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§1. Prologue: Uncertainty principle and non-squeezing theorem.
One of the basic principle in the quantum mechanics is the Heisenberg uncer-

tainty principle. This can be roughly stated as “one can not measure the momen-
tum and the position of a particle precisely at the same time”. More precisely, the
principle can be written as

4q4p ' }, } = the Planck constant,

where 4q = 〈q − 〈q〉〉,4p = 〈p− 〈p〉〉 are the deviation from the average values 〈q〉
and 〈p〉. When a particle is in R

3, then this is replaced by

(1.1) 4qi4pi ' }

for i = 1, 2, 3. A natural question then is to ask what would be the analogue in
the classical mechanics. This question involves two tasks in it: First we need to
formulate what would be the statement and secondly need to prove the statement.

To formulate the analogue, we need some digression into the Hamiltonian for-
malism of the classical mechanics.

1.1. Hamiltonian mechanics.
Newtonian mechanics is based on the Newton’s second law of motion:

(1.2) mẍ = F (x) x ∈ R
3

This is a second order ordinary differential equation of x. To determine the motion
of a particle, we need two initial conditions

(1.3)

{
x(0) = x0

ẋ(0) = v0

One can transform (1.2) and (1.3) into a system of first order ODE on R
6 = R

3×R
3

(1.4)





q̇ = p

ṗ = F (q)

q(0) = x0 p(0) = v0

Supported in part by NSF grant and UW Research Award Grant

Typeset by AMS-TEX

1



where we substitute q = x p = mẋ. From now on, we will set m = 1.

One can easily check that the total energy

E = E(q, p) : =
1

2
mẋ2 −

∫
F (x)

=
1

2
p2 −

∫
F (q)

is conserved along each trajectory of (1.4).

With the function H = E(q, p), the equation (1.4) can be written as

(1.5)





q̇ =
∂H

∂p

ṗ = −
∂H

∂q

which is called the Hamilton’s equation associated to the Hamiltonian H. One can
think of the equation (1.5) for any given smooth function H. The same conservation
law then holds for (1.5), i.e., the Hamiltonian H is conserved along the trajectory
of (1.5).

There could be other type of conserved quantities depending on the type of the
Hamiltonian H. For example, when for the Hamiltonian H = 1

2p2 −
∫

F (q), the
force F is rotationally symmetric, then the angular momentum will be conserved. In
general, each symmetry of the mechanical system gives rise to a conserved quantity
–“Nöether’s principle”–.

In the hamiltonian mechanics, the conserved quantities play an important role
in solving the given mechanical system and it is important to find out as many
conserved quantities as possible. For this purpose, the so called Poisson bracket is
a very useful tool, which turns out to be the essential geometric structure when one
study the mechanics with constraint, i.e., mechanics on manifolds.

Let us first recall the definition of classical Poisson bracket on R
6 = R

3 × R
3.

Definition 1.1 (The classical Poisson bracket). For each pair (G,H) of
smooth function on R

6 = R
3 × R

3, we define a new function, denoted by {G,H},
by

(1.6) {G,H} =

3∑

j=1

(
∂G

∂qj

∂H

∂pj

−
∂G

∂pj

∂H

∂qj

)

The followings are the main properties of this bracket, which can be proven by
direct calculation:

(1) {G,H} = −{H,G} –“Skew-symmetry”
(2) {G,H1 + H2} = {G,H1} + {G,H2} –“Bilinearity”
(3) {G,HF} = {G,H}F + H{G,F} –“Leibniz rule”
(4) {G, {H,F}} + {H, {F,G}} + {F, {G,H}} = 0 –“Jacobi identity”

The following theorem illustrates the usefulness of the Poisson bracket.
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Theorem 1.2. If F and G are conserved quantities of the Hamilton’s equation
(1.5), then {F,G} also becomes a conserved quantity.

Proof. This immediately follows from the identity

(1.7)
d

dt
G ◦ γ(t) = {H,G}(γ(t))

where γ is a solution of the Hamilton’s equation




q̇ =
∂H

∂p

ṗ = −
∂H

∂q

The identity (1.7) can be proven by a direct calculation from the definition (1.6). ¤

In the physics literature (e.g. [Go]), a mapping (or coordinate change) φ : R
6 →

R
6 is called a canonical transformation if the identity

(1.8) {G ◦ φ,H ◦ φ} = {G,H} ◦ φ

holds for any smooth functions G and H. In physics literature, (1.8) is usually
written as

3∑

j=1

(
∂G

∂qj

∂H

∂pj

−
∂G

∂pj

∂H

∂qj

) =

3∑

j=1

(
∂G

∂Qj

∂H

∂Pj

−
∂G

∂Pj

∂H

∂Qj

)

(sometimes even without “bar”), where one denote

φ(q, p) = (Q(q, p), P (q, p))

G(Q,P ) = G(q(Q,P ), p(Q,P ))

Lioville’s theorem. Any canonical transformation preserves the phase volume in
R

6.

We will give the proof of this theorem later, using other equivalent definition of
the canonical transformation.

Example 1.3. Consider a compactly supported time dependent Hamiltonian

H : [0, 1] × R
6 → R

and consider the non-autonomous Hamiltonian equation

(1.9)





q̇ =
∂Ht

∂p

ṗ = −
∂Ht

∂q
Ht(q, p) := H(t, q, p)

and its time-one map φH
1 : R

6 → R
6. More precisely, consider the solution γ : R →

R
6 of (1.9) with the initial condition γ(0) = (q0, p0). We denote this solution by

γ(q0,p0). And then define

φH
1 (q0, p0) = γ(q0,p0)(1).

By the standard theorem of ODE, φH
1 defines a smooth diffeomorphism.
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Proposition 1.4. The φH
1 : R

6 → R
6 is a canonical transformation.

One immediate consequence of this proposition is that the set of canonical trans-
formations is infinite dimensional.

1.2. The classical analogue: Non squeezing theorem
One can easily check that the discussions in the previous section is generalized

to the even dimensional space R
2n = R

n × R
n. One can also consider R

2n as the
n-product of R

2 ' C, i.e.,

R
2n = R

2 × R
2 × · · · × R

2 ' C × C × · · · × C = C
n.

In this identification, we use the correspondence

(qj , pj) ←→ qj + ipj =: zj j = 1, · · · , n.

Now, one can formulate the classical analogue of the uncertainty principle (1.1)
as follows, which is due to Arnold and Gromov: Consider the standard R-ball in
C

n ' R
2n

B2n(R) = {z ∈ C
n |

n∑

j=1

|zj |
2 ≤ R2}

and the cylinder over z1-plane

Z2n(r) = {z ∈ C
n | |z1|

2 ≤ r2}.

Note that B2n(R) has finite volume while Z2n(r) has infinite volume and so one
can easily see that one can embed B2n(R) into Z2n(r) by a volume preserving map,
whatever r and R are. One might ask the question whether such an embedding
is possible by canonical transformations which are a subclass of volume preserving
maps.

Non-squeezing theorem [Gromov, Gr]. If r < R, we cannot embed B2n(R)
into Z2n(r) by any canonical transformation.

Physically speaking, this theorem says that if a collection of particles initially
spread out all over the unit ball B2n(R), then one cannot squeeze the collection
into a statistical state in which the momentum and position in the (q1, p1)-direction
spreads out less than initially.

The proof [Gr] of this simply stated principle turned out to require a completely
new technique in the symplectic geometry at the time when Gromov’s paper [Gr]
appeared. It requires the combination of several different disciplines of mathemat-
ics, e.g., differential geometry, complex analysis, index theory, partial differential
equation and etc.. This is the prototype of the current trend of the 3-dimensional
and 4-dimensional differential topology as well. The above non-squeezing theorem
is the major starting point of the area, the symplectic topology, more specifically
the symplectic rigidity theory.

§2. Symplectic Manifolds
Recall that the classical Poisson bracket { , } on C∞(R2n) defines a Poisson

algebra on C∞(R2n), i.e., defines a bilinear map

{, } : C∞(R2n) × C∞(R2n) → C∞(R2n)
4



which satisfies

(1) {G,H} = −{H,G}
(2) {G,H1 + H2} = {G,H1} + {G,H2}
(3) {G,HF} = {G,H}F + H{G,F}
(4) {G, {H,F}} + {H, {F,G}} + {F, {G,H}} = 0

Now, one can take these 4 properties as axioms for the so called Poisson manifold.

Definition 2.1. A Poisson manifold is a pair (P, {, }) where { , } defines a bilinear
map on C∞(P ) satisfying (1) - (4). We call { , } a Poisson bracket.

Examples 2.2.

(1) Any manifold with trivial bracket, i.e., {H,F} = 0 for all F , H.– “ordinary
manifold”

(2) The classical phase space R
2n with the classical bracket.

Now, let us derive some consequences from the above 4 axioms. First, we have

Lemma 2.3. For any H ∈ C∞(P ) and a constant function C, we have

{H,C} = 0

Note that (2) and (3) imply that for any given H, the linear map

{H, ·} : C∞(P ) → C∞(P )

becomes a derivation and so is associated to a vector field, denoted by XH , which
is called the Hamiltonian vector field associated to H.

Furthermore Lemma 2.3 implies that the value XH(p) ∈ TpP depends only on
dH(p) ∈ T ∗

p P but does not depend on the choice of H (Exercise 1). Therefore
the assignment

dH(p) 7→ XH(p)

defines a bundle map
π : T ∗P → TP.

We refer the readers to [W] for basic properties of general Poisson manifolds. In
the example 2.2 (1), this map is the zero map and in 2.2 (2), it becomes a bundle
isomorphism. In this lecture, we will be interested only in the case when the above
bundle map π is an isomorphism. When this map is an isomorphism, we denote its
inverse by

ω̃ : TP → T ∗P

in an obvious reason, which will be clear from below. In this case, we can interpret
the assignment

p 7→ ω̃p

as a covariant two-tensor, denoted by ω, that is skew-symmetric which follows from
the skew-symmetry (1) of the Poisson bracket:

ωp(v, w) := ω̃p(v)(w)

This means that ω is a differential two-form. Furthermore ω is nondegenerate
because we assume that ω̃p is an isomorphism at each p ∈ P . Finally, one can
prove
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Exercise 2. Prove that when π : T ∗P → TP is a bundle isomorphism, the Jacobi
identity (4) of { , } is equivalent to the closedness of the two form ω.

Definition 2.4. A symplectic manifold is a pair (P, ω) where P is a manifold and ω
is a nondegenerate closed two form. We call ω the symplectic form, or the symplectic
structure.

Examples 2.5.

(1) The classical phase space (R2n, ω0) associated to the classical Poisson bracket.
In this case, one can show (Exercise 3)

ω0 =

n∑

j=1

dqj ∧ dpj .

(2) More generally, for any smooth manifold M , its cotangent bundle T ∗M
carries a canonical symplectic structure

ω0 = −dθ

where θ is the canonical one-form defined by

θp(ξ) = p(Tπξ)

for each p ∈ T ∗M and ξ ∈ Tp(T
∗M), where π : T ∗M → M is the canonical

projection. In the canonical coordinates of T ∗M , θ is expressed as

θ =

n∑

j=1

pjdqj .

Note that the above case (1) is a special case of this by considering R
2n as

T ∗
R

n. The above cases are examples of non-compact ones.
(3) Any two dimensional (compact) oriented surfaces with an area form.
(4) Any Kähler manifold with the Kähler form, e.g., CPn or any algebraic

manifolds.
(5) [Gompf, Gm] Any finitely presented group π (i.e., finitely generated with

finite relations) can be realized as the fundamental group of compact sym-
plectic four-manifolds.

One of the main current themes in the four dimensional differential topology is
to understand the role of compact symplectic 4-manifolds in the classification prob-
lem of (simply connected) 4-dimensional differentiable manifolds. Some topologists
speculate that symplectic manifolds are one of the building blocks of 4-manifolds.
(See [Gm], [T1,2,3] in relation to this aspect.)

The following theorem shows that unlikely from the case of Riemannian man-
ifolds where the curvatures provides the local invariants of the metric, symplectic
manifolds have no local invariants.

Definition 2.6. A map φ : (P1, ω1) → (P2, ω2) is called a symplectic map if
φ∗ω2 = ω1 and a symplectic diffeomorphism ( or symplectomorphism) when it
is a diffeomorphism in addition.
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Darboux Theorem. Let p ∈ (P, ω) be any point. Then there exist a local chart
(φ,U) at p, φ : U → V ⊂ R

2n such that

φ∗ω0 = ω, i.e.,

ω =

n∑

j=1

dqj ∧ dpj

in the coordinates φ = (q1, · · · , qn, p1, · · · , pn). In other words, any symplectic
manifold (P 2n, ω) is locally symplectomorphic to the classical phase space (R2n, ω0).

Exercise 4. Prove that in the classical phase space a map φ : (R2n, ω0) →
(R2n, ω0) is symplectic iff φ is a canonical transformation, i.e., preserves the canon-
ical Poisson bracket.

Remark 2.7. A symplectic manifold (P, ω) carries a canonical orientation pro-
vided by the form

1

n!
ωn

that is a nondegenerate 2n-form, i.e., a volume form. This volume form is called
the Lioville volume form and nothing but the ordinary volume form in the classical
phase space R

2n ' C
n. By definition, any symplectic map φ : (R2n, ω0) → (R2n, ω0)

(and so any canonical transformation) preserves the phase volume (Lioville’s theo-
rem).

Now, we can restate the non-squeezing theorem

Non-squeezing Theorem. If R > r, there is no symplectic embedding

φ : (B2n(R), ω0) → (Z2n(r), ω0)

§3. Pseudo-holomorphic Curves
We further analyze the statement of the non-squeezing theorem. It uses more

than a symplectic structure, i.e., uses other geometric structures of R
2n, Euclidean

metric and the splitting of R
2n ' C

n = C⊕C
n−1, which uses the complex structure.

Note that R
2n ' C

n has three canonical bilinear forms: the symplectic form ω, the
Euclidean inner product g(, ) and the Hermitian inner product 〈·, ·〉. The relation
between these three can be written as

〈·, ·〉 = g(·, ·) + iω(·, ·).

From this, one can easily check that

(3.1) g(·, ·) = ω(·, J0·)

where J0 : R
2n → R

2n is the standard (integrable) almost complex structure as-
sociated to the multiplication by i on R

2n ' C
n, i.e., J0 is the endomorphism

determined by

J0(
∂

∂qj

) =
∂

∂pj

, J0(
∂

∂pj

) = −
∂

∂qj

for j = 1, · · · , n.
Now, we generalize (3.1) to arbitrary symplectic manifolds (P, ω).
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Definition 3.1. An almost complex structure J on (P, ω) is called compatible (
or calibrated) to ω if the bilinear form ω(·, J ·) defines a positive definite symmetric
bilinear form, i.e., Riemannian metric. We denote by Jω the set of such almost
complex structures.

Proposition 3.2. [Gr]. The set Jω is a contractible infinite dimensional (Frêchet)
manifold.

An ingenious idea of Gromov is to study the space of almost complex maps

f : (Σ, j) → (P, J)

where (Σ, j) is another almost complex manifold. However, unless both j and J
are integrable, there is no even local existence theorem of such map possible when
dim Σ > 2. On the other hand, when dim Σ = 2, there is the following local
existence theorem.

Definition 3.3. Assume dim Σ = 2. An almost complex map f : (Σ, j) → (P, J)
is called a (j, J)-holomorphic map.

In this paper, the main interest of ours will be the cases where Σ = S2 or D2

in which case we will suppress the complex structure j and call f J-holomorphic
map, and its image a J-holomorphic curve.

Nijenhuis-Wolf [NW]. At each point p ∈ P and for each complex tangent 2-plane
τp at p, there exists ε > 0 and a J-holomorphic disc

f : (D2(ε), J0) → (P, J)

such that f(0) = p and τp = Image T0f .

The proof of this theorem relies on the elliptic theory of PDE noting that the
almost complex condition

(3.2) Tf ◦ j = J ◦ Tf

is a quasi-linear first order elliptic partial differential equation. In fact, for the case
(D2(ε), J0), (3.2) is equivalent to

(3.3)
∂f

∂x
+ J(f)

∂f

∂y
= 0

where ∂f
∂x

:= Tf( ∂
∂x

), ∂f
∂y

:= Tf( ∂
∂y

) and (x, y) is the standard coordinate of D2(ε).

Of course, when J is integrable, (3.3) is exactly the classical Cauchy-Riemann
equation.

Now, we study some global properties of J-holomorphic curves. First, we note
that using the almost complex structure J on P (and j on Σ), one can decompose

(3.4) Tf = T (1,0)f + T (0.1)f

where T (1,0)f (resp. T (0,1)f) is the J-linear (resp. anti-J-linear) part of Tf :

(3.5)
T (1,0)f :=

1

2
(Tf − J ◦ Tf ◦ j)

T (0,1)f :=
1

2
(Tf + J ◦ Tf ◦ j)

Then f is J-holomorphic if and only if T (0,1)f ≡ 0. We will also denote

∂Jf = T (0,1)f (resp. ∂Jf = T (1,0)f).

The followings are immediate consequences from the definition of J-holomorphic
map and from the compatibility of J to ω.
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Lemma 3.4. Let f : (Σ, j) → (P, J) be a map. Then for the metric gJ = ω(·, J ·)
and the norm |·, ·|J

(1) 1
2 |Tf |2J = |∂Jf |2J + |∂Jf |2J

(2) f∗ω = (−|∂Jf |2J + |∂Jf |2J )dA where dA is the area form on (Σ, j).

(3) When ∂Jf = 0, f∗ω = |∂Jf |2JdA ≥ 0 as a form

Corollary 3.5. For any smooth map f : (Σ, j) → (P, J), we have

1

2

∫

Σ

|Tf |2JdA ≥

∫
f∗ω

and equality holds precisely when f is J-holomorphic.

Note that when Σ is a closed surface without boundary (resp. with boundary
fixed or with free boundary on a fixed Lagrangian submanifold), then

∫
f∗ω is

constant in a fixed homology class (resp. in a relative homology class). Therefore,
J-holomorphic curve minimizes the harmonic energy 1

2

∫
|Tf |2J in a fixed homology

class. This immediately gives rise to

Proposition 3.6. When f : (Σ, j) → (P, J) is J-holomorphic,

(3.6) AreagJ
f =

1

2

∫
|Tf |2J =

∫
f∗ω

Therefore AreagJ
f depends only on the homology represented by f . In particular,

for any J-holomorphic map f : (Σ, j) → (P, J) representing a fixed homology class
A = [f ],

(3.7) AreagJ
(f) = [ω](A)

Corollary 3.7. The image of J-holomorphic map is a minimal surface with respect
to the metric gJ = ω(·, J ·).

Remark 3.8. In applications, one needs to vary the almost complex structure and
to consider a family of J in a compact subset K of Jω. However when we do
estimates and convergence arguments of a sequence {fi} of maps , we have to use
a metric g fixed among compatible metrics . Then (3.7) should be replaced by

(3.8) Areag(f) ≤ C(A,K)

for any J-holomorphic map f and J ∈ K ⊂ Jω, where C(A,K) is a constant
depending only on A and K. This uniform area estimate will be an important first
step for obtaining uniform C1-estimate and so for the compactness properties of
J-holomorphic maps (for varying J).

§4. Outline of the proof of Nonsqueezing theorem
In this section, we give a detailed outline of the proof, given by Gromov [Gr], of

the nonsqueezing theorem. The proof will be by contradiction.
Assume that there exists a symplectic embedding φ : B2n(R) → Z2n(r). Since

we assume that R > r, by considering a slightly smaller ball of radius R′ with
r < R′ < R, we may assume that

(4.1) B2n(R) ⊂ Int(Z2n(r))
9



Then there exists some ε > 0 such that φ extends to a symplectic embedding, still
denoted by φ,

φ : B2n(R + ε) → Z2n(r − ε) ⊂ Z2n(r).

We push forward J0 from B2n(R+ε) by φ to the image φ(B2n(R+ε)) ⊂ Z2n(r−ε).
We consider an almost complex structure J1 on C

n such that

J1 =





φ∗(J0) on φ(B2n(R +
ε

2
))

J0 on C
n D2(r − ε) × [−K + 1,K − 1]2(n−1)

and J1 is smoothly extended to the remaining region so that J1 is still compatible
to ω.

Exercise 5. Prove that this smooth extension is possible. (Hint: Use the polar
decomposition and note that the decomposition is canonical.)

In the above, the constant K > 0 is chosen so that

(4.2) φ(B2n(R + ε)) ⊂ D2(r − ε) × [−K + 1,K − 1]2(n−1)

Here are the three steps to prove the nonsqueezing theorem.
Step I (Main step):

Prove that there exists a J1-holomorphic map f : (D2, ∂D2) → (Cn, Cn \
φ(B2n(R + ε))) such that

(4.3)

∫

C

ω0 ≤ Area of the flat disk in Z2n(r) = πr2

where C = Image f , and

(4.4) φ(0) ∈ C

Step II:
Now consider the preimage of C, i.e.,

φ−1(C) ∩ B2n(R)

Since Image (f |∂D2) ⊂ C
n\φ(B2n(R+ε)), φ−1(C)∩B2n(R) defines a proper surface

in B2n(R) passing through the origin. Furthermore since J1|φ(B2n(R+ε)) ≡ φ∗J0

and C is J1-holomorphic curve, φ−1(C) is a J0-holomorphic curve on C
n (and

so a minimal surface with respect to the standard metric on C
n). The following

monotonicity formula (for minimal surface in R
2n ' C

n) is well known in the
minimal surface theory.(See e.g. [L], [HL])

Monotonicity formula. Any proper minimal surface passing through the origin
in B2n(R) → C

n has its area greater than or equal to the area of a flat disk (= πR2)
and equality holds iff the surface is a flat disk.

This monotonicity immediately implies

(4.5) Area(φ−1(C) ∩ B2n(R)) ≥ πR2
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because φ−1∩B2n(R) is a proper J0-holomorphic (and so minimal) surface passing
through the origin.
Step III:

Get a contradiction: We apply (4.5), (3.6), the fact that φ is symplectic, change
of variables, Lemma 3.4 (3) and (4.3) respectively to derive

πR2 ≤ Area φ−1(C) ∩ B2n(R) =

∫

φ−1(C)∩B2n(R)

ω0 =

∫

φ−1(C)∩B2n(R)

φ∗ω0

=

∫

C∩φ(B2n(R))

ω0 ≤

∫

C

ω0 ≤ πr2

which gives rise to a contradiction since we assume R > r.

Now, it remains to prove the statement in Step I. We first transform the existence
statement on the J-holomorphic discs into a more tractable existence problem of
J-holomorphic sphere on a closed symplectic manifold. By now, we are given an
almost complex structure J1 on Z2n(r) = D2(r) × C

n−1 such that J1 is standard
on C

n \ D2(r − ε) × [−K + 1,K − 1]2(n−1). In particular, J1 is standard near the
boundary of the domain D2(r − ε

2 ) × [−K,K]2(n−1) =: Dr,ε,K . Therefore, we can
push forward J1 on Dr,ε,K to

D2(r −
ε

2
) × T 2(n−1)(K)

which we still denote by J1, where T 2(n−1)(K) is the torus obtained by identifying
−K with K in [−K,K], i.e.,

T 2(n−1)(K) = S1
K × · · · × S1

K 2(n − 1) times

Note that since φ(B2n(r + ε)) ⊂ Dr,ε,K , we may consider φ(B2n(r + ε)) as a subset
of

D2(r −
ε

2
) × T 2(n−1)(K).

The corresponding almost complex structure J1 on this space is still standard near
the boundary of the space.

Now, we embed D2(r− ε
2 ) into S2( r

2 ) by an area preserving map ψ : D2(r− ε
2 ) →

S2( r
2 ) and then embed D2(r − ε

2 ) × T 2(n−1)(K) into

Pr,K := S2(
r

2
) × T 2(n−1)(K)

by the symplectic map ψ × id : D2(r − ε
2 ) × T 2(n−1)(K) → Pr,K . We denote by

ωr,K = ωr
1 ⊕ ωK

2 the product symplectic structure on Pr,K where ωr
1 and ωK

2 are

the standard symplectic structure on S2( r
2 ) and T 2(n−1)(K) respectively. We now

extend the structure (ψ× id)∗J1 on (ψ× id)(D2(r− ε
2 )×T 2(n−1)(K)) to the whole

Pr,K = S2( r
2 ) × T 2(n−1)(K) so that the extension, denoted by J̃1 is compatible to

ωr,K . Now note that the second homotopy group π2(Pr,K) ' Z and the homotopy
class [S2( r

2 )×{pt}] generates π2. Denote this homotopy class by A and let p0 ∈ Pr,K

be the point corresponding to φ(0) in Z2n(r).
11



Assertion: To finish Step I, it is enough to find a J̃1-holomorphic sphere C̃ with

[C̃] = A ∈ π2(Pr,K) and with p0 ∈ C̃.

Proof of Assertion. Suppose that there exists a J̃1-holomorphic sphere C̃ and let

u : S2 → Pr,K be the map representing C̃, i.e., C̃ = Image(u). Then since [C̃] = A
and from (3.6), we have

(4.6)

∫

eC

ωr,K = πr2

Since [C̃] = A = [S2( r
2 ) × {pt}], it is easy to prove that the composition π ◦ u :

S2 → S2( r
2 ) is surjective (Prove this. Exercise 7). Now the curve C required in

Step I can be chosen to be

C = (ψ × id)−1(C̃) ⊂ D2(r −
ε

2
) × T 2(n−1)(K)

regarded as a subset of Z2n(r − ε
2 ) ⊂ Z2n(r). Obviously, C is a proper surface

in Z2n(r − ε
2 ) and so C ∩ φ(B2n(r + ε)) defines a proper surface in φ(B2n(r + ε))

since we assumed φ(B2n(r + ε)) ⊂ Z2n(r − ε
2 ) in the beginning of this section.

Furthermore, since ψ × id is a symplectic map and from the definition of J̃1, we
have ∫

C

ω0 =

∫

C

(ψ × id)∗ωr,K

=

∫

(ψ×id)−1( eC)

(ψ × id)∗ωr,K

=

∫

eC∩(ψ×id)(D2(r− ε

2 )×T 2(n−1)(K))

ωr,K

≤

∫

eC

ωr,K = πr2

which finish the proof of (4.3). Here the last inequality follows from Lemma 3.4(3).

(4.4) follows from that p0 ∈ C̃. ¤

§5. Fredholm set-up and the existence scheme
Now we have reduced the proof of the non-squeezing theorem to the following

general existence theorem of J1-holomorphic spheres.

Theorem 5.1. Let Pr,K = S2( r
2 ) × T 2(n−1)(K) with the symplectic form ωr,K =

ωr
1⊕ωK

2 , Jβ be any given compatible almost complex structure and let p0 = (x0, q0) ∈
Pr,K be a given point in Pr,K . Let A = [S2( r

2 )×{pt}] be the generator of π2(Pr,K).

Then there exist a Jβ-holomorphic sphere u : S2 → Pr,K with [u] = A and p0 ∈
Image(u).

Of course, we apply this theorem to Jβ = J̃1 in the previous section for the finish
of Step I. The proof of this theorem requires all the basic ingredients in the Gromov
pseudo-holomorphic curve theory and so we will set up the required Fredholm set-
up in a completely general context. Let (P, ω) be an arbitrary compact (or at least
tame in the sense of Gromov [Gr]) symplectic manifold. Again we denote by Jω

the set of almost complex structures compatible to ω. Denote by

F = Fk,p = W k,p(S2, P ) (5.1)
12



the set of Sobolev W k,p-maps from S2 to P , where

k −
2

p
> 0, p > 2

so that F ⊂ C0(S2, P ). For each f ∈ Fk,p, we decompose

Tf = ∂Jf + ∂Jf

where we recall

∂Jf =
Tf + J ◦ Tf ◦ j

2

∂Jf =
Tf − J ◦ Tf ◦ j

2
.

Recall that ∂Jf is anti-J-linear and ∂Jf is J-linear maps. We denote by

H(f,J) = Hom
(1,0)
J (TS2, f∗TP )

H(f,J) = Hom
(0,1)
J (TS2, f∗TP )

the bundle of J-linear maps and anti-J-linear maps over f : S2 → P , respectively.
We are particularly interested in H(f,J) and its sections. We would like to note
that

rankH(f,J) = rank f∗(TP ) = 2n,

which makes the equation ∂Jf = 0 well posed. Denote by

(5.2) H(f,J) = H
k−1,p

(f,J) = W k−1,p(H(f,J))

the set of W k−1,p-section of the bundle H(f,J) and form an (infinite-dimensional)

vector bundle H over F × Jω, where

H =
⋃

(f,J)

H(f,J).

This is a vector bundle modeled by a Banach space H(f,J). Then the assignment

(f, J) 7→ ∂Jf

defines a smooth section of the vector bundle H over F×Jω. We denote this section
by ∂. We will be interested in the pair (f, J) that is a zero of the section ∂, i.e.,
that satisfies

∂Jf = 0.

Denote the zero set of ∂ by

MA = {(f, J) ∈ F × Jω | ∂Jf = 0, [f ] = A, f satisfying (H) below}

For the transversality theorem below, it is important to restrict to f ’s satisfying
the following hypothesis:

13



(H). There exists a point z ∈ S2 such that Tf(z) 6= 0 and #(f−1(z)) = 1.

We call any J-holomorphic curve satisfying (H) a simple curve and otherwise
a multiple curve. (See [M1] for a detailed discussion on the structure of curves
satisfying (H).)

Proposition 5.2 [M1]. MA ⊂ F×Jω is a smooth submanifold and the projection
map π2 : MA → Jω is a Fredholm map with index 2(c1(A) + n) where c1 is the
first Chern class of the vector bundle TP considered as a complex vector bundle.

Now, the Sard-Smale theorem [S] immediately implies

Corollary 5.3. There exist a dense subset Jω,A ⊂ Jω such that the set

MA(J) = {f ∈ F | ∂Jf = 0, f satisfying (H)}

becomes a finite dimensional smooth manifold of dimension 2(c1(A) + n). We call
J ∈ Jω,A A-regular.

Remark 5.4. One can also prove the parametrized version of Proposition 5.2 and
Corollary 5.3. Our main interest is the case of one parameter family of almost
complex structure J in Jω.

Now, we go back to the proof of Theorem 5.1. To prove this, we will use a
version of the well known continuity method in PDE. We start from the standard
(integrable) product structure Jα on S2( r

2 ) × T 2(n−1)(K).

Lemma 5.5. The product structure Jα on S2( r
2 )× T 2(n−1)(K) is A-regular where

A = [S2( r
2 ) × {pt}], and MA(Jα) becomes

MA(Jα) = {f : S2 → Pr,K | f(z) = (f1(z), q), q ∈ T 2(n−1)(K),

f1 : S2 → S2(
r

2
) is a bi-holomorphism }

Proof. Exercise 6.

Note that c1(A) = 2 and so dimMA(Jα) = 2(2+n) = 2n+4 which is consistent
with the explicit description of MA(Jα) in the above lemma. Recall that we are
interested in finding a Jβ-holomorphic sphere passing through a given point p0. So
we consider the following evaluation map

evA : MA(J) ×G S2 → P, evA(f, z) = f(z)

where MA(Jα) ×G S2 := MA(J) × S2/G in which the action of G (= the set of
automorphisms of S2 on MA(J) × S2) is given by

g : (f, z) 7→ (f ◦ g−1, g(z)).

This action is free because we assume that f satisfies (H) and so MA(J) ×G S2 is
a manifold where MA(J) is so. The dimension for this is given by

2(c1(A) + n) + 2 − 6 = 2c1(A) + 2n − 4.

In the case of the product structure Jα in Lemma 5.5 where c1(A) = 2, this dimen-
sion becomes 2n. In fact, we have
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Lemma 5.6. For the product structure Jα, MA(J)×GS2 is a compact 2n-manifold
and the evaluation map

evA : MA(J) ×G S2 → Pr,K

becomes a diffeomorphism. In particular, it has non-zero Z2-degree.

Proof. We leave the proof to reader or refer to [M2] for a relevant argument to
prove this lemma.

Now, we consider the given Jβ in Theorem 5.1. In general, Jβ may not be
A-regular and so we choose a sequence of A-regular Ji’s such that

Ji → Jβ as i → ∞

in the C∞-topology. Now, for each fixed i, we consider a path J = {Jt}0≤t≤1 such
that J0 = Jα and J1 = Ji and consider the parametrized evaluation map

EvA : MA(J) ×G S2 → Pr,K × [0, 1] MA(J) :=
⋃

t∈[0,1]

MA(Jt)

defined by

EvA(ft, Jt, z) = (ft(z), t).

If one can prove that MA(J)×GS2 is a compact manifold, it will provide a compact
cobordism between MA(Jα)×G S2 and MA(Ji)×G S2 and so the evaluation map

ev0
A : MA(Jα) ×G S2 → Pr,K × {0}

and

ev1
A : MA(Ji) ×G S2 → Pr,K × {1}

must have the same Z2-degree. Therefore since ev0
A has Z2-degree 1 from Lemma

5.6,

evA : MA(Ji) ×G S2 → Pr,K

must have non-zero Z2-degree and in particular is surjective. Hence there exists
a Ji-holomorphic curve passing through p0. Let us denote such a Ji-holomorphic
curve by fi. Now, if one could prove the uniform estimate for the derivative Tfi

(5.3) max
z∈S2

|Tfi(z)| ≤ C

for all i after reparametrization if necessary, one could pass to the limit to find a
Jβ-holomorphic sphere f∞ such that p0 ∈ Image fβ which would finish the proof of
Theorem 5.1 and so the nonsqueezing theorem.

Both of the above two compactness statement will be a consequence of Gromov’s
weak-compactness theorem which we will describe in the next section. To apply
Gromov’s compactness theorem to our situation, the uniform area bound (3.8) and
the fact that the homotopy class A = [S2( r

2 ) × {pt}] is simple will be used.
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Definition 5.7. A homotopy class A is called J-simple if there is no decomposition

of A into A =
∑N

j=1 Aj such that Aj allows a non-trivial J-holomorphic curve. If
this holds for any J ∈ Jω, then we call A simple.

With this definitioin, one can easily see that the homotopy class A = [S2 ×{pt}]
is simple: If there could be such a decomposition, then we would have

[ω](A) =

N∑

j=1

[ω](Aj).

But if Aj allows any J-holomorphic curve, then

[ω](Aj) > 0 and so [ω](Aj) ≥ πr2.

On the other hand, we have [ω](A) = πr2 and such a decomposition is not possible.

§6. Compactness
The main goal of this section is to prove the two compactness statement left out

in the last section. We first consider

Proposition 6.1. Let P = S2( r
2 )×T 2(n−1)(K) and A ∈ π2(P ) be as before. Then

for any path J = {Jt}0≤t≤1 ⊂ Jω, MA(J) ×G S2 is compact. Furthermore, if we

fix J0 = Jα, J1 = Jγ that are A-regular, there exists a smooth path J such that

MA(J) ×G S2 becomes a compact smooth manifold.

To prove this proposition, we need the fundamental Gromov’s compactness the-
orem [Gr]. We refer to [PW] for an elegant complete proof of this compactness
theorem. We first recall the notion of J-cusp-curves (We refer to [PW] for a more
precise definition).

Definition 6.2. A J-cusp-curve in P is a finite union C = {C`} of J-holomorphic
curve where C` is the image of a J-holomorphic map f` : S2 → P . We call a
J-cusp-curve connected if the union ∪`C` is connected as a set.

Gromov’s weak compactness theorem [Gr]. Let Let Jγ → J∞ be a convergent
sequence in Jω. Then for any sequence of Jγ-holomorphic maps fγ : S2 → P with
the uniform area bound

Area(fγ) < C,

there exists a subsequence of fγ such that the unparametrized curve Cγ = Image fγ

weakly-converges to a cusp curve C∞ = {C∞,l}1≤l≤N so that

(1) Area(C∞) = limγ→∞ Area(C∞) =
∑N

l=1 Area(C∞,l)

(2) [C∞] =
∑N

l=1[C∞,l] in π2(P )
(3) C∞ is a connected cusp curve.

Furthermore, if N = 1, i.e., C∞ is a genuine curve, then the subsequence fγ C∞-
converges to a limit f∞ after reparametrization if necessary.

Now, we are ready to prove Proposition 6.1

Proof of Proposition 6.1. Since MA(J)×G S2 is a S2-bundle over MA(J)/G, it is
enough to prove that MA(J)/G is compact. Let (fi, Jti

) be a sequence in MA(J).
Then we have the uniform area bound

Area(fi) ≤ C(A)
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from (3.8). Then the above compactness theorem implies that there exists a subse-
quence of fi still denoted by fi such that the unparametrized curve Ci = Image fi

converges to a cusp-curve C∞ =
∑N

` C∞,`. By choosing a subsequence, we may
assume that ti → t∞. However, since A is simple, N cannot be bigger than 1 by the
argument in the end of the previous section and so the subsequence fi converges
to a Jt∞ -holomorphic curve after reparametrization, which finishes the proof of the
fact that MA(J)/G is compact. The last statement will follow by the transversality
theorem if we choose a path J that is transverse to the projection π2 : MA → Jω

in Proposition 5.2. ¤

We recall where we were in the end of section 5: we are given a sequence of
A-regular Ji such that Ji → Jβ where Jβ as in Theorem 5.1.

By applying Proposition 6.1 and the existence scheme used in the end of section
5 for each Ji, we are given a sequence fi of Ji-holomorphic sphere passing through
the point p0. Again using the area bound (3.8) and the simpleness of A, the
above Gromov’s compactness theorem guarantees the existence of the limit f∞
(after reparametrization) such that f∞ is Jβ-holomorphic and p0 ∈ Image f∞. This
finally finishes the proof of the nonsqueezing theorem.

§7. Epilogue: Symplectic rigidity.
In the middle of 1980’s, Eliashberg proved the following theorem, which first

indicated the existence of symplectic topology that is supposed to be finer than
differential topology.

Theorem 7.1 [Eliashberg]. The subgroup Dω(P ) of symplectic diffeomorphisms
is C0-closed in Diff(P). More precisely, if a sequence φj of symplectic diffeomor-
phism has the C0-limit φ∞ that is differentiable, then φ∞ is a (C1)-symplectic
diffeomorphism.

Eliashberg’s proof [E] relies on a structure theorem on the wave fronts of cer-
tain Legendrian submanifolds. The complete details of the proof of this structure
theorem has not appeared yet in the literature. However, Gromov’s non-squeezing
theorem can replace Eliashberg’s argument to give another proof of Theorem 7.1.
In fact, the existence of any symplectic capacity function on the set of open set in C

n

will provide a relatively straightforward proof of Theorem 7.1, using Eliashberg’s
argument in [E]. We refer [EH2, HZ] for details of such a proof.

In the remaining section, we will give a definition of one such symplectic capacity
using the non-squeezing theorem. Again, we refer readers to the book [HZ] for a very
good exposition on the symplectic rigidity theory from the point of Hamiltonian
dynamics and the critical point theory.

Definition 7.2 [Gromov radius]. For any symplectic manifold (P, ω) we define

c(P, ω) = sup{πr2 | ∃ a symplectic embedding φ : (B(r), ω0) → (P, ω)}

and call it the Gromov radius of (P, ω).

The followings are the main properties of c.

Proposition 7.3.

(1) Monotonicity: c(P, ω) ≤ c(P̃ , ω̃) if there exists a symplectic embedding φ :

(P, ω) → (P̃ , ω̃).
(2) Conformality: c(P, αω) = |α|c(P, ω) for all α ∈ R α 6= 0.
(3) Nontriviality: c(B2n(1), ω0) = π = c(Z2n(1), ω0)
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Proof. (1) and (2) are immediate consequences from the definition of c and (3) is
an easy consequence of the non-squeezing theorem. (Exercise 7) ¤

In fact, any assignment c : (P, ω) 7→ c(P, ω) that associates with every symplec-
tic manifold (P, ω) a nonnegative real number or ∞ satisfying the Axiom (1), (2)
and (3) is called a symplectic capacity. By now, there are several different con-
structions of the existence of different symplectic capacities. We refer to [HZ] for
a detailed exposition on the symplectic capacity theory. In this point of view, the
non-squeezing theorem provided the first construction of such symplectic capacity.
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