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This is an answer to question 4.

In the questions posted on March 14, question 4 concerns only the case of mod-
uli space of pseudo-holomorphic curve of genus 0 with one marked point and the
homology class is primitive. So there is no bubble. If the question is only on this
particular case it seems to us that there is nothing more to reply than what we
wrote on March 21. (Surjectivity, injectivity, smoothness etc. that is mentioned
in March 23’s post is an immediate consequence of implicit function theorem, that
is certainly a standard result in this case.) On the other hand, in the post on
March 23, ‘gluing’ is mentioned. (Line 7 of the paragraph starting Q4.) This is
contradictory. So we gave up replying the question word by word but explain the
construction of Kuranishi structure on the moduli space of pseudo-holomorphic
curve in general.

Our construction of Kuranishi charts does not use Fredholm theory at infinity.

We do not understand what means ‘slicing’, the word that appeared in the post
on March 23.

There is a well-established technique to find the moduli space as a manifold
with boundary in certain situation. It was used by Donaldson in gauge theory
(in his first paper [D1] to show that 1 instanton moduli of ASD connection on 4
manifold M with b;(2) = 0 has M as a boundary.) In this method we take some
parameter (that is the degree of concentration of the curvature in the case of ASD
equation and the parameter T in the situation of section 1 below). We consider the
submanifold where that parameter T is large, say Tp. We throw away everything
where T' > Tj. Then the part T' = Ty becomes the boundary of the ‘moduli space’
we obtain. It was more detailed in a book by Freed and Uhlenbeck [FU] in the gauge
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theory case. Abouzaid used this technige in his paper [Ab] about exotic sphere in
T*S™, including the case of corners. At least as far as the results in [FOnl] are
concerned we can use this technique since we need to study moduli space of virtual
dimension 0 and 1 only to prove all the results in [FOn1]. In other words we can use
something like Theorem 1.10 for large and fixed T', but does not need to estimate
the T derivative or study the bahavior of the moduli space at T' = co. The reason
is as follows. In case we consider codimension 2 or higher corner, then since the
virtual dimension of the moduli space is 1 or 0, the restriction to that corner has
negative virtual dimension. So after generic multivalued perturbation the zero set
on the corner becomes empty. So all we need is to extend multivalued perturbation.
(The C° extention is enough for this purpose.) For codimension 1 boundary and
the case of moduli space of virtual dimension 1, after generic perturbation we have
isolated zero of the perturbed moduli space. So, for large Ty, Theorem 1.10 or its
analogue implies that the zero on the ‘boundary T = Ty’ corresponds one to one to
the zero at the actual boundary (T' = o0). So we do not need to see carefully what
happens in a neighborhood of the set T' = co. (All we need is to extend this given
perturbation at T = Ty to the inside.) This argument is good enough to establish
all the results in [FOnl].

As we mentioned explicitly in [FOnl, page 978 line 13] our argument there, in
analytic points, is basically the same as [MS]. (Let us remark however the proof
of ‘surjectivity’ that is written in [FOnl, Section 14] is slightly different from one
in [MS].) So the novelity of [FOnl] does not lie in the analytic point but in the
general strategy, that is

(1) To define some general notion of ‘spaces’ that contain various moduli spaces
of pseudo-holomorphic curves as examples and work out transversality issue
in that abstract setting,

(2) Use multivalued abstract perturbation, that we call multisection.

When we go beyond that and prove results such as those we had proved in
[FOOO], we need to study the moduli spaces of higher virtual dimension and study
chain level intersection theory. In that case we are not sure whether the above
mentioned technique is enough. (It may work. But we did not think enough about
it.) It is not the way we had taken in [FOOO].

Our method in [FOOOQ] was using exponential decay estimate ([FOOO, Lemma
A1.59]) and use s = 1/T as the coordinate on the normal direction to the stratum to
define smooth coordinate of the Kuranishi structure. We refer [FOOO, subsection
A1.4] and [FOOO, subection 7.1.2] where this construction is written.

Below, we provide more details of the way how to use alternating method to
construct smooth chart at infinity following the argument in [FOOO, subsection
Al.4].

1. A SIMPLE CASE

1.1. Setting. We will describe the general case in Section 2. To simplify the no-
tation and clarify the main analytic point of the proof we prove the case where we
glue holomorphic maps from two stable bordered Riemann surfaces to (X, L) in
this section.
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Let X; be a bordered Riemann surface with one end. (i = 1,2.) We identify
their ends as follows.
Z1 = Kl ) ((_5Ta OO) X [07 1])7
Yo = ((—00,5T) x [0,1]) U Ks.
Here K; are compact and +oo are the ends. We put
Yp=K;U((-5T,5T) x [0,1]) U Ks. (1.2)

We use 7 for the coordinate of the factors (—5T, ), (—o0,5T), or (—5T,5T") and
t for the coordinate of the second factor [0, 1].
Let X be a symplectic manifold with compatible (or tame) almost complex

structure and L be its Lagrangian submanifold.
Let

(1.1)

ui:(Ei,ﬁEi)a(X,L), 121,2

be pseudo-holomorphic maps of finite energy. Then, by the removable singularity
theorem that is now standard, we have asymptotic value

TlLrI;O ui(r,t) € L (1.3)
and
EIP ug(7,t) € L. (1.4)

The limits (1.3) and (1.4) are independent of ¢.
We assume that the limit (1.3) coincides with (1.4) and denote it by py € L.
We fix a coordinate of X and of L in a neighborhood of py. So a trivialization
of the tangent bundle 77X and T'L in a neighborhood of py is fixed. Hereafter we
assume the following:

Diam(uq ([-5T, 00) x [0,1])) < €1, Diam(ug((—o00,5T] x [0,1])) < €. (1.5)

The maps u; determine homology classes §; = [u;] € Ha(X, L).
We take K9P a compact subset of the interior of K; and take

B, € DK™ TX @ A%) (1.6)

a finite dimensional linear subspace consisting of smooth sections supported in
beSt.

For simplicity we also fix a complex structure of the source ¥;. The version
where it can move will be discussed later. We also assume that ¥; equipped with
marked points z; is stable. The process to add marked points to stabilize it will be
discussed later also. Let

Dy, @ L7, 4 5((5:,05:);u; TX,u;TL) — L7, 5(Si;uiTX @ A°) (1.7)
be the linearization of the Cauchy-Riemann equation. Here we define the weighted

Sobolev space we use as follows.

Definition 1.1. ([FOOO, Section 7.1.3])' Let L2 1 10e((80,0%); uf TX;ufTL)
be the set of the sections s of u;T'X which is locally of L? , -class, (Namely its
differential up to order m + 1 is of L? class. Here m is sufficiently large, say larger

than 10.) We also assume s(z) € u;TL for z € 9%;.

Hn [FOOO] LY space is used in stead of L2, space.
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The weighted Sobovel space Lfnﬂ,é((Zi, 0%;);uiTX, ufTL) is the set of all pairs
(s,v) of elements s of L2, | 1,.((,0%); uf TX;ufTL) and v € Ty, L, (here py € L
is the point (1.3) or (1.4)) such that

m—+1
Z/ AT TR (s — Pal(v))[? < oo, (1.8)
k=0 Y Zi\Ki

where Pal : T}, X — T, (r,nX is defined by the trivialization we fixed right after
(1.4). (Here £ is + for ¢ = 1 and — for ¢ = 2.) The norm is defined as the sum of
(1.8), the norm of v and the L2 .| norm of s on K;. (See (1.26).)

L?m s(ZiurTX ® A% is defined similarly without boundary condition and with
out v. (See (1.28).)

When we define D,,,0 we forget v component and use s only.

Remark 1.2. The positive number ¢ is chosen as follows. (1.3) and a standard
estimate implies that there exists d; > 0 such that

d

el (1,t) < Cre=0I7l, (1.9)

Ck

for any k. We choose § smaller than ¢;/10.
(1.9) implies

(D, 0)(Pal(v)) < Cre21I71/10,
Therefore (1.7) is defined and bounded.

It is a standard fact that (1.7) is Fredholm.
We work under the following assumption.

Assumption 1.3.
Dy, : Ly iy 5((80,05);u; TX,u; TL) — L7, 5(Siu; TX @ A°Y)/E; - (1.10)

»

is surjective. Moreover the following (1.12) holds. Let (D,,,d)"*(E;) be the kernel
of (1.10). We define

Devioo : L2,y 5((36,0%5:); ufTX,u; TL) — Tp, L (1.11)
by
Dev; o (s,v) = v.
Then
Devy oo — Deva oo i (Dy,0) " H(E1) @ (D, d)H(E2) — Ty L (1.12)
is surjective.
Let us start stating the result. Let
u (S, 0%7) — (X, L) (1.13)
be a smooth map. We consider the following condition depending e > 0.

Condition 1.4. (1) |k, is e-close to u;|g, in C' sense.
(2) The diameter of w'([—5T,5T] x [0, 1]) is smaller than e.



THIRD ANSWER 5

We take e sufficiently small compared to the ‘injectivity radius’ of X so that
the next definition makes sense. ? For v/ satisfying Condition 1.4 for € < e, :

Ly B = T(32r; (W)*TX @ A™)

is the complex linear part of the parallel translation along the short geodesic (be-
tween u;(z) and u'(z). Here z € K2P). We put

E;(W) = Ly (E;). (1.14)
The equation we study is
ou' =0, mod F;(u') & Eqo(u'). (1.15)

Remark 1.5. In the actual construction of Kuranishi structure, we take several
u;’s and take E;’s for each of them. Then in place of E;(u’) @ E2(u’) we take sum
of finitely many of them. Here we simplify the notation. There is no difference
between the proof of Theorem 1.10 and the corresonding result in case we take
several such u;’s and E;’s. See [Fu2, pages 4-5] and Section 2.

Theorem 1.10 describes all the solutions of (1.15). To state this precisely we
need a bit more notations.
We consider the following condition for u} : (X;,0%;) — (X, L).

Condition 1.6. (1) ul|k, is e-close to u;|x, in C* sense.
(2) The diameter of u}([—5T,00) x [0,1]), (resp. wuh((—o0,5T]) x [0,1])) is
smaller than e.
Then we define
Lyt By — T(Si; ()" TX @ A%Y)
by using parallel transport in the same was as I,/ . (This makes sense if u; satisfies
Condtion 1.6 for € < €3.) We put

E;(u}) = I (E;). (1.16)
So we can define an equation
ou;, =0, mod F;(uy). (1.17)

Definition 1.7. The set of solutions of equation (1.17) with finite energy and
satisfying Condition 1.6 for € = €3 is denoted by M ((%;, ;); B:)c,. Here f3; is the
homology class of u;.

Remark 1.8. In the usual story of pseudo-holomorphic curve, we identify u; and
u} if there exists a biholomorphic map v : (£;, Z;) — (%, Z;) such that u} = u; o v.
In our situation where X; has no sphere or disk bubble and has nontrivial boundary
with at least one boundary marked points (that is 7 = £00), such v is necessary
the identity map. Namely >; has no nontrivial automorphism.

2More precisely we assume that
{(z,y) € X x X | d(z,y) < e2} CE({(z,v) € TX [ |v] <e}),

where E: {(z,v) € TX | |v]| < e} — X is induced by an exponential map of certain connection of
TX. See (1.30).
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The surjectivity of (1.11), (1.12) and the implicit function theorem imply that if
€5 is small then there exists a finite dimensional vector space V; and its neighborhood
V; of 0 such that

MP((S6,2): Bi)ey 2 Vi
Since we assume that ¥; is nonsigular the group Aut((X;, Z;), ;) is trivial. (In the
case when there is a sphere bubble, the automorphism group can be nontrivial.
That case will be discussed later.)

For any p; € V; we denote by uf" : (£;,0%;) — (X, L) the corresponding solution
of (1.17).

We have an evaluation map

Vioo : MP((84,7); Bi)e, — L
that is smooth. Namely

evioo(u;) = TEI:EOO ul (7, t).

(Here + = + for i = 1 and — for i = 2.)3> We consider the fiber product:
MPH((21,21); B1)es XL MP2((S2,22); B2) ey (1.18)
The surjectivity of (1.12) implies that this fiber product is transversal so is
Vi xp V.
And an element of V; xp, V4 is written as p = (p1, p2).

Definition 1.9. Let 8 = 31 + 82. We denote by ME1HE2((S1, 2); B). the set of
solutions of (1.15) satisfying the Condition 1.4 with ez = e.

Theorem 1.10. For each sufficiently small €3 and sufficiently large T, there exist
€1,€3 and a map
Glur : M7 ((31,21): B1)ey X1 MP2((82,2); B2)ey — MPTE2 (S, 2); B)e,
that is a diffeomorphism to its image. The image contains ME1FE2((Sr, 2); B)e, -
The result about exponential decay estimate of this map is in Subsection 1.4.
(Theorem 1.34.)

1.2. Proof of Theorem 1.10 : 1 - Bump function and weighted Sobolev
norm. The proof of Theorem 1.10 was given in [FOOO, Section 7.1.3]. The expo-
nential decay estimate of the solution was proved in [FOOO, Section A1.4] together
with a slightly modified version of the proof of Theorem 1.10. Here we follow the
proof of [FOOO, Section Al.4] and give its more detail. As mentioned there the
origin of the proof is Donaldson’s paper [D2], and its Bott-Morse version in [Ful].

We first introduce certain bump functions. First let Ar C X1 and By C X1 be
the domains defined by

Ap=[-T—-1,-T + 1] x [0,1], Br=[T-1,T+1] x[0,1].
We may regard Ar, By C ¥;. The third domain is
X =[-1,1] x[0,1] C Zr.
We may also regard X C ¥;.

3This is a consequence of the fact that w; is pseudo-holomorphic outside a compact set and
has finite energy.
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Let x%, x4 be functions on [-5T, 5T x [0, 1] such that

1 7<-T-1
G(rt) =
Xa(mt) {o > _T+1.
XA =1-x%-
We define
1 7<T-1
5(1,t) =
X (7 1) {0 F>T 41
Xg =1-Xx5-
We define
1 < -1
Y t) =
X (7:1) {0 7> 1.

Xx =1-x%-

(1.19)

(1.20)

(1.21)

We extend these functions to ¥ and ¥; (i = 1,2) so that it is locally constant

outside [—5T,5T] x [0,1]. We denote them by the same symbol.

We next introduce weighted Sobolev norm and its local version for sections on

Y or X; as follows.
We define ¢; 5 : 3; — [1,00) of C* class as follows.

=T H5T1 it 7 > 1 — BT

ers(r,t){ =1 on K;
€[1,10] ifr<1-5T
=T if < 5T — 1

e2s(T,t) ¢ =1 on Ky
€[1,10] if7>50—1

We also define eg s : X7 — [1,00) as follows:

= e0l7=5TI ifl<7<5T—1
= Ol 4571 if —1>7>1-5T
ers(T,t) ¢ =1 on K1 UK>
€ [1,10] if |7 = 5T < 1or |+ 57| <1

€ [e°T79/10,e579] if |7] < 1.

(1.22)

(1.23)

(1.24)

We remark that the weighted Sobolev norm we use for LEWS(E“ wTX @A) is

m
Isl2. =S / 15| VEs|vols,
m,s — s,

For (s,v) € L2, 5((%i,0%:); uf TX,u;TL) we define
m—+1

o), =3 [ VFsfvols,
’ k=0 7 Ki

m4+1

+ Z / ei.5|V¥(s — Pal(v))[*voly, + ||v]|?.
k=0 73\

(1.25)

(1.26)
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We next define weighted Sobolev norm for the sections on Xp. Let
se Ll (57, 0%7);u"TX,u"TL).
Since we take m large s is continuous. So s(0,1/2) € Ty(0,1/2)X ® A is well

defined. There is a canonical trivialization of TX in a neighborhood of pg that we
fixed right after (1.4). We use it to define Pal below. We put

m+1 m+1
151172 T Z / |V*s|?voly, + Z/ |V*5|?vols,
e k=0 7 K1 k=0 Y K2
sy (1.27)
+) / er.5| V(s — Pal(s(0,1/2)))|*voly,
0  [=5T.5T]x[0,1]
+11s(0,1/2)|1%.
For
5 € Lo, (31, 0%7); " TX @ A)
we define
m
Isl7= = = Z/ er.5|V¥s|voly, . (1.28)
"t k=0/%r

These norms were used in [FOOO, Section 7.1.3].

For a subset W of ¥; or X we define [|s]|z2 wcs,), [|8llz2  (wes,) by restrict-
ing the domain of the integration (1.28) or (1.?7) to W. 1

Let (s;,v;) € Lfnﬂ)é((Ei,aEi);u;‘TX, ufTL) for j = 1,2. We define the inner
product among them by:

{((s1,v1), (s2,02)) .2 :/z > {((s1 — Palvy, sy — Palva))
(1.29)

+/K {(s1,s2) + (v1, v2)).

We also use an exponential map. (The same map was used in [FOOO, pages 410-
411].) We take a diffeomorphism

E=(E,E) : {(z,v) eTX | |v] <€} > X xX (1.30)
to its image such that
dEy(z, tv)

E1($,'U) =, dt

=V
t=0

and
E(z,v) € L x L, forxe L,veT,L.
Furthermore we may take it so that
E(z,v) = (x,z 4+ v) (1.31)

on a neighborhood of pg.

To find such E, we take linear connection V (that may not be a Levi-Civita
conneciton of a Riemannian metric) of T'X such that T'L is parallel with respect to
V. We then use geodesic with respect to V to define an exponential map. We then
define E such that ¢ — Ey(x,tv) is a geodesic with initial direction wv.

Note we may take V so that in a neighborhood of py it coincides with the
standard trivial connection with respect the coordinate we fixed. (1.31) follows.
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1.3. Proof of Theorem 1.10 : 2 - Gluing by alternating method. Let us
start with u? = (ufl,ugz) S MEI((Zl, 21), 51)52 X, MEZ((EQ, 22);62)62. Here pi €
V; and corresponding map (%;,9%;) — (X, L) is denoted by uf*. Let p = (p1, p2).
We put

P — 1§ P1 — : P2
D Tl;rgoul (7,1) Tll»rfloo ub? (T, t).

Preglueing:
Definition 1.11. We define

Xg (uit —p?) + xZ (ug® —p?) +p” on [-5T,5T) x [0, 1]
U o) = § Ut on K (1.32)

ub? on K.

Note we use the coordinate of the neighborhood of py to define the sum in the
first line.

Step 0-3:

Lemma 1.12. If § < §;/10 then there exists efT(O) € FE; such that

19045, 0) = & .0y = Sz ollz, , < Crme™" (1.33)
Moreover
HQZT,(())”L%Q,(KO < €4,m. (1.34)

Here €4, s a positive number which we may choose arbitraly small by taking V; to
be a sufficiently small neighborhood of zero in V;.
Moreover efT 0) is independent of T'.

Proof. We put

i, 7,(0) = guf € FE;.

Then by definition the support of gupT’(O) - e’1)7T7(0) - eg,T,(o) is on [-5T,5T] x [0,1].
Moreover it is estimated as (1.33). O

Step 0-4:

Definition 1.13. We put

Erry 7 o) = X2 QU7 ) = €57, (0))-

We regard them as elements of the weighted Sobolev spaces Lfm(s((Zl, 0%1); (u))* TX®
A%) and L2, 5((32,0%); (uh)*TX @ A%) respectively. (We extend them by 0 out-
side compact set.)
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Step 1-1: We first cut u, (0y and extend to obtain maps afT_(o) 2 (5,0%;) —
(X L) (z =1,2) as follows. (This map is used to set the linearized operator (1.36).)

,T,
5 (T =T g o (7,t) + x5 (1 =T, t)p” if z = (7,t) € [-5T,5T] x [0,1]
uT(O if z € K3
if z € [5T, 00) x [0, 1].
2T

2, 7

X4 ( T+T t) uT( (T t) + Xa (T + T t)p? if z = (7,t) € [-5T,5T] x [0,1]

UT (0) if z € Ko
if z € (—o0, —5T7] x [0, 1].
(1.35)
Let
ﬂf,T,(o)a Lm+1 6((21782 ) ( 1T(0)) TX ( 1T(0)) TL) (1 36)
= L, 6(Zi: (@ 1, 0)) ' TX ® A™)

be the linearization of Cauchy-Riemann equation.

Lemma 1.14. We put E; = E;(4f T (0)) We have
Im(Dgp  9) + E; = Lo 5(565 (@ 1) TX @ A, (1.37)

Moreover

Devi oo — Devo oo : (Dgr . 0) ' (E1) @ (Dgr . 0) ' (E2) - TpeL  (1.38)

1,7,(0) 2,T,(0)

18 surjective.

Proof. Since ﬁf 7,(0) is close to u; in exponential order this is a consequence of
Assumption 1.3. (]

Note E;(u};) actually depends on u}. So to obtain a linearized equation of (1.15)
we need to take into account of that eﬁect Let I, () be the projection to £;(u;)

with respect to the L? norm. Namely we put

dim Ei
Moy (A) = > (Asera(ul)) 2 esalud), (1.39)
a=1

where €; 4, a =1,...,dim F;(u}) is an orthonormal basis of E;(u;) which are sup-

ported in Kj;.

We put
d

(D Ei)(A,0) = - (Wi 5(u],50) (A))s=0 (1.40)

Here v € F((Ei,ﬁZi),(u;)*TX,( *TL). (Then E(ul,sv) is a map (%;,0%;) —
(X, L) defined in (1.30).)

Remark 1.15. We use an isomorphism

(s B(ul, sv)*TX @ A%) 2 T(%;; (u))*TX @ A%) (1.41)
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to define the right hand side of (1.40). The map (1.41) is defined as follows. Let
z € 3;. We have a path r — E(u}(2),rsv(2)) joining u}(z) to E(u}, sv)(z). We use
a connection V such that T'L is parallel to define a parallel transport along this
path. Its complex linear part defines an isomorphism (1.41). B
We remark the same isomorphism (1.41) is used also to define D,/9. Namely
_ d _
(D) (v) = - (9E(ui, sv))ls=0
where the right hand side is defined by using (1.41).

We put
Héi(u,’i)(A) =A—1g, @) (4).

The equation (1.17) is equivalent to the following.
105, a1y Ou; = 0 (1.42)

We calculate the linearization

0 _
%HE(E(u;,sv))aE(ug’Sv)) ;
s=0
to obtain the linearized equation:
Dy d(V) = (Dy Ei)(Quj, V) =0 mod E;(uy). (1.43)
We remark that
O 7. (0) ~ 4ir,(0)
is exponentially small. So we use the operator
Vi Dy O(V) = (Daz . o B 1,05 V) (1.44)

as an approximation of the linearlization of (1.42).
Lemma 1.16. We put E; = E;(tf . (0y)- We have

Im(DﬁfyT,(Oﬁ—(Daf’T’(o)Ei)(ef,T) 0 NFEi = Lo, 5(5i5 (@ 1)) TX@AM). (1.45)

Moreover
Devy oo —Deva oo - (Dﬁ‘f,n(o: B (Dﬁ’f,T,<o)E1)(ellj7T7(0)’ N7HE) (1.46)
_ . .
® (Dﬁ‘g,T,(O)a o (Dﬁg,T,<o)E2)(e2p7T7(0)’ ) (B2) = Ty L

18 surjective.

Proof. (1.34) implies that (Dge

1,T,(0)
lemma follows from Lemma 1.14. O

El)(ell),T,(o)’ -) is small in operator norm. The

Remark 1.17. Note (1.34) is proved by taking V; in a small neighborhood of
0 (in V;) with respect to the C™ norm. (Note V; ¢ MPFi((2;,Z); Bi)e, and V;
consists of smooth maps.) However we can take V; that is independent of m and
the conclusion of Lemma 1.16 holds for m. In fact the elliptic regularity implies
that if the conclusion of Lemma 1.16 holds for some m then it holds for all m’ > m.
(The inequality (1.34) holds for that particular m only. However this inequality is
used to show Lemma 1.16 only.)
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‘We consider
Ker(Devy, 0o — Deva o)

0 ((Dag 8= Dag o BDE 1) (B) (1.47)

® (l)ﬁ;,T,(o)5 - (Dﬁg,T,(o)EQ)(egvTa(o)’ .))_1<E2)) '
This is a finite dimensional subspace of
2
Ker(Devi oo = Deva oo ) VD Lo, 1,5((Zi, 0%3); (0 7. ) TX, (i 7, )" TL) (1.48)

=1

consisting of smooth sections.

Definition 1.18. We denote by $(E1, E3) the intersection of the L? orthonormal
complement of (1.47) with (1.48). Here L? inner product is defined by (1.29).

Definition 1.19. We define (V| 1y V7, 1y Apf, (1)) as follows.

3\ (1/° N (o o
(Dat 1, 0, Vi)~ Pat 1 o B 00 Vi 1) (1.49)
+ Errﬁn(o) e E; (’(ALZT"(O)).
Devoo(VE 1 1)) = Dev_os (Vi 1)) = AP 1y (1.50)
Moreover
((Vje)L(l)v AP%(D)» (V’ﬁg,(l)a Apg“’(l))) € 6(E15 EQ)
Lemma 1.16 implies that such (V. 1y V7, 1y Apf, (1)) exists and is unique.
Lemma 1.20. If § < §,/10, then
||(V£Z-,(1),AP?,(l))lngmya(zi) < C2,m€_6Ta |Ap’%’(1)\ < Cz,me_éT. (1.51)

This is immediate from construction and the uniform boundedness of the right
inverse of Dge (0)3 — (D E;)(e? o) ).

V£,27(1)7 Apg,(l)) to find an approximate solution upT’(l)

op
Wi, T, (0)

Step 1-2: We use (V/, 1y

of the next level.

Definition 1.21. We define uf, (1)(2) as follows. (Here E is as in (1.30).)
(1) If z € K; we put

u;(l)(z) = E(ﬁf’T’(O) (2), VTp’l’(l)(z)) (1.52)
(2) If z € Ky we put
ug’(l)(z) = E(QS’T’(O) (2), VTp,z,(l)(Z)) (1.53)

(3) If z = (7,¢) € [-5T,5T] x [0,1] we put

Wb, iy (18) =X () (VE (1 8) — A 1)) -

+ XA (T ) (Vi o (1) (T3 1) = AT (1)) + e () (75 8) + AT 5.

We recall that on K we have ajm) (2) = “?,(o) (2) and on K3 we have ng’T’(O) (2) =
u%(o)(z).

Step 1-3: Let 0 < p < 1. We fix it throughout the proof.
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Lemma 1.22. There exists dy such that for any § < 62, T > T(6,m,€5,,) there
exists efT a) € E; with the following properties.

_ -6
1997, 1) = (61 7.0) + 1) — €S0y + 57,02z, , < Crompsesme™"
(Here C1,m 15 the constant given in Lemma 1.12.) Moreover
162 7 iyl 22, (k) < Came ™" (1.55)

Proof. The existence of ¢ . (1) satisfying

||5u;7(1)*(eiT,(o)+el1),T,(1))*(egyT,(o)Jreg,T,u))|‘L§n=5(K1UK2C2T) < Cl,mﬂe&meiaT/lO
is a consequene of the fact that (1.43) is the linearized equation of (1.42) and the

estimate (1.51). More explicitly we can prove it by a routine calculation as follows.
We first estimate on K. We have:

A(E®@] 1.0 Vi1 )

— B(E( 1.(0): 0)) / BB 10, 5V 1) -
_ _ 1.56
= B(R( . ,0)) + <Da;T,m>a><vT,m)>

1 s (2)2 .
+/0 dS/O ﬁa(E O),TVTI 1))) T.

‘/0 ds/o 87"2 ulT rVTl(l)))d

—26
< ComlVErlts ., , < Came ™.

‘We remark

L2, (K1) (1.57)

We have

o
~p P
Ex(BY 1 0y Vr,)))

0
_17d J_
HEl( 1T(0)) +/O 83 E (E(ﬁ‘f,n(o)’SV;,L(D))dS
p
—(DA;’Tm)El)('»V )

/ds/ or? E1 E(“1T<0>”T1<1>))dT

We can estimate the third term of the right hand side of (1.58) in the same way as
(1.57).
On the other hand, (1.56) implies that

(1.58)

_ 1l
o HEl(ﬁf,T,(o))

< Cgme™ T, (1.59)

— )

Hg(E(ﬁi’,T,my Vit — 2 (K1)
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Therefore, using (1.58) and (1.51), we have

1 ~p P
‘ HEl(E( ro Ve, (1)))8(E(U1,T,(o)’ VT,1,(1)))
1
HEl(u1 T.(0)? 0)8( ( V7€1 (1)))
1 p i p —26T
HEl(E(ul T’(O),V;YL(I)))(el,T,(O)) + HEl(aiT’(o),o)(%,T,(o)) < Crme :
L7 (K1)
(1.60)
Therefore using (1.58) we have:
||HE1(E 1 T (0)7VT 1, (1)))8( (uTaTa(0)7 V7€717(1)))
HE1<u1 - (o)’0)8< (@ 7.0 Vr1,1))) (1.61)
sT
+ (Dﬁf’T’(o)El)( 1,7,(0)° VT 1 (1))HL2 (K1) < CS m€ -2
y (1.49) and Definition 1.13, we have:
SR 4P (1P
8(]-—?f(u17T7(())7 O)) + (DﬂT’T’(O)a)(VT,l,(l)) (1 62)
= (Dag o, B 10 Vi) € B 1))
on Kl-
(1.61) and (1.62) imply
15, (5 as oy Ve (1)))5(E(ﬁ’f,T,(0)v Viim))
=105, 6t 0 0 OB 10 Vi 1)) (1.63)
+ 105, (@ 1, 0 0 VB 7,0, 0))
* El(ﬂT,T,(o)vo)(DﬁT,T,(o)g)(V{:’la(l))| £2,(Ky) S Com -
Combined with (1.56) and (1.57), we have
s, mar m<1>>>(5(E(ﬂ'fT(0)"/1'31,(1))))‘ 12, (K1) (1.64)
< Crome 2T < Oy e e /10,

for T > T,, if we choose T}, so that Clo,me*‘ST"" < Oy mes,mp/10.
It follows from (1.59) and (1.64) that

(E(E( Uy T,(0) qul J(1) )) - 2’1)7T’(0)||L$n(K1) < Cll,meiéT-
(1.55) then follows, by selecting

||HE1(E

1,7, 0)° T 1 (1)))

efl),T,(l) = HEl(E(ﬂiT,(O),V;J,(l)))(E(E(ﬁT,T,(O)’ VTP,1,(1)) - elf,T,(o))'

The estimate oniKg is the same.
Let us estimate duf, (@ on [=T+ 1T —1]x[0,1]. The inequality

[9uf, wllzz, s (=r+1r-1x,11c5r) < Crmpies me —T/10

is also a consequece of the fact that (1.43) is the linearized equation of (1.42) and
the estimate (1.51). (Note the bump functions x5 and x are = 1 there.) On Ar
we have

8uT/ =d(x4 (V¥ T2.(1) Ap%(l)) + Vﬁul) + ué’,’(o)) (1.65)
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Note
100K (V5 1) = AP 1)

—6T6 4 P
13,(Ar) < Came ™ °Vpp 1) = APy llez,  arcss)
< 012,m677T6-

The first inequality follows from the fact the weight function eg s is around 70

on Ar. The second inequality follows from (1.51). On the other hand the weight
function er s is around e*T9 at Ap.* Therefore

3 —-3T6
||8(XX(V78,27(1) - Apgy(l)))”Lfnwé(.ATCzT) < Cizme 375 (1.66)
Note
Brr 7.0 =0
on Ar. Using this in the same way as we did on K; we can show

L2 5(ATCET) S Cl’m6_5T65’mﬂ/20 (167)

m,

Hg(vie,l,(l) + u%(o))\
for T > T,,. Therefore by taking T large we have
||5upT’(1)HLz (Arcsr) < C1 mpies me T /10. (1.68)

m,5

(Note the almost complex structure may not be integrable. So the almost complex
structure may not be constant with respect to the flat metric we are taking in the
neighborhood of pg. However we can still deduce (1.68) from (1.67) and (1.66).)
The estimate on By and on ([-5T, =T —1JU[T + 1, 5T1]) x [0, 1] are similar. The
proof of Lemma 1.22 is complete. O
Step 1-4:
Definition 1.23. We put
Err) 1 gy = X% (0uf, (1) = (& 10y + ¢4 1.1):
Brrh 7,y = X (Quz, 1) = (h7,0) T 5. 1))-
We regard them as elements of the weighted Sobolev spaces Li“;(El; (u))*TX ®
A%Y) and L2, 5(2o; (uh)*TX @ A%) respectively. (We extend them by 0 outside
compact set.)
We put pfl) =p° + AppT,(l).

We now come back to the Step 2-1 and continue. In other words, we will prove
the following by induction on k.

’ <Vie,i7(n)7Ap;,(ﬁ))‘ L Comp™e™T, (1.69)
|a05 | < Comure ™, (1.70)

H“f},(n) - “;,(0)‘ 2o Crame T, (1.71)
HErrf’Ty(n) e < Clymef,’muneféT, (1.72)

eipm(m) [ Crsmp” te™T fork >1. (1.73)

4This drop of the weight is the main part of the idea. It was used in [FOOO, page 414]. See
[FOOO, Figure 7.1.6].
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Remark 1.24. The left hand side of (1.71) is defined as follows. We define uéﬂv(n)
by uf. . = E(uf 1), 47 ())- Then the left hand side of (1.71) is

[uf (oIl 2 (Zr,057);(ul V*TX,(uP )*TL)-
T, (k) Wy 1, s ((BT,0%m )5 (ug (g, AU (k1)

More precisely the claim we will prove is: for any €5 ,,, we can choose T}, so that
(1.69) and (1.70) imply (1.72) and (1.73) for given T > T},,, and we can choose €5 ,,
so that (1.72) and (1.73) for x implies (1.69) and (1.70) for k4 1. (It is easy to see
that (1.69) and (1.70) imply (1.71).)

Below we describe Steps k-1,. .. ,k-4.

Step x-1:

We first cut u%(nq) and extend to obtain maps ﬁip’T,(Kfl) 2 (24,0%;) = (X, L)

(i =1,2) as follows.

T, (k= 1)

uT’(FFl)(T, )+ x5 (1 =T, t)p(,_,y if z=(rt) € [-5T,5T] x [0,1]

uT (r—1) if z € Ky
j (K 1) if z € [5T,00) x [0, 1].
(k— 1)
X4 ( T+T t) uT(H (Tt +xa (T +T, t)p(n y fz=(nt)e [-5T,5T] x [0,1]
UT (k—1) if z € KQ
P (m1) if z € (—o0, =577 x [0, 1].
(1.74)
Let
ﬁf7T7(K 1)8 Lm+1 5((2:“62 ) ( zT(n 1)) TX, ( 1T(H 1)) TL) (1 75)
= L s(Si5 (0 1 o)) TX © A%).
Lemma 1.25. We have
Im(Dge .~ 9)+ By = Ly, 5(565 (0 1 1)) TX @ A™Y). (1.76)
Moreover
Devi oo — Deva o (DﬂiT’(O)é)—l(El) ® (Dﬂg,T’(o)é)—l(Eg) =T L (LT7)

18 surjective.

Proof. Since 4 is close to u; in exponential order this is a consequence of

4,T,(k—1)
Assumption 1.3. U
We denote
k—1
(58), o) = D ey (1.78)
a=0
Lemma 1.26. We have
Im(Dgp 0= Dar, — E)(8€)] 1 (1)) + B

* 01 (179)
= Lm,é(ziv( Z‘,Tv(,ﬁ_l)) TX®A )
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Moreover
DeVl,oo — D€V27oo
(Dag 9= Dar ED)((50)] .y )) (B (1.80)

I —1
@ (Dﬁ‘g,T,(ﬁ—l)a - (Dﬁ;T,(n—l)E2)<(52>57T7(N_1)’ )) (E2) - Tpg"‘(n—l)L

18 surjective.

Proof.
k—1 e—éT
Z ef,T,(a) < €4,m + le),mﬂ- (1.81)
a=0 L2 (K;)
imply that (Dﬁf,T,(mEl)(e/l),T,(o)’ -) is small in operator norm. The lemma follows
from Lemma 1.25. 0

Note Remark 1.17 still applies to Lemma 1.26.

Definition 1.27. We define (V/, ()’ |2 ()’ Apf, (K)) as follows.

Df‘f,T,(n—l) (V;»iv(ﬂ)) N (Dﬁf,T,(n—nEi)((se)ZTa(H—l)’ VTE%(R)) (1.82)
+ Errfm(m_l) IS Ei(ﬂZTy(ﬁ_l)).
DeVLoo(V]e’L(H)) = Devzyoo(VTp’z’(H)) = Ap;’(n). (1.83)
We also require
(VEy 0 A )+ (Vs 0 P 1)) € (B, ). (1.84)
Lemma 1.26 implies that such (VT[?L(K)7 Vfﬁg’(ﬁ), Ap%(n)) exists and is unique.

Remark 1.28. Note in (1.84) we use the same space $(E1, E2) as in Definition
1.19. We may use the orthonormal complement of

2
Ker(Devy oo — Deva oo) NEH(D;

=1

a-(D E)(5¢)] 1,10 ) (B

P ~p
0T, (k—1) Wi T (k—1)

instead. The reason why we use the same space as one in Definition 1.19 here,
is that then a calculation we need to do for the exponential decay estimate of T
derivative becomes a bit shorter. Since f[Lf (%) is sufficiently close to ﬁf 7.(0) the

unique existence of (V. (n)vapz (K),Apg (K)) satisfying (1.82) - (1.84) holds by
(1.81).

Lemma 1.29. If 6 < §1/10, and T > T(5,m) then

1 -5
||(VT,i,(n),AP’}7(,€))||L$H116(21) < Copmp™ e,

k—1_—6T

, (1.85)
|ApT,(H)| S CQ,m:u €

Proof. This follows from uniform boundednes of the inverse of (1.79) together with
k — 1 version of Lemma 1.22. (That is Lemma 1.31.) d

This lemma implies (1.69) and (1.70).

Step x-2: We use (VT”’L(H)7 V’Ze,2,(m)7 Ap%(ﬁ)) to find an approximate solution u%(n)
of the next level.

Definition 1.30. We define uf, () (2) as follows.
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(1) If z € Ky we put
u;,(n)(’z) = E(ﬁ;f,T,(nﬂ)(Z), VTP,L(K) (2))- (1.86)
(2) If z € K5 we put
u%(n)(z) = E(ﬁg,T,(n—l)(Z)v VZE,Q,(K) (2)). (1.87)
(3) If z = (7,t) € [-5T,5T] x [0,1] we put

“%(N) (7,t) :XE (7, t)(qu’l,(n) (7,t) — Ap;’(m))

+ XX (T7 t) (Vje,l(n) (7—1 t) - Ap’lz)“7(,§)) (188)
T UL (1) (T2 1) + APT (-

We remark that on K; we have ﬁfl),T,(nfl)(Z) = u%(nfl)(z) and on K, we have

P — P
uz,T,(nq)(z) = UT,(KA)(Z)'
(1.71) is immediate from the definition and (1.69) and (1.70), since 0 < p < 1.

Step x-3:

Lemma 1.31. For each €5 > 0 we have the following. If § < d3 and T > T'(§, m, €5)
then there exists efT (m) € E; such that

K K
A 5T
‘ 8U;,(H) — Z 9;1)7,1—'7({1) — Z eg,T7(a) < Cl)m/j)’i€5€ .
a=0 a=0 L?n&
(Here C1 , is as in Lemma 1.12.) Moreover
||€£T7(H) HL%W(KJ < Cls’mun_le_éT. (189)

Proof. The proof is similar to the proof of Lemma 1.22 and proceed as follows.
We have:

E(E(ﬂiT,(n—l)’ VTI“),L(K)))

= D(B( 7, (1), 0)) + /01 SO (2o 3VE )
= DB 1,1 0) + Dag . DL () o
1 s 2
+/0 ds/o ﬁg(E(ﬂin(n—l)’TVI’?,L(H)))dT'
We remark
1 s 82 o p 9
‘/0 ds/o Wa(E(ULT,(H—l)’rVT,l,(H)))dr L2, (K1) (1.91)

—92§ —_
< C4ym||v’1€,1,(m)||ifn’+1)5 < Cy e TP,



THIRD ANSWER 19

We have
1
HEl(E(ﬁf,T,(nfn’V;,l,(w)))
Ly

Tt 5
= HEl(ﬂ‘f,T,(n_l)) + o ds I, (B2 7 (1) V1 <n)))d8 (1.92)
— 1t — ~P : r |
_HEl(ﬁ‘f,T,(nﬂ)) (Da Ur, (s )El)( 7VT1(R))

/ds/ aQHEME oy ™ VE s )T

We can estimate the third term of the right hand side of (1.92) in the same way as
(1.91).
On the other hand, (1.90) implies that

HE(E(’&T,T,(N—D’ Viam)) = 56?,:!1,(»;—1)‘ L2 (k) < Come™ T (1.93)
Therefore
HHEl(E(ul T\(Nil),VT’ZYL(N)))E(E(QT,T,(K—D7 Vi)
HEl(ul P 1),0)5(E(ﬁf1) T (-1)> VT2, () (1.94)

+(Dag B 11 Ve o)z, () € Crame™ T

By (1.82) we have:

AE 1 (1), 0) + (Daz . NV ()

R (1.95)
o (Dﬁf,TV(,ifl)El)(sellj,T,(/ifl)’ V'Ie,L(n)) € El (UT’T7(H71))
on Kj.
Summing up we have
Pl 4
HHEI (E(ay T,(n71)ﬁvqf:,1,(,€)))(8( (ul T (k—1)" VT 1 (H))))”Lfn(Kl) (196)
< Crome T ps=t < O e es /10
for T > T,,.
It follows from (1.93) that
I, (602 .y Ve o) OB 1 1) Vi () =8¢ (o) 122, 160) < Come™ T

(1.89) then follows by putting

ell),T,( HEl(E(u1 Ty Vi (n )))(8( (af 1,T,(k—1) V7€1 (n))) _52[1),1(&—1)
)

€ El(E(ul,T,(n—l) T1 (n)> =E

Let us estimate duf, () O [-T,T] x [0,1]. The inequality

”51/1)“7(,{)HL?MS([fT,T]X[O,l]CZT) < Oy mpesme T /10

is also a consequene of the fact that (1.43) is the linearized equation of (1.42) and
the estimate (1.85). (Note the bump functions x5 and x are = 1 there.) On Ar
we have

51@7(}{) x4 (Vf 2.(r) Apgw,(ﬁ)) + V{{L(K) + u%(ﬁ_l)). (1.97)
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Note
= —6T6
||3(XX(V7€,27(,€) - A17’}7(,@)))||L3,L(AT) < Czme o ||VT€,2,(&) - Ap;,(n)HLfn*l,(;(ATCEz)
< Crame” Ops
The first inequality follows from the fact the weight function es s is around b7
on Ar. The second inequality follows from (1.85). On the other hand the weight
function er s is around €19 at Ap.5 Therefore

18O (Vi 5,y = AP )DLz arcmg) < CrameTou (1.98)

Note

Errgm(ﬁ_l) =0

on Ar. Therefore in the same way as we did on K; we can show

||5(V1€,1,(,§) + ugﬂ,(n—l))||L$M(ATCET) < 017me—5T65,mﬂ'{/20 (1.99)
for T > T,,. Therefore by taking 7' large we have
||5’U/§1’(K) ||L$,L15(ATCET) < Cl,mu“eg)’me_éT/lO. (1100)
The estimate on By and on ([-57, =T —1]U[T +1,5T]) x [0, 1] are similar. The
proof of Lemma 1.31 is complete. O
Step x-4:

Definition 1.32. We put
Err’f,:r,(m) = XX (au?,(m) - Z#,T,(@) )
a=0

Errg,T,(m) =Xx (au;,(m) - Zeg,T,(a)> ‘
a=0

We regard them as elements of the weighted Sobolev spaces L?n, s(X1; (4] () TX®
A% and L2, 5(3g; (44 4 (K))*TX(X)AOI) respectively. (We extend them by 0 outside
compact set.)

We put pfn) = pfmq) + Ap%(n).
Lemma 1.31 implies (1.72) and (1.73).

We have thus described all the induction steps. For each fixed m there exists

T,, such that if T' > T,,, then
: P
0T ()

coverges in L2, 11,5 sense to the solution of (1.15). The limit is automatically of C>
class by elliptic regurality. We have thus constructed the map in Theorem 1.10.
We will prove its surjectivity and injectivity in Subsection 1.5 below. Before doing
so we prove an exponential decay estimate of its 1" derivative.

5This drop of the weight is the main part of the idea. It was used in [FOOO, page 414]. See
[FOOO, Figure 7.1.6].



THIRD ANSWER 21

1.4. Exponential decay of T derivatives. We first state the result of this sub-
section. We recall that for T sufficiently large and p = (p1, p2) € Vi X1, Vo we have
defined uf, (n)- We denote its limit by

ufp = lim u%(ﬁ) (X7, 0%7) — (X, L). (1.101)

The main result of this subsection is an estimate of T" and p derivative of this map.
We prepare some notations to state the result.
We change the coordinate of 3; and ¥ as follows. In the last subsection we put

21 = Kl U ([—5T,OO) X [0, 1])

and use (7,t) for the coordinate of [—5T,00) x [0,1]. This identification depends
on T. So we rewrite it to

S = K1 U ([0, 00) x [0,1])
and the coordinate for [0,00) x [0,1] is (7/,¢) where
7 =1 +5T. (1.102)
Similarly we rewrite
S = (=00, 5T] x [0,1]) U Ky
to
Yo = ((—00,0] x [0,1]) U K2
and use the coordinate (7”,t) where
" =71 —5T. (1.103)

We may use either (7/,¢) or (7/,1) as the coordinate of X \ (K7 U K3).

Let S be a positive number. We have K; C X7. We put
K =K, U([0,5] x [0,1]) C X7, (1104
K39 =([-5,0] x [0,1]) UKy C 7. '

Here the inclusion K3 U ([0, S] x [0,1]) C X is by using the coordinate 7" and the
inclusion ([—S,0] x [0,1]) U K3 C X7 is by using the coordinate 7.

We may also regard st C ¥;. Note that the spaces K;FS are independent of
T, as far as 10T > S.

We restrict the map uf. to K;" S, We thus obtain a map

Glures; g : [Ty, 00) x Vi x1, Vo — MapL3n+1((Ki+S7 K 9no%,), (X, L))

by
{Gluresl)s(T, p)(z) = ul(z) z € Ky (1.105)
Gluresy s(T, p)(7',t) =ul.(7',t) = uf (7 + 5T, t)
{Glureszys(T, p)(z) = ul(z) z € Ky (1.106)
Gluresy s(T), p)(7",t) = ufp (7", t) = uf (7 — 5T, t)

Here Map2 | ((K;™9, K9 n0%;), (X, L)) is the space of maps of L2, ; class (m is
sufficiently large, say m > 10.) It has a structure of Hilbert manifold in an obvious

way. This Hilbert manifold is independent of T. So we can define T derivative of
a family of elements of Map - » ((KZ-'*'S7 KZ*S N9JY;), (X, L)) parametrized by T.
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Remark 1.33. The domain and the target of the map Glures; s depend on m.
However its image actually is in the set of smooth maps. Also none of the construc-
tions of uf. depends on m. (The proof of the convergence of (1.101) depends on m.
So the number T, depends on m.) Therefore the map Glures; s is independent of
m on the intersection of the domains. Namely the map Glures; g constructed by
using L?, norm coincides with the map Glures; g constructed by using L2, norm
on [max{Ty,,, Tm,},00) x Vi xp, Va.

Theorem 1.34. For each m and S there exist T(m), Ci6,m,s,0 > 0 such that the
following holds for T > T(m) and n+ ¢ <m — 10 and £ > 0.

V? —Glures; s

P qTe < Cls,mse_‘sT- (1.107)

2
Lm+17€

Here V) is the n-th derivative in p direction.

Remark 1.35. Theorem 1.34 is basically equivalent to [FOOO, Lemma A1.58].
The proof below is basically the same as the one in [FOOO, page 776]. We add
some more detail.

Proof. The construction of ug () WAS by induction on k. We divide the inductive

step of the construction of upT’( from “/7)“,(;.;) into two.

Kk+1)
(Part A) Start from (VTPJ’(N)7 VTP’Z’(K), Ap%(ﬁ)) and end with ErriTﬁ(I{) and Errg’T’(n).
This is step k-2,k-3,k-4.

(Part B) Start from Err{ () and Err?

This is step (k + 1)-1.

5.7 (x) 20d end with (VA

We will prove the following inequality by induction on x, under the assumption
T>T(m),£>0,n+¢<m-—10.

n o' [ 1 k—1_—6T

'vpaTé(VT,i,(n)’ApT,(n)) T < Cigmp™ e 7, (1.108)

m+1— K3
HVZaTZApT(,Q) < Crmp™ e, (1.109)

aé

VIl < Cigme 7T, (1.110)

‘ p@Tf T,(x) 2 2 s (K_+5T+1)

o*
Vi o Brrf < Ciomesmpe T, (1.111
H Tt |, 19,m€6,m 4 (1.111)
v o < Chgmp™te™®T.  (1.112)
P oT! ’LT (k) (Ko ,

More precisely the claim we will prove is the following: For each € ,,,, we can choose
T'(m) so that (1.108) and (1.109) imply (1.111) and (1.112) for T' > T'(m), and we
can choose €g,, so that (1.111) and (1.112) for x implies (1.108) and (1.109) for
k+ 1. (1.110) follows from (1.108) and (1.109).

Remark 1.36. We use L2, ; norm on K;°"*! only in formula (1.110). Note we

use coordinate (7/,t) on K7\ K1, and (7”,t) on K *7 T\ Ky. We remark also
that Yy = KT U K;5T+1.

T,1,(k+1) Vje,Q,(nJrl)’ Apg’,(/ﬁ»l))'
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Remark 1.37. Note (V; (H),Apfr (r)) appearing in (1.108) is an element of the
weighted Sobolev space Lm+1 s((34,0%); (4 T (e 1)) TX,(4f ST (o 1))*TL) that de-
pends on T and p. To make sense of T and p derivatives we 1dent1fy

L3n+1 5((21782) ( zT(n 1)) TX, ( 1T(,@ 1)) TL)

= Lm+1 s((2:,0%;);u;TX,u;TL)
as follows. We find V such that afT (h—1) = E(u;, V). We use the parallel transport
with respect to the path r — E(u;,rV) and its complex linear part to define this
isomorphism. The same remark applies to (1.111) and (1.112).

Remark 1.38. The left hand side of (1.108), in case i =1, is :

[7: 574
V"—V.
p ¢ T, 1,(k
or 0 L2 4o (K1)
m+1—~ 8 ,
k n
i Z / OO)XO”eleHvT, Vi or (Vi — PalAPE )| dr'dt.

Note we apply Remark 1.37 to define T and p derivatives in the above formula.
The case i = 2 is similar using 7" coordinate.

(Part A) (See [FOOO, page 776 paragraph (A) and (B)].)
We assume (1.108) and (1.109).
We find that
(1)
ErrlT(n)( 2) =g (L 1))5E(ﬁ11),T,(n71)(z)7Vje,l’(n)(z)) (1.113)
for z € K;.
(2)
ErriT’(H) (")
=(1 = x(r" = 57)d(x(r" — 4T)(V{, (o (T 10T, 8) — Apf ) (1.114)
+ VTe,l,(n)(T t) + uT,(f;_l)(T/’ t))7
for (7/,t) € [0,00) x [0,1]. (Note 7" = 7" +10T".)
Here x : R — [0,1] is a smooth function such that
=0 T< -1
x(r)¢=1 T>1
€[0,1] 7e[-1,1].
Note in Formulas (1.108)-(1. 112) the Sobolev norm in the left hand side is
L72n+1—€,6(2i) etc. and is not Lm+1 5(2;) etc. The origin of this loss of differ-

entiability (in the sense of Sobolev space) comes from the term V7, () (7" +10T).
In fact we have
8 0
37 Vi o H)(TN +107) = 108 - (T
for a fixed Ty. Hence 9/0T is continuous as L2, — L2 . We remark in (1.108)
for i = 2 we use the coordinate (7”,t) on (—oc, 0] x [0, 1] to define T' derivative of

Via. ()"

" +10T),
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Taking this fact into acount the proof goes as follows.
We can estimate T" and p derivative of Err{ Ty O K3 in the same way as the

proof of Lemma 1.31.

Remark 1.39. The fact we use here is that the maps such as (u,v) — E(u,v),
(u,v) = HE (u)(v) are smooth maps from L3n+1 5 X Lfnﬂ s — L3n+176 or L72n+1,5 X
L2 5 L? s and u — Ou is a smooth map Lm+1 s — L2 5. (Since we assume m
suﬂi(nently large this is a well-known fact.) Moreover the map T — u; (5—1) and
T — VT 1(x) BT€ C* maps as a map [T(m),o0) — L%H_e’é with its differential
estimated by induction hypothesis (1.110) and (1.108).

We remark p u%(ﬁ_l) is smooth as Vq xp Vo — Lanﬁ.

The estimates of T' and p derivatives of (1.114) are as follows.
We first consider the domain 7" € [4T + 1,00). There we have

Err} o (7'58) =(1 = x(r' = 5T) (VL . (7" + 10T, t)

(1.115)
+ V;L(H) (7'/» t) + UT,(,{fl)(T/» t) - AP%(,{))'

By the same calculation as in the proof of Lemma 1.31, (1.115) is equal to

(1- X(T' —5T)) / ds/ 5 2 T2 (%) (T” +107) — AP%,(K))
+ T(V T1 (,@)( t) — Apﬁ,(ﬁ))
+ ’U/T,(Kil)(T )+ rAp%(n))dr.

(Note we are away from the support of E;.)® Using the fact that T (Vj’f Ly (T 1) —
Apgﬂ,(,‘i )+ (Vf, (T +10T) — Ap%(ﬁ)) and T — ug,,(n_l)(r’,t) are of C* class
as a map to L7 ,_, 5, We can estimate it to obtain the required estimate (1.111)
on this part. We remark T (VT 2. (k1) Apf, (i 1)) is C* with exponential decay
estimate on 7' derivatives as a map [T'(m),00) — L2 _, +1,5- This follows from
induction hypothesis as follows.

785 %4 " +10T
oT* T,2’("6)(T + )

T=T

‘ a(l aZQ o P (1116)
- Z (10) 2@T131 (01"t VT,2,(I{)(T +1073).
Ly +lo=/
The LinH_M-norm of the right hand side can be estimated by (1.108).
We next consider 7" € [0,4T + 1]. There we have
Err? . (7,t) =0(x (7' — 4T) (V¥ . (7" +10T) — Aph, o)
1T( ) T,Z,( ) Tv( ) (1117)

+ V700 () g (7 1)).
Note
8u’}7(n_1)(7", t)) = Errf T 1)(7", t),

6Note 8 is non-constant. So d(r (V" 2 ) (" +10T) — Apf, (M) +r(VE, (K)(T,,t) — Apt, (N)) n
Urp (n—l)(T b+ TApT (K)) is nonlinear on r.
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there. Therefore we can calculate in the same way as the proof of Lemma 1.31 to
find

VL () (T 8) U (1) (7',1))

1 s 2
92 _
- /0 ds/o wa(r(Vﬁl,(ﬁ) (7/,t) — Ap%(ﬁ)) + u%(n_l)(r’, t) + rAp%(H))dr.

We can again estimate the right hand side by using the fact that the maps T —
(VT”’L(H)(T’, t), Ap%(ﬁ)) and T+~ ug’(nil)(T’, t) are of C* class as amap to L2, 1 _, 5
with estimate (1.110).

Finally we observe the ratio between weight function of L? ., ;(32) and of
L2 1 5(37) is €™ on 7 = =T (that is 7/ = 4T). We use this fact to estimate
A(x(t" — 4T)(V7€’2’(H)(TH +107) — Ap’}’(ﬁ))). We thus obtain the required estimate
(1.111) for ErriT’(H) on 7' € 10,47 + 1J.

We thus obtain an estimate for ErriT’(K) (7', 1).

The estimate of derivatives of ErrZ’TV(H)(T’, t) is similar. Thus we have (1.111).

We remark that eip,T’(O) is independent of T" as an element of E;. Among eip’T’(N)’s,
the term ef’ 7,(0) is the only one that is not of exponential decay with respect to T'.
Once we remark this point the rest of the proof of (1.112) is the same as the proof
of Lemma 1.31.

We finally prove (1.110). On K; we have

“g,(n) = E(U%(nq)» V1P,T,(n))~

So using p < 1 (1.110) follows from (1.108) on Kj.
On (7/,t) € [0,57 4 1) x [0, 1] we have:

Uz, () (75 1)

= V:ﬁ’l,(ﬁ) (', )+ (1 — x(r' — 4T))(V£,27(K)(TH +107,t) — Ap%(m))

+ U o1y (T 1)
K K
=Y VT )+ (U= x(7 = 4T)) Y (VE, (" + 10T, ) — Aph. )
a=1 a=1

+ u;’(o) (7',1).

Then using a calclation similar to (1.116) we have (1.108) on (7/,t) € [0,5T 4+ 1) x
[0,1].

Remark 1.40. In [Ab] Abouzaid used L} norm for the maps u. He then proved
that the gluing map is continuous with respect to 7' (that is S in the notation of
[Ab].) but does not prove its differentiability with respect to T. (Instead he used
the technique to remove the part of the moduli space with T' > Tp, as we mentioned
at the begining of this note. This technique certainly works for the purpose of [Ab].)
In fact if we use LY norm instead of L2 norm then the left hand side of (1.110)
becomes L” | norm which is hard to use.

Abouzaid mentioned in [Ab, Remark 5.1] that this point is related to the fact
that quotients of Sobolev spaces by the diffeomorphisms in the source are not
naturally equipped with the structure of smooth Banach manifold. Indeed in the
situation when there is an automorpism on X, for example ¥, is disk with one
boundary marked point (—oco,t), then the T parameter is killed by a part of the
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automorphism. So the shift of qu,z(n) by T that appears in the second term of
(1.114) will be equivalent to the action of the automorphism group of ¥ in such a
situation. The shift of T" causes the loss of differentiability in the sense of Sobolev
space in the formula (1.108) -(1.112). However at the end of the day we can still get
the differentiability of C*° order and its exponential decay by using various Sobolev
spaces with various m simultaneously. (See Remark 1.33 also.)

(Part B) (See [FOOO, page 776 the paragraph next to (B)].)

We assume (1.108)-(1.112) for £ and will prove (1.108) and (1.109) for x + 1.
This part is nontrivial only because the construction here is global. (Solving linear
equation.) So we first review the set up of the function space that is independent
of T

In Definition 1.18 we defined a function space $(E, E»), that is a subspace of

(1.48). Since (1.48) is still T dependent we rewrite it a bit. We consider u! :
(3;,0%;) = (X, L) that is T-independent.
The maps ﬁf,T,(n) are close to uf. (Namely the C° distance between them is
smaller than injectivity radius of X.) We take a connection of TX so that L is
totally geodesic. We use the complex linear part of the parallel transport with
respect to this connection, to send

2
DL 5 (i, 0%0); (uf) TX, (uf)*TL).
i=1
to
2
@ L?n,é((zia 0%;); (ﬂip’T’(,{))*TXa (ﬁf’TV(n))*TL)-
i=1

Note Ker(Devy oo —Deva, ) is sent to Ker(Devy o — Devs o) by this map . There-
fore we obtain an isomorphism between

2
Ker(Devy oo — Deva oo) V@D L7, 5((Si, 0%:); (uf)*TX, (uf)*TL) (1.118)
=1
and
2
Ker(Devi oo — Deva, o) NED L7, 5((Si, 050); (8 1. () TX, (@ 7)) *TL). (1.119)
i=1

In case k = 0 we send H)(E1, FE3) by this isomorphism to obtain a subspace of (1.118)
which we denote by $(E7, Es) by an abuse of notation. We send it to the subspace
of (1.119) and denote it by $(E1, E2; k,T). We thus have an isomorphism
L w1 9(E1, By) — 9(Ey, By w5, T).
We next use the parallel transport in the same way to find an isomorphism
Lo s Ly, (803 (u)) " TX @ A%) — L7, 5(55 (4] 1)) " TX @ A%).

Thus the composition

Iitgo (Da, 8- (D E)((5)! 3 10))) © T

op
Wi T (k—1)
defines an operator

Dyr: (B, By) = L2, 5(55; (uf)*TX @ A%).
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Here the domain and the target is independent of T k.

Remark 1.41. Note D 0—(Dye E; )((52)Z To(n—1)" -) is the differential

T,(k—1) Wi T (k—1)
operator in (1.43) and (1.44). This differential operator gives the linearization of
the right hand side of (1.113).

We next eliminate T, k dependence of E;. We consider the finite dimensional
subspace:
Ei(@ 1)) C L, 6(8i5 (0] 1)) " TX @ A™).
Let us consider
Eiy(n),T = Iii,T(Ei(ﬁip,T,(n)))
that may depend on T'. However
Ei0) = I;i T(Ei(ﬁipT (0)))
is independent of T since 4 LT.(0) = = uf on K;. Let E} 30 be the L? orthonormal
complement of E; o) in L7, s (Z (G Z’T7(H)) TX ® A%).
We have
Ei ()1 @ Ei o) = L 5(Si; (uf)*TX @ A™).
Therefore the inclusion induces an isomorphism
Ei%(o) = L2 s(Si () TX @ A°Y)/E; () 1.
We thus obtain -
Dyr: H(E1, Es) = Ej ). (1.120)
The induction hypothesis implies the following:
(1) There exists Cag,m, Ca1.m > 0 such that

CoomllVllzz, , , < IDor(V)llzz , < CormlViirz, - (1.121)

m+1,5

(2)

1D (V) = Dor(V)lgz, , < Cozme T IVIg2 - (1.122)
Moreover
52 —
‘vg ape e V)| S Cozme T Vlrz,, - (1.123)
Lm,—i,é
In fact (1.123) follows from
o 6T
‘vp ot Vi T (k) < Cogme™ ", (1.124)
m—e(Ki)
‘ a -
Vo ape i < Cogme” (1.125)
o L2, (1,5+1]x(0,1)

for any ' € [0,00). Note the weighted Sobolev norm ||V} BTZ af (2, (3 can
be large because

0

a7 X xg (T =T, t)uf
is only estimated by e~ on the support of x5 (7 — T,t) but the weight e; 5 is
roughly €779 on the support of x§ (7—1,t). However this does not cause problem to
prove (1.123). In fact the operator D, r is a differential operator whose coefficient
depends on ’(ALZTV (5" So to estimate the operator norm of its derivatives with respect

30T
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to the weighted Sobolev norm, we only need to estimate the local Sobolev norm
without weight of ﬁipT_(K), that is provided by (1.124) and (1.125).

We remark that EO”]" is independent of T'. So we write Dy. Now we have:

——1 — — —=—1.— \!
D, 1= ((1 + (D, — Do) Dy )DO)

& . 1, (1.126)
=D, Z(_l) ((DK,T_DO))DO )
k=0
Therefore
n al -1 —
HVI)WDK,T(W) L < Cagme 5||W|‘Lfm5 (1.127)
m+1—4£€,5

for £ > 0 and £ +n < m. (Here we assume W is T independent.) Since

(V7.

o141 V2, (1) AP (ey1y) = (Tt © Do 0 Iy o) (Brey o Bnnf )

(1.111) and (1.127) imply (1.108) and (1.109) for s + 1.
The proof of Theorem 1.34 is now complete. (]

1.5. Surjectivity and injectivity of the gluing map. In this subsection we
prove surjectivity and injectivity of the map Glur in Theorem 1.10 and complete
the proof of Theorem 1.10.” The proof goes along the line of [D1]. (See also [FU].)
The surjectivity proof is written in [FOnl, Section 14] and injectivity is proved in
the same way. ([FOnl, Section 14] studies the case of pseudo-holomorphic curve
without boundary. It however can be adapted easily to the bordered case as we
mentioned in [FOOO, page 417 lines 21-26].) Here we explain the argument in our
situation in more detail.
We begin with the following a priori estimate.

Proposition 1.42. ([FOnl, Lemma 11.2]) There ezist €3, Cos m,02 > 0 such that
if u: (37,0%7) — (X, L) is an element of MEHE2((S1,2); B)c for 0 < € < €3
then we have

ou

H or

The proof is the same as [FOnl, Lemma 11.2] that is proved in [FOnl, Section
14] and so is omitted.
We also have the following:

< Cozme 0207170, (1.128)

Cm([r—1,7+1]x[0,1])

Lemma 1.43. MP1HE2((S1. 2); B). is a smooth manifold of dimension dim V; +
dim Vo — dim L.

This is a consequence of implicit function theorem and index sum formula.
Proof of surjectivity. During this proof we take m sufficiently large and fix it. We

will fix € and Ty during the proof and assume T > Ty. (They are chosen so
that the discussion below works.) Let u : (Z1,0%7) — (X, L) be an element of

"Here surjectivity means the second half of the statement of Theorem 1.10, that is ‘The image
contains MF1+E2 (S, 2); B)c,.
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MEFE (31 7); B). The purpose here is to show that v is in the image of Glury.
We define u : (3;,0%;) — (X, L) as follows. We put p§ = u(0,0) € L.

uj (2)
xg (T =T, t)u(t,t) + x5 (r =T, t)py if z = (7,t) € [-5T,5T] x [0, 1]
=< u(z) if z € K
pY if z € [5T,00) x [0, 1].
uy(z)
XA (T+ T t)u(r,t) + xG (r+ T, t)py  if 2z = (7,t) € [-5T,5T] x [0,1]
= < u(z) if z € Ky
Py if z € (—o0, =5T7 x [0, 1].
(1.129)
Proposition 1.42 implies
ML,y Dl 2, (s, < Cas.me L. (1.130)

Here we take § < d2/10. On the other hand, by assumption and elliptic regurality
we have
[ Uz‘||L$n+1,5(>:,3) < Cor me. (1.131)

Therefore by an implicit function theorem we have the following:

Lemma 1.44. There exists p; € V; such that

[Juf — ufi)i||L$n+1,6(Ei) < Cosgme™"7, (1.132)
p=(p1,p2) € Vi x1 Va, and
lpil < Cag me. (1.133)
(Note when p; = 0, uf* = u;.)
By (1.132) we have
llu— ug“”Lanﬁ(Eﬂ < Cs0,me 7. (1.134)

Here uf, = Glur(p).
We take V € (X7, 0%7); (uf)*TX; (u)*TL) so that

u(z) = E(uz(2), V(2)).
We define v® : (37,0%7) = (X, L) by

u’(z) = E(uf(2), sV (2)). (1.135)
(1.134) implies
||H(LE1+E2)(us)5US||L$M(2T) < Capme " (1.136)
and
Haasus e < Cspme " (1.137)
1,5 (K

for each s € [0,1].

Lemma 1.45. If T is sufficiently large then there exists 4° : (S7,0%r) — (X, L)
(s € [0,1]) with the following properties.

(1) _
06° =0 mod (E; 4+ Es)(4°).
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(2)
< 2033 e T (1.138)

(3) 4° =u® for s=0,1.
Proof. Run the alternating method described in Subsection 1.3 in one parameter
family version. Since u® is already a solution for s = 0,1 it does not change. O
Lemma 1.46. The map Gluy : Vi xp Vo — MEHE2((Sp) 2); B)c is an immersion
if T is suffciently large.
Proof. We consider the composition of Gluy with

ME1+E2((ET,Z);ﬁ)e N Mapon_H((KiJrS’KiJrS N 821), (X7 L))

defined by restriction. In the case T' = oo this composition is obtained by restriction
of maps. By unique continuation, this is certainly an immersion for 7' = co. Then
Theorem 1.34 implies that it is an immersion for sufficiently large T'. (]

Now we will prove that
A={se€l0,1] | &° € image of Glur}

is open and closed. Lemma 1.43 implies that MF1TE2((S1, 2); B). is a smooth
manifold and has the same dimension as Vi x V5. Therefore Lemma 1.46 implies
that A is open. The closedness of A follows from (1.138).

Note 0 € A. Therefore 1 € A. Namely u is in the image of Glur as required. O

Proof of injectivity. Let p? = (p{,p%) eV xp Vp for j =0,1. We assume
Glur(p°) = Glur(p*) (1.139)
and
103 < . (1.140)

We will prove that p® = p' if T is sufficiently large and e is sufficiently small. We
may assume that V; xp V5 is connected and simply connected. Then, we have a
path s — p® = (p3, p3) € V1 x Va such that

(1) p* = p? for j =0, 1.

(2)

< ®4(e)

o
5sp
where lim,_,o ®1(¢) =0

We define V(s) € T((Xr, 0%7); (u‘}o)*TX; (u”TO)*TL) such that

uf (2) = E(uf) (2), V(5)(2).

(By (2) upT(z) is C%close to u%o(z), as € — 0. Therefore there exists such a
unique V(s) if € is small.) Note V(1) = V(0) since w' = u?”. Therefore for
w € D? = {w € C | |w| < 1} there exists V(w) such that

(1) V(s) = V(w) if w = e2™V"Ts,
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(2) We put w =z + +/—1y.

“;1;/00) < @y(e) (1.141)

L?,L+1,5(ET)

0
L?n+1,a(ET) Y
where lim._,o ®2(¢) = 0.
We put u®(2) = E(uf (2), V(w)(2)).
Lemma 1.47. If T is sufficiently large and € is sufficiently small then there exists
v (B, 087) — (X, L) (s € [0,1]) with the following properties.

1) )
04" =0 mod (Ey + E2) (™).

w

< By (e) (1.142)

I —"

ox 15 (S dy
with lim5_>0 @3 (6) =0.

(3) 4% = u¥ for w € OD?.

L2

m

s
L?,L+1,5(Kj— )

Proof. Run the alternating method described in Subsection 1.3 in two parameter
family version. O

Lemma 1.48. If T is sufficiently large and € is sufficiently small there exists a
smooth map F : D?> — Vi x 1, Vy such that

(1) Glup(F(w)) =a™.
(2) If s € [0,1] then we have:
F(eQTr\/le) _ ps.
Proof. Note p — Glur(p) is a local diffeomorphism. So we can apply the proof of
homotopy lifting property as follows. Let D? = {z € C | |z — (r — 1)| < r}. We put
A={re0,1]|3 F:D? = V; x;, V; satisfying (1) above and F(—1) = p/2.}

Since Glur(p) is a local diffeomorphism A is open. We can use (1.142) to show the
closednsss of A. Since 0 € A it follows that 1 € A. The proof of Lemma 1.48 is
complete. O

The proof of Theorem 1.10 is now complete. (]

2. THE GENERAL CASE

Coming later.
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