ−1), V
ρ
T,1,(κ)) ∈ E1(ûρ1,T,(κ−1))

(1.95)

on K1.
Summing up we have

‖Π⊥E1(E(ûρ
1,T,(κ−1)

,V ρ
T,1,(κ)

))(∂(E(ûρ1,T,(κ−1), V
ρ
T,1,(κ))))‖L2

m(K1)

≤ C10,me
−2δTµκ−1 ≤ C1,me

−δT ε5,mµ
κ/10

(1.96)

for T > Tm.
It follows from (1.93) that

‖ΠE1(E(ûρ
1,T,(κ−1)

,V ρ
T,1,(κ)

))(∂(E(ûρ1,T,(κ−1), V
ρ
T,1,(κ)))−se

ρ
1,T,(κ−1)‖L2

m(K1) ≤ C8,me
−δTµκ−1.

(1.89) then follows by putting

eρ1,T,(κ) = ΠE1(E(ûρ
1,T,(κ−1)

,V ρ
T,1,(κ)

))(∂(E(ûρ1,T,(κ−1), V
ρ
T,1,(κ)))− seρ1,T,(κ−1)

∈ E1(E(ûρ1,T,(κ−1), V
ρ
T,1,(κ)))

∼= E1.

Let us estimate ∂uρT,(κ) on [−T, T ]× [0, 1]. The inequality

‖∂uρT,(κ)‖L2
m,δ([−T,T ]×[0,1]⊂ΣT ) < C1,mµ

κε5,me
−δT /10

is also a consequene of the fact that (1.43) is the linearized equation of (1.42) and
the estimate (1.85). (Note the bump functions χ←B and χ→A are ≡ 1 there.) On AT
we have

∂uρT,(κ) = ∂(χ→A (V ρT,2,(κ) −∆pρT,(κ)) + V ρT,1,(κ) + uρT,(κ−1)). (1.97)
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Note

‖∂(χ→A (V ρT,2,(κ) −∆pρT,(κ)))‖L2
m(AT ) ≤ C3,me

−6Tδ‖V ρT,2,(κ) −∆pρT,(κ)‖L2
m+1,δ(AT⊂Σ2)

≤ C12,me
−7Tδµκ−1.

The first inequality follows from the fact the weight function e2,δ is around e6Tδ

on AT . The second inequality follows from (1.85). On the other hand the weight
function eT,δ is around e4Tδ at AT .5 Therefore

‖∂(χ→A (V ρT,2,(κ) −∆pρT,(κ)))‖L2
m,δ(AT⊂ΣT ) ≤ C13,me

−3Tδµκ−1. (1.98)

Note

Errρ2,T,(κ−1) = 0

on AT . Therefore in the same way as we did on K1 we can show

‖∂(V ρT,1,(κ) + uρT,(κ−1))‖L2
m,δ(AT⊂ΣT ) ≤ C1,me

−δT ε5,mµ
κ/20 (1.99)

for T > Tm. Therefore by taking T large we have

‖∂uρT,(κ)‖L2
m,δ(AT⊂ΣT ) < C1,mµ

κε5,me
−δT /10. (1.100)

The estimate on BT and on ([−5T,−T −1]∪ [T + 1, 5T ])× [0, 1] are similar. The
proof of Lemma 1.31 is complete. �

Step κ-4:

Definition 1.32. We put

Errρ1,T,(κ) = χ←X

(
∂uρT,(κ) −

κ∑
a=0

eρ1,T,(a)

)
,

Errρ2,T,(κ) = χ→X

(
∂uρT,(κ) −

κ∑
a=0

eρ2,T,(a)

)
.

We regard them as elements of the weighted Sobolev spaces L2
m,δ(Σ1; (ûρ1,T,(κ))

∗TX⊗
Λ01) and L2

m,δ(Σ2; (ûρ2,T,(κ))
∗TX⊗Λ01) respectively. (We extend them by 0 outside

compact set.)

We put pρ(κ) = pρ(κ−1) + ∆pρT,(κ).

Lemma 1.31 implies (1.72) and (1.73).

We have thus described all the induction steps. For each fixed m there exists
Tm such that if T > Tm then

lim
κ→∞

uρT,(κ)

coverges in L2
m+1,δ sense to the solution of (1.15). The limit is automatically of C∞

class by elliptic regurality. We have thus constructed the map in Theorem 1.10.
We will prove its surjectivity and injectivity in Subsection 1.5 below. Before doing
so we prove an exponential decay estimate of its T derivative.

5This drop of the weight is the main part of the idea. It was used in [FOOO, page 414]. See
[FOOO, Figure 7.1.6].
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1.4. Exponential decay of T derivatives. We first state the result of this sub-
section. We recall that for T sufficiently large and ρ = (ρ1, ρ2) ∈ V1 ×L V2 we have
defined uρT,(κ). We denote its limit by

uρT = lim
κ→∞

uρT,(κ) : (ΣT , ∂ΣT )→ (X,L). (1.101)

The main result of this subsection is an estimate of T and ρ derivative of this map.
We prepare some notations to state the result.

We change the coordinate of Σi and ΣT as follows. In the last subsection we put

Σ1 = K1 ∪ ([−5T,∞)× [0, 1])

and use (τ, t) for the coordinate of [−5T,∞) × [0, 1]. This identification depends
on T . So we rewrite it to

Σ1 = K1 ∪ ([0,∞)× [0, 1])

and the coordinate for [0,∞)× [0, 1] is (τ ′, t) where

τ ′ = τ + 5T. (1.102)

Similarly we rewrite

Σ2 = ((−∞, 5T ]× [0, 1]) ∪K2

to

Σ2 = ((−∞, 0]× [0, 1]) ∪K2

and use the coordinate (τ ′′, t) where

τ ′′ = τ − 5T. (1.103)

We may use either (τ ′, t) or (τ ′′, t) as the coordinate of ΣT \ (K1 ∪K2).
Let S be a positive number. We have Ki ⊂ ΣT . We put

K+S
1 = K1 ∪ ([0, S]× [0, 1]) ⊂ ΣT ,

K+S
2 = ([−S, 0]× [0, 1]) ∪K2 ⊂ ΣT .

(1.104)

Here the inclusion K1 ∪ ([0, S]× [0, 1]) ⊂ ΣT is by using the coordinate τ ′ and the
inclusion ([−S, 0]× [0, 1]) ∪K2 ⊂ ΣT is by using the coordinate τ ′′.

We may also regard K+S
i ⊂ Σi. Note that the spaces K+S

i are independent of
T , as far as 10T > S.

We restrict the map uρT to K+S
i . We thus obtain a map

Gluresi,S : [Tm,∞)× V1 ×L V2 → MapL2
m+1

((K+S
i ,K+S

i ∩ ∂Σi), (X,L))

by {
Glures1,S(T, ρ)(x) = uρT (x) x ∈ K1

Glures1,S(T, ρ)(τ ′, t) = uρT (τ ′, t) = uρT (τ + 5T, t)
(1.105)

{
Glures2,S(T, ρ)(x) = uρT (x) x ∈ K2

Glures2,S(T, ρ)(τ ′′, t) = uρT (τ ′′, t) = uρT (τ − 5T, t)
(1.106)

Here MapL2
m+1

((K+S
i ,K+S

i ∩∂Σi), (X,L)) is the space of maps of L2
m+1 class (m is

sufficiently large, say m > 10.) It has a structure of Hilbert manifold in an obvious
way. This Hilbert manifold is independent of T . So we can define T derivative of
a family of elements of MapL2

m+1
((K+S

i ,K+S
i ∩ ∂Σi), (X,L)) parametrized by T .
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Remark 1.33. The domain and the target of the map Gluresi,S depend on m.
However its image actually is in the set of smooth maps. Also none of the construc-
tions of uρT depends on m. (The proof of the convergence of (1.101) depends on m.
So the number Tm depends on m.) Therefore the map Gluresi,S is independent of
m on the intersection of the domains. Namely the map Gluresi,S constructed by
using L2

m1
norm coincides with the map Gluresi,S constructed by using L2

m2
norm

on [max{Tm1 , Tm2},∞)× V1 ×L V2.

Theorem 1.34. For each m and S there exist T (m), C16,m,S , δ > 0 such that the
following holds for T > T (m) and n+ ` ≤ m− 10 and ` > 0.∥∥∥∥∇nρ d`

dT `
Gluresi,S

∥∥∥∥
L2
m+1−`

< C16,m,Se
−δT . (1.107)

Here ∇nρ is the n-th derivative in ρ direction.

Remark 1.35. Theorem 1.34 is basically equivalent to [FOOO, Lemma A1.58].
The proof below is basically the same as the one in [FOOO, page 776]. We add
some more detail.

Proof. The construction of uρT,(κ) was by induction on κ. We divide the inductive

step of the construction of uρT,(κ+1) from uρT,(κ) into two.

(Part A) Start from (V ρT,1,(κ), V
ρ
T,2,(κ),∆p

ρ
T,(κ)) and end with Errρ1,T,(κ) and Errρ2,T,(κ).

This is step κ-2,κ-3,κ-4.
(Part B) Start from Errρ1,T,(κ) and Errρ2,T,(κ) and end with (V ρT,1,(κ+1), V

ρ
T,2,(κ+1),∆p

ρ
T,(κ+1)).

This is step (κ+ 1)-1.

We will prove the following inequality by induction on κ, under the assumption
T > T (m), ` > 0, n+ ` ≤ m− 10.∥∥∥∥∇nρ ∂`

∂T `
(V ρT,i,(κ),∆p

ρ
T,(κ))

∥∥∥∥
L2
m+1−`,δ(Σi)

< C17,mµ
κ−1e−δT , (1.108)∥∥∥∥∇nρ ∂`

∂T `
∆pρT,(κ)

∥∥∥∥ < C17,mµ
κ−1e−δT , (1.109)∥∥∥∥∇nρ ∂`

∂T `
uρT,(κ)

∥∥∥∥
L2
m+1−`,δ(K

+5T+1
i )

< C18,me
−δT , (1.110)∥∥∥∥∇nρ ∂`

∂T `
Errρi,T,(κ)

∥∥∥∥
L2
m−`,δ(Σi)

< C19,mε6,mµ
κe−δT , (1.111)∥∥∥∥∇nρ ∂`

∂T `
eρi,T,(κ)

∥∥∥∥
L2
m−`(K

obst
i )

< C19,mµ
κ−1e−δT . (1.112)

More precisely the claim we will prove is the following: For each ε6,m, we can choose
T (m) so that (1.108) and (1.109) imply (1.111) and (1.112) for T > T (m), and we
can choose ε6,m so that (1.111) and (1.112) for κ implies (1.108) and (1.109) for
κ+ 1. (1.110) follows from (1.108) and (1.109).

Remark 1.36. We use L2
m+1 norm on K+5T+1

i only in formula (1.110). Note we

use coordinate (τ ′, t) on K+5T+1
1 \K1, and (τ ′′, t) on K+5T+1

2 \K2. We remark also

that ΣT = K+5T+1
1 ∪K+5T+1

2 .
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Remark 1.37. Note (V ρT,i,(κ),∆p
ρ
T,(κ)) appearing in (1.108) is an element of the

weighted Sobolev space L2
m+1,δ((Σi, ∂Σi); (ûρi,T,(κ−1))

∗TX, (ûρi,T,(κ−1))
∗TL) that de-

pends on T and ρ. To make sense of T and ρ derivatives we identify

L2
m+1,δ((Σi, ∂Σi); (ûρi,T,(κ−1))

∗TX, (ûρi,T,(κ−1))
∗TL)

∼= L2
m+1,δ((Σi, ∂Σi);u

∗
i TX, u

∗
i TL)

as follows. We find V such that ûρi,T,(κ−1) = E(ui, V ). We use the parallel transport

with respect to the path r 7→ E(ui, rV ) and its complex linear part to define this
isomorphism. The same remark applies to (1.111) and (1.112).

Remark 1.38. The left hand side of (1.108), in case i = 1, is :∥∥∥∥∇nρ ∂`

∂T `
V ρT,1,(κ)

∥∥∥∥
L2
m+1−`(K1)

+

m+1−`∑
k=0

∫
[0,∞)×[0,1]

e1,T (τ, t)

∥∥∥∥∇kτ ′,t∇nρ ∂`

∂T `
(
V ρT,i,(κ) − Pal(∆pρT,(κ))

)∥∥∥∥2

dτ ′dt.

Note we apply Remark 1.37 to define T and ρ derivatives in the above formula.
The case i = 2 is similar using τ ′′ coordinate.

(Part A) (See [FOOO, page 776 paragraph (A) and (B)].)
We assume (1.108) and (1.109).
We find that

(1)

Errρ1,T,(κ)(z) = ΠE⊥1 (ûρ
1,T,(κ−1)

)∂E(ûρ1,T,(κ−1)(z), V
ρ
T,1,(κ)(z)) (1.113)

for z ∈ K1.
(2)

Errρ1,T,(κ)(τ
′)

=(1− χ(τ ′ − 5T ))∂
(
χ(τ ′ − 4T )(V ρT,2,(κ)(τ

′′ + 10T, t)−∆pρT,(κ))

+ V ρT,1,(κ)(τ
′, t) + uρT,(κ−1)(τ

′, t)
)
,

(1.114)

for (τ ′, t) ∈ [0,∞)× [0, 1]. (Note τ ′ = τ ′′ + 10T .)

Here χ : R→ [0, 1] is a smooth function such that

χ(τ)


= 0 τ < −1

= 1 τ > 1

∈ [0, 1] τ ∈ [−1, 1].

Note in Formulas (1.108)-(1.112) the Sobolev norm in the left hand side is
L2
m+1−`,δ(Σi) etc. and is not L2

m+1,δ(Σi) etc. The origin of this loss of differ-

entiability (in the sense of Sobolev space) comes from the term V ρT,2,(κ)(τ
′′ + 10T ).

In fact we have
∂

∂T
V ρT1,2,(κ)(τ

′′ + 10T ) = 10
∂

∂τ ′′
V ρT1,2,(κ)(τ

′′ + 10T ),

for a fixed T1. Hence ∂/∂T is continuous as L2
m+1 → L2

m. We remark in (1.108)
for i = 2 we use the coordinate (τ ′′, t) on (−∞, 0]× [0, 1] to define T derivative of
V ρT,2,(κ).
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Taking this fact into acount the proof goes as follows.
We can estimate T and ρ derivative of Errρ1,T,(κ) on K1 in the same way as the

proof of Lemma 1.31.

Remark 1.39. The fact we use here is that the maps such as (u, v) 7→ E(u, v),
(u, v)→ Π⊥Ei(u)(v) are smooth maps from L2

m+1,δ ×L2
m+1,δ → L2

m+1,δ or L2
m+1,δ ×

L2
m,δ → L2

m,δ and u → ∂u is a smooth map L2
m+1,δ → L2

m,δ. (Since we assume m

sufficiently large this is a well-known fact.) Moreover the map T 7→ uρT,(κ−1) and

T 7→ V ρT,1,(κ) are C` maps as a map [T (m),∞) → L2
m+1−`,δ with its differential

estimated by induction hypothesis (1.110) and (1.108).
We remark ρ 7→ uρT,(κ−1) is smooth as V1 ×L V2 → L2

m+1,δ.

The estimates of T and ρ derivatives of (1.114) are as follows.
We first consider the domain τ ′ ∈ [4T + 1,∞). There we have

Errρ1,T,(κ)(τ
′, t) =(1− χ(τ ′ − 5T ))∂(V ρT,2,(κ)(τ

′′ + 10T, t)

+ V ρT,1,(κ)(τ
′, t) + uρT,(κ−1)(τ

′, t)−∆pρT,(κ)).
(1.115)

By the same calculation as in the proof of Lemma 1.31, (1.115) is equal to

(1− χ(τ ′ − 5T ))

∫ 1

0

ds

∫ s

0

∂2

∂r2
∂
(
r(V ρT,2,(κ)(τ

′′ + 10T )−∆pρT,(κ))

+ r(V ρT,1,(κ)(τ
′, t)−∆pρT,(κ))

+ uρT,(κ−1)(τ
′, t) + r∆pρT,(κ)

)
dr.

(Note we are away from the support of Ei.)
6 Using the fact that T 7→ (V ρT,1,(κ)(τ

′, t)−
∆pρT,(κ)) + (V ρT,2,(κ)(τ

′′ + 10T ) − ∆pρT,(κ)) and T 7→ uρT,(κ−1)(τ
′, t) are of C` class

as a map to L2
m+1−`,δ, we can estimate it to obtain the required estimate (1.111)

on this part. We remark T 7→ (V ρT,2,(κ−1),∆p
ρ
T,(κ−1)) is C` with exponential decay

estimate on T derivatives as a map [T (m),∞) → L2
m−`+1,δ. This follows from

induction hypothesis as follows.

∂`

∂T `

(
V ρT,2,(κ)(τ

′′ + 10T )
)∣∣∣
T=T1

=
∑

`1+`2=`

(10)`2
∂`1

∂T `1
∂`2

(∂τ ′′)`2
V ρT,2,(κ)(τ

′′ + 10T1).
(1.116)

The L2
m+1−`,δ-norm of the right hand side can be estimated by (1.108).

We next consider τ ′ ∈ [0, 4T + 1]. There we have

Errρ1,T,(κ)(τ
′, t) =∂(χ(τ ′ − 4T )(V ρT,2,(κ)(τ

′′ + 10T )−∆pρT,(κ))

+ V ρT,1,(κ)(τ
′, t) + uρT,(κ−1)(τ

′, t)).
(1.117)

Note

∂uρT,(κ−1)(τ
′, t)) = Errρ1,T,(κ−1)(τ

′, t),

6Note ∂ is non-constant. So ∂(r(V ρ
T,2,(κ)

(τ ′′+ 10T )−∆pρ
T,(κ)

) + r(V ρ
T,1,(κ)

(τ ′, t)−∆pρ
T,(κ)

) +

uρ
T,(κ−1)

(τ ′, t) + r∆pρ
T,(κ)

) is nonlinear on r.
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there. Therefore we can calculate in the same way as the proof of Lemma 1.31 to
find

∂(V ρT,1,(κ)(τ
′, t) + uρT,(κ−1)(τ

′, t))

=

∫ 1

0

ds

∫ s

0

∂2

∂r2
∂(r(V ρT,1,(κ)(τ

′, t)−∆pρT,(κ)) + uρT,(κ−1)(τ
′, t) + r∆pρT,(κ))dr.

We can again estimate the right hand side by using the fact that the maps T 7→
(V ρT,1,(κ)(τ

′, t),∆pρT,(κ)) and T 7→ uρT,(κ−1)(τ
′, t) are of C` class as a map to L2

m+1−`,δ
with estimate (1.110).

Finally we observe the ratio between weight function of L2
m+1,δ(Σ2) and of

L2
m+1,δ(ΣT ) is e2Tδ on τ = −T (that is τ ′ = 4T ). We use this fact to estimate

∂(χ(τ ′ − 4T )(V ρT,2,(κ)(τ
′′ + 10T )−∆pρT,(κ))). We thus obtain the required estimate

(1.111) for Errρ1,T,(κ) on τ ′ ∈ [0, 4T + 1].

We thus obtain an estimate for Errρ1,T,(κ)(τ
′, t).

The estimate of derivatives of Errρ2,T,(κ)(τ
′, t) is similar. Thus we have (1.111).

We remark that eρi,T,(0) is independent of T as an element of Ei. Among eρi,T,(κ)’s,

the term eρi,T,(0) is the only one that is not of exponential decay with respect to T .

Once we remark this point the rest of the proof of (1.112) is the same as the proof
of Lemma 1.31.

We finally prove (1.110). On K1 we have

uρT,(κ) = E(uρT,(κ−1), V
ρ
1,T,(κ)).

So using µ < 1 (1.110) follows from (1.108) on K1.
On (τ ′, t) ∈ [0, 5T + 1)× [0, 1] we have:

uρT,(κ)(τ
′, t)

= V ρT,1,(κ)(τ
′, t) + (1− χ(τ ′ − 4T ))(V ρT,2,(κ)(τ

′′ + 10T, t)−∆pρT,(κ))

+ uρT,(κ−1)(τ
′, t)

=

κ∑
a=1

V ρT,1,(a)(τ
′, t) + (1− χ(τ ′ − 4T ))

κ∑
a=1

(V ρT,2,(a)(τ
′′ + 10T, t)−∆pρT,(a))

+ uρT,(0)(τ
′, t).

Then using a calclation similar to (1.116) we have (1.108) on (τ ′, t) ∈ [0, 5T + 1)×
[0, 1].

Remark 1.40. In [Ab] Abouzaid used Lp1 norm for the maps u. He then proved
that the gluing map is continuous with respect to T (that is S in the notation of
[Ab].) but does not prove its differentiability with respect to T . (Instead he used
the technique to remove the part of the moduli space with T > T0, as we mentioned
at the begining of this note. This technique certainly works for the purpose of [Ab].)
In fact if we use Lp1 norm instead of L2

m norm then the left hand side of (1.110)
becomes Lp−1 norm which is hard to use.

Abouzaid mentioned in [Ab, Remark 5.1] that this point is related to the fact
that quotients of Sobolev spaces by the diffeomorphisms in the source are not
naturally equipped with the structure of smooth Banach manifold. Indeed in the
situation when there is an automorpism on Σ2, for example Σ2 is disk with one
boundary marked point (−∞, t), then the T parameter is killed by a part of the
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automorphism. So the shift of V ρT,2,(κ) by T that appears in the second term of

(1.114) will be equivalent to the action of the automorphism group of Σ2 in such a
situation. The shift of T causes the loss of differentiability in the sense of Sobolev
space in the formula (1.108) -(1.112). However at the end of the day we can still get
the differentiability of C∞ order and its exponential decay by using various Sobolev
spaces with various m simultaneously. (See Remark 1.33 also.)

(Part B) (See [FOOO, page 776 the paragraph next to (B)].)
We assume (1.108)-(1.112) for κ and will prove (1.108) and (1.109) for κ + 1.

This part is nontrivial only because the construction here is global. (Solving linear
equation.) So we first review the set up of the function space that is independent
of T .

In Definition 1.18 we defined a function space H(E1, E2), that is a subspace of
(1.48). Since (1.48) is still T dependent we rewrite it a bit. We consider uρi :
(Σi, ∂Σi)→ (X,L) that is T -independent.

The maps ûρi,T,(κ) are close to uρi . (Namely the C0 distance between them is

smaller than injectivity radius of X.) We take a connection of TX so that L is
totally geodesic. We use the complex linear part of the parallel transport with
respect to this connection, to send

2⊕
i=1

L2
m,δ((Σi, ∂Σi); (uρi )

∗TX, (uρi )
∗TL).

to
2⊕
i=1

L2
m,δ((Σi, ∂Σi); (ûρi,T,(κ))

∗TX, (ûρi,T,(κ))
∗TL).

Note Ker(Dev1,∞−Dev2,∞) is sent to Ker(Dev1,∞−Dev2,∞) by this map . There-
fore we obtain an isomorphism between

Ker(Dev1,∞ −Dev2,∞) ∩
2⊕
i=1

L2
m,δ((Σi, ∂Σi); (uρi )

∗TX, (uρi )
∗TL) (1.118)

and

Ker(Dev1,∞−Dev2,∞)∩
2⊕
i=1

L2
m,δ((Σi, ∂Σi); (ûρi,T,(κ))

∗TX, (ûρi,T,(κ))
∗TL). (1.119)

In case κ = 0 we send H(E1, E2) by this isomorphism to obtain a subspace of (1.118)
which we denote by H(E1, E2) by an abuse of notation. We send it to the subspace
of (1.119) and denote it by H(E1, E2;κ, T ). We thus have an isomorphism

I1,κ,T : H(E1, E2)→ H(E1, E2;κ, T ).

We next use the parallel transport in the same way to find an isomorphism

I2,κ,T : L2
m,δ(Σi; (uρi )

∗TX ⊗ Λ01)→ L2
m,δ(Σi; (ûρi,T,(κ))

∗TX ⊗ Λ01).

Thus the composition

I−1
2,κ,T ◦

(
Dûρ

i,T,(κ−1)
∂ − (Dûρ

i,T,(κ−1)
Ei)((se)

ρ
i,T,(κ−1), ·))

)
◦ I1,κ,T

defines an operator

Dκ,T : H(E1, E2)→ L2
m,δ(Σi; (uρi )

∗TX ⊗ Λ01).
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Here the domain and the target is independent of T, κ.

Remark 1.41. Note Dûρ
i,T,(κ−1)

∂− (Dûρ
i,T,(κ−1)

Ei)((se)
ρ
i,T,(κ−1), ·) is the differential

operator in (1.43) and (1.44). This differential operator gives the linearization of
the right hand side of (1.113).

We next eliminate T, κ dependence of Ei. We consider the finite dimensional
subspace:

Ei(û
ρ
i,T,(κ)) ⊂ L

2
m,δ(Σi; (ûρi,T,(κ))

∗TX ⊗ Λ01).

Let us consider
Ei,(κ),T = I−1

2,κ,T (Ei(û
ρ
i,T,(κ)))

that may depend on T . However

Ei,(0) = I−1
2,κ,T (Ei(û

ρ
i,T,(0)))

is independent of T since ûρi,T,(0) = uρi on Ki. Let E⊥i,(0) be the L2 orthonormal

complement of Ei,(0) in L2
m,δ(Σi; (ûρi,T,(κ))

∗TX ⊗ Λ01).

We have
Ei,(κ),T ⊕ E⊥i,(0) = L2

m,δ(Σi; (uρi )
∗TX ⊗ Λ01).

Therefore the inclusion induces an isomorphism

E⊥i,(0)
∼= L2

m,δ(Σi; (uρi )
∗TX ⊗ Λ01)/Ei,(κ),T .

We thus obtain
Dκ,T : H(E1, E2)→ E⊥i,(0). (1.120)

The induction hypothesis implies the following:

(1) There exists C20,m, C21,m > 0 such that

C20,m‖V ‖L2
m+1,δ

≤ ‖D0,T (V )‖L2
m,δ
≤ C21,m‖V ‖L2

m+1,δ
. (1.121)

(2)

‖Dκ,T (V )−D0,T (V )‖L2
m,δ
≤ C22,me

−δT ‖V ‖L2
m+1,δ

. (1.122)

Moreover∥∥∥∥∇nρ ∂`

∂T `
Dκ,T (V )

∥∥∥∥
L2
m−`,δ

≤ C22,me
−δT ‖V ‖L2

m+1,δ
. (1.123)

In fact (1.123) follows from∥∥∥∥∇nρ ∂`

∂T `
ûρi,T,(κ)

∥∥∥∥
L2
m−`(Ki)

≤ C23,me
−δT , (1.124)∥∥∥∥∇nρ ∂`

∂T `
ûρi,T,(κ)

∥∥∥∥
L2
m−`([S,S+1]×[0,1])

≤ C23,me
−δT (1.125)

for any S ∈ [0,∞). Note the weighted Sobolev norm ‖∇nρ ∂`

∂T `
ûρi,T,(κ)‖L2

m−`,δ(Σi)
can

be large because
∂

∂T
χ←B (τ − T, t)uρT,(κ−1)

is only estimated by e−3δT on the support of χ←B (τ − T, t) but the weight e1,δ is
roughly e7Tδ on the support of χ←B (τ−T, t). However this does not cause problem to

prove (1.123). In fact the operator Dκ,T is a differential operator whose coefficient
depends on ûρi,T,(κ). So to estimate the operator norm of its derivatives with respect
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to the weighted Sobolev norm, we only need to estimate the local Sobolev norm
without weight of ûρi,T,(κ), that is provided by (1.124) and (1.125).

We remark that D0,T is independent of T . So we write D0. Now we have:

D
−1

κ,T =
(

(1 + (Dκ,T −D0)D
−1

0 )D0

)−1

= D
−1

0

∞∑
k=0

(−1)k((Dκ,T −D0))D
−1

0 )k
(1.126)

Therefore ∥∥∥∥∇nρ ∂`

∂T `
D
−1

κ,T (W )

∥∥∥∥
L2
m+1−`,δ

≤ C24,me
−δ‖W‖L2

m,δ
(1.127)

for ` > 0 and `+ n ≤ m. (Here we assume W is T independent.) Since

(V ρT,1,(κ+1), V
ρ
T,2,(κ+1),∆p

ρ
T,(κ+1)) = (I1,κ,T ◦D

−1

κ,T ◦ I−1
2,κ,T )(Errρ1,T,(κ),Errρ2,T,(κ))

(1.111) and (1.127) imply (1.108) and (1.109) for κ+ 1.
The proof of Theorem 1.34 is now complete. �

1.5. Surjectivity and injectivity of the gluing map. In this subsection we
prove surjectivity and injectivity of the map GluT in Theorem 1.10 and complete
the proof of Theorem 1.10.7 The proof goes along the line of [D1]. (See also [FU].)
The surjectivity proof is written in [FOn1, Section 14] and injectivity is proved in
the same way. ([FOn1, Section 14] studies the case of pseudo-holomorphic curve
without boundary. It however can be adapted easily to the bordered case as we
mentioned in [FOOO, page 417 lines 21-26].) Here we explain the argument in our
situation in more detail.

We begin with the following a priori estimate.

Proposition 1.42. ([FOn1, Lemma 11.2]) There exist ε3, C25,m, δ2 > 0 such that
if u : (ΣT , ∂ΣT ) → (X,L) is an element of ME1+E2((ΣT , ~z);β)ε for 0 < ε < ε3
then we have ∥∥∥∥∂u∂τ

∥∥∥∥
Cm([τ−1,τ+1]×[0,1])

≤ C25,me
−δ2(5T−|τ |). (1.128)

The proof is the same as [FOn1, Lemma 11.2] that is proved in [FOn1, Section
14] and so is omitted.

We also have the following:

Lemma 1.43. ME1+E2((ΣT , ~z);β)ε is a smooth manifold of dimension dimV1 +
dimV2 − dimL.

This is a consequence of implicit function theorem and index sum formula.

Proof of surjectivity. During this proof we take m sufficiently large and fix it. We
will fix ε and T0 during the proof and assume T > T0. (They are chosen so
that the discussion below works.) Let u : (ΣT , ∂ΣT ) → (X,L) be an element of

7Here surjectivity means the second half of the statement of Theorem 1.10, that is ‘The image
contains ME1+E2 ((ΣT , ~z);β)ε3 .’
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ME1+E2((ΣT , ~z);β)ε. The purpose here is to show that u is in the image of GluT .
We define u′i : (Σi, ∂Σi)→ (X,L) as follows. We put pu0 = u(0, 0) ∈ L.

u′1(z)

=


χ←B (τ − T, t)u(τ, t) + χ→B (τ − T, t)pu0 if z = (τ, t) ∈ [−5T, 5T ]× [0, 1]

u(z) if z ∈ K1

pu0 if z ∈ [5T,∞)× [0, 1].

u′2(z)

=


χ→A (τ + T, t)u(τ, t) + χ←A (τ + T, t)pu0 if z = (τ, t) ∈ [−5T, 5T ]× [0, 1]

u(z) if z ∈ K2

pu0 if z ∈ (−∞,−5T ]× [0, 1].

(1.129)
Proposition 1.42 implies

‖ΠEi(u′i)
∂u′i‖L2

m,δ(Σi)
≤ C26,me

−δT . (1.130)

Here we take δ < δ2/10. On the other hand, by assumption and elliptic regurality
we have

‖u′i − ui‖L2
m+1,δ(Σi)

≤ C27,mε. (1.131)

Therefore by an implicit function theorem we have the following:

Lemma 1.44. There exists ρi ∈ Vi such that

‖u′i − u
ρi
i ‖L2

m+1,δ(Σi)
≤ C28,me

−δT , (1.132)

ρ = (ρ1, ρ2) ∈ V1 ×L V2, and
|ρi| ≤ C29,mε. (1.133)

(Note when ρi = 0, uρii = ui.)
By (1.132) we have

‖u− uρT ‖L2
m+1,δ(ΣT ) ≤ C30,me

−δT . (1.134)

Here uρT = GluT (ρ).
We take V ∈ Γ((ΣT , ∂ΣT ); (uρT )∗TX; (uρT )∗TL) so that

u(z) = E(uρT (z), V (z)).

We define us : (ΣT , ∂ΣT )→ (X,L) by

us(z) = E(uρT (z), sV (z)). (1.135)

(1.134) implies

‖Π⊥(E1+E2)(us)∂u
s‖L2

m,δ(ΣT ) ≤ C31,me
−δT (1.136)

and ∥∥∥∥ ∂∂sus
∥∥∥∥
L2
m+1,δ(K

+S
i )

≤ C32,me
−δT (1.137)

for each s ∈ [0, 1].

Lemma 1.45. If T is sufficiently large then there exists ûs : (ΣT , ∂ΣT ) → (X,L)
(s ∈ [0, 1]) with the following properties.

(1)

∂ûs ≡ 0 mod (E1 + E2)(ûs).
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(2) ∥∥∥∥ ∂∂s ûs
∥∥∥∥
L2
m+1,δ(K

+S
i )

≤ 2C33,me
−δT (1.138)

(3) ûs = us for s = 0, 1.

Proof. Run the alternating method described in Subsection 1.3 in one parameter
family version. Since us is already a solution for s = 0, 1 it does not change. �

Lemma 1.46. The map GluT : V1×L V2 →ME1+E2((ΣT , ~z);β)ε is an immersion
if T is suffciently large.

Proof. We consider the composition of GluT with

ME1+E2((ΣT , ~z);β)ε → MapL2
m+1

((K+S
i ,K+S

i ∩ ∂Σi), (X,L))

defined by restriction. In the case T =∞ this composition is obtained by restriction
of maps. By unique continuation, this is certainly an immersion for T =∞. Then
Theorem 1.34 implies that it is an immersion for sufficiently large T . �

Now we will prove that

A = {s ∈ [0, 1] | ûs ∈ image of GluT }

is open and closed. Lemma 1.43 implies that ME1+E2((ΣT , ~z);β)ε is a smooth
manifold and has the same dimension as V1 ×L V2. Therefore Lemma 1.46 implies
that A is open. The closedness of A follows from (1.138).

Note 0 ∈ A. Therefore 1 ∈ A. Namely u is in the image of GluT as required. �

Proof of injectivity. Let ρj = (ρj1, ρ
j
2) ∈ V1 ×L V2 for j = 0, 1. We assume

GluT (ρ0) = GluT (ρ1) (1.139)

and

‖ρji‖ < ε. (1.140)

We will prove that ρ0 = ρ1 if T is sufficiently large and ε is sufficiently small. We
may assume that V1 ×L V2 is connected and simply connected. Then, we have a
path s 7→ ρs = (ρs1, ρ

s
2) ∈ V1 ×L V2 such that

(1) ρs = ρj for j = 0, 1.
(2) ∥∥∥∥ ∂∂sρs

∥∥∥∥ ≤ Φ1(ε)

where limε→0 Φ1(ε) = 0.

We define V (s) ∈ Γ((ΣT , ∂ΣT ); (uρ
0

T )∗TX; (uρ
0

T )∗TL) such that

uρ
s

T (z) = E(uρ
0

T (z), V (s)(z)).

(By (2) uρ
s

T (z) is C0-close to uρ
0

T (z), as ε → 0. Therefore there exists such a

unique V (s) if ε is small.) Note V (1) = V (0) since uρ
1

= uρ
0

. Therefore for
w ∈ D2 = {w ∈ C | |w| ≤ 1} there exists V (w) such that

(1) V (s) = V (w) if w = e2π
√
−1s.
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(2) We put w = x+
√
−1y.∥∥∥∥ ∂∂xV (w)

∥∥∥∥
L2
m+1,δ(ΣT )

+

∥∥∥∥ ∂∂yV (w)

∥∥∥∥
L2
m+1,δ(ΣT )

≤ Φ2(ε) (1.141)

where limε→0 Φ2(ε) = 0.

We put uw(z) = E(uρ
0

T (z), V (w)(z)).

Lemma 1.47. If T is sufficiently large and ε is sufficiently small then there exists
ûw : (ΣT , ∂ΣT )→ (X,L) (s ∈ [0, 1]) with the following properties.

(1)

∂ûw ≡ 0 mod (E1 + E2)(ûw).

(2) ∥∥∥∥ ∂∂xûw
∥∥∥∥
L2
m+1,δ(K

+S
i )

+

∥∥∥∥ ∂∂y ûw
∥∥∥∥
L2
m+1,δ(K

+S
i )

≤ Φ3(ε) (1.142)

with limε→0 Φ3(ε) = 0.
(3) ûw = uw for w ∈ ∂D2.

Proof. Run the alternating method described in Subsection 1.3 in two parameter
family version. �

Lemma 1.48. If T is sufficiently large and ε is sufficiently small there exists a
smooth map F : D2 → V1 ×L V2 such that

(1) GluT (F (w)) = ûw.
(2) If s ∈ [0, 1] then we have:

F (e2π
√
−1s) = ρs.

Proof. Note ρ 7→ GluT (ρ) is a local diffeomorphism. So we can apply the proof of
homotopy lifting property as follows. Let D2

r = {z ∈ C | |z− (r− 1)| ≤ r}. We put

A = {r ∈ [0, 1] | ∃ F : D2
r → V1 ×L V2 satisfying (1) above and F (−1) = ρ1/2.}

Since GluT (ρ) is a local diffeomorphism A is open. We can use (1.142) to show the
closednsss of A. Since 0 ∈ A it follows that 1 ∈ A. The proof of Lemma 1.48 is
complete. �

The proof of Theorem 1.10 is now complete. �

2. The general case

Coming later.
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