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Abstract. In [OW2, OW3], the authors studied the nonlinear elliptic system

∂
π
w = 0, d(w∗λ ◦ j) = 0

without involving symplectization for each given contact triad (Q,λ, J), and
established the a priori Wk,2 elliptic estimates and proved the asymptotic

(subsequence) convergence of the map w : Σ̇ → Q for any solution, called

a contact instanton, on Σ̇ under the hypothesis ‖w∗λ‖C0 < ∞ and dπw ∈
L2 ∩L4. The asymptotic limit of a contact instanton is a ‘spiraling’ instanton

along a ‘rotating’ Reeb orbit near each puncture on a punctured Riemann
surface Σ̇. Each limiting Reeb orbit carries a ‘charge’ arising from the integral

of w∗λ ◦ j.
In this article, we further develop analysis of contact instantons, especially

the W 1,p estimate for p > 2 (or the C1-estimate), which is essential for the

study of compactfication of the moduli space and the relevant Fredholm theory

for contact instantons. In particular, we define a Hofer-type off-shell energy
Eλ(j, w) for any pair (j, w) with a smooth map w satisfying d(w∗λ ◦ j) = 0,

and develop the bubbling-off analysis and prove an ε-regularity result. We also

develop the relevant Fredholm theory and carry out index calculations (for the
case of vanishing charge).
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1. Introduction and statements of main results

A contact manifold (Q, ξ) is a 2n+1 dimensional manifold equipped with a com-
pletely non-integrable distribution of rank 2n, called a contact structure. Complete
non-integrability of ξ can be expressed by the non-vanishing property

λ ∧ (dλ)n 6= 0

for a one-form λ which defines the distribution, i.e., kerλ = ξ. Such a one-form λ is
called a contact form associated to ξ. Each contact form λ of ξ canonically induces
a splitting

TQ = R{Xλ} ⊕ ξ.

Here Xλ is the Reeb vector field of λ, which is uniquely determined by the equations

Xλcλ ≡ 1, Xλcdλ ≡ 0.

We denote by Π = Πλ : TQ→ TQ the idempotent, i.e., an endomorphism satisfying
Π2 = Π such that ker Π = R{Xλ} and Im Π = ξ. Denote by π = πλ : TQ→ ξ the
associated projection.

In the presence of the contact form λ, one usually consider the set of J that
is compatible to dλ in the sense that the bilinear form gξ = dλ(·, J ·) defines a
Hermitian vector bundle (ξ, dλ|ξ, J |ξ) on Q. We call such J a CR-almost complex
structure. As long as no confusion arises, we do not distinguish J and its restriction
J |ξ. We introduce the projection π : TQ → ξ with respect to the splitting TQ =
R{Xλ} ⊕ ξ.

Definition 1.1. Let J ∈ End(TQ) be an endomorphism satisfying J2 = −Π such
that dλ(·, J ·) is nondegenerate on ξ. We say that such J is compatible to λ. We
define the set

J (Q,λ) = {J : ξ → ξ | J2 = −Π, J compatible to λ} (1.1)
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Following [OW1], we call any such triple (Q,λ, J) a contact triad of (Q, ξ). For
each given contact triad, we equip Q with the triad metric

g = dλ(·, J ·) + λ⊗ λ.
Let (Σ, j) be a Riemann surface with a finite number of marked points and let

Σ̇ be the associated punctured Riemann surface with a finite number of punctures.
We call a map w : Σ̇ → Q a contact Cauchy-Riemann map if ∂

π
w = 0. Then we

have the decomposition

dw = dπw + w∗λXλ, dπw := ∂
π
w + ∂πw

as a one-form on Σ with values in TQ. We also regard dπw as a ξ-valued one-form
on Σ.

We introduce a nonlinear first-order differential operator

∂
π
w =

1

2
(πdw + J · πdw · j), ∂πw =

1

2
(πdw − J · πdw · j) (1.2)

and consider the following variation of Cauchy-Riemann equation

∂
π
w = 0. (1.3)

Definition 1.2. We say a map w : Σ → Q is a contact Cauchy-Riemann map
(with respect to J) if it satisfies (1.3).

In [OW2], Wang and the present author established the a priori W k,2 coer-
cive estimates for the contact Cauchy-Riemann maps by augmenting the equation
∂
π
w = 0 by the closedness condition of

d(w∗λ ◦ j) = 0. (1.4)

The standard pseudoholomorphic curve equation on the symplectization R × Q
equipped with the cylindrical almost complex structure J0 ⊕ J with respect to the
splitting

T (R×Q) = R · ∂
∂r
⊕ R ·Xλ ⊕ ξ

is a special case of the ‘exact’ contact instantons where the anti-derivative equation
of w∗λ◦j prescribed by a = w∗s with the s-coordinate of the symplectization R×Q
for the map (a,w) : Σ̇→ R×Q. (See [Ho1] for the relevant calculations.)

Definition 1.3 (Contact instanton). Let Σ be as above. We call a pair of (j, w) of

a complex structure on Σ and a map w : Σ̇→ Q a contact instanton if it satisfies

∂
π
w = 0, d(w∗λ ◦ j) = 0. (1.5)

We call such (j, w) an exact contact instanton if the form w∗λ ◦ j is exact on Σ̇.

Such an equation was first introduced by Hofer in [Ho2] for the case of charges
vanishing at the punctures in the context of symplectization, which was further
studied in [ACH], [Be] and [Ab]. We will also put this charge vanishing condition
at the punctures for our study of the exponential convergence and of the Fredholm
theory at least in the present paper, without involving the symplectization.

To put the research performed in the present paper in perspective, we recall the
precise statement of the above mentioned a priori W k,2 estimates established in
[OW2] on the punctured Riemann surface Σ̇ here. Denote

w∗λ = aw1 dτ + aw2 dt.



4 YONG-GEUN OH

Theorem 1.4 (Theorem 1.9 [OW2]). Let (Σ̇, j) and w satisfying (2.1) on Σ̇ as

above. If |dπw| ∈ L2 ∩ L4 and ‖w∗λ‖C0 <∞ on Σ̇, then∫
Σ̇

|(∇)k+1(dw)|2 ≤
∫

Σ̇

J ′k(dπw,w∗λ).

Here J ′k+1 a polynomial function of the norms of the covariant derivatives of dπw, w∗λ
up to 0, . . . , k with degree at most 2k + 4 whose coefficients depend on

‖K‖Ck , ‖Rπ‖Ck , ‖LXλJ‖Ck , ‖w∗λ‖C0 .

One novel feature of this estimate is its explicit reliance on the C0 bound of
w∗λ which concerns the Xλ component of dw. Therefore the remaining task is
to complete the a priori estimates to study compactness properties of the moduli
space of contact instantons is to further analyze how to control the quantities

‖w∗λ‖C0 , ‖dπw‖L4 .

1.1. Bubbling-off analysis and ε-regularity theorem. One of the main pur-
poses of the present article is to establish the two crucial analytical components in
the construction of cementification of the moduli space of solutions of the contact
instantons, one the ε-regularity theorem and the other the bubbling-off analysis.

To state the ε-regularity statement relevant to contact instantons, we recall the
following standard quantity in contact geometry

Definition 1.5. Let λ be a contact form of contact manifold (Q, ξ). Denote by
Reeb(Q,λ) the set of closed Reeb orbits. We define Spec(Q,λ) to be the set

Spec(Q,λ) =

{∫
γ

λ | λ ∈ Reeb(Q,λ)

}
and call the action spectrum of (Q,λ). We denote

Tλ := inf

{∫
γ

λ | λ ∈ Reeb(Q,λ)

}
.

We set Tλ =∞ if there is no closed Reeb orbit. This set a priori could be empty.
The Weinstein conjecture is equivalent to the statement that this set is non-empty
on any compact contact manifold. A standard lemma in contact geometry says
that Tλ > 0. This constant Tλ enters in a crucial way in the following ε-regularity
type statement. In addition, we also need a Hofer-type energy, denoted by Eλ(w)
whose precise definition we refer readers to section 5.

Theorem 1.6. Denote by D the closed disc of positive radius. Suppose that w :
D → Q satisfies ∂

π
w = 0, d(w∗λ◦j) = 0 with Eλ(w) := K0 <∞. Then for any ε >

0 and another smaller disc D′ ⊂ D′ ⊂ D, there exists some K1 = K1(p,D′, ε,K0) >
0 such that for any contact instanton with Eπ(w) < Tλ − ε

‖dw‖1,p;D′ ≤ K1 (1.6)

where K1 depends only on p, ε, and D′ ⊂ D and K0 = Eλ(w).

The proof of this theorem follows the scheme of the corresponding result in the
study of pseudoholomorphic curves given by the author in [Oh1]. This proof uses the
Sacks-Uhlenbeck’s bubbling-off argument which essentially uses the a priori coercive
W k,p elliptic estimates and conformal invariance of harmonic energy. In the current
case of contact instanton maps, the relevant coercive estimate was established in
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[OW2]. On the other hand the harmonic energy is quite irrelevant but the π-
harmonic energy Eπ(w) is. However the π-harmonic energy does not have much
control of the derivative dw in the Reeb direction. In the case of symplectization,
Hofer [Ho1, BEHWZ] introduced the so called λ-energy for the map u = (a,w) :

Σ̇ → R × Q for this purpose. His definition of the latter energy strongly relies
on the coordinate function a = r ◦ w which exists only under the assumption
the form w∗λ ◦ j is exact. For the non-exact case, we have to devise a different
way of defining Hofer-type λ-energy. For this purpose, we introduce the notion of
contact instanton potential whose definition relies on Zwiebach’s representation of
conformal structure j on the surface Σ̇ by the minimal area metrics [Z, WZ]. See
section 5 for the details. In the end, our definition of Hofer-type energy strongly
depends on the complex structure j and so had better be regarded as a function
for the pair (j, w) not just for w.

1.2. Asymptotic behavior of contact instantons. We also carry out the as-
ymptotic study of contact instantons near the punctures. For this study of asymp-
totic convergence result at the punctures and the relevant index theory, it turns out
to be useful to regard (1.5) as a version of gauged sigma model with abelian Hick’s
field. It is also important to employ the notion of asymptotic contact instantons
at each puncture, which is a massless instantons on R× S1 canonically associated
to any finite energy contact instantons. It also gives rise to an asymptotic Hick’s
field, which is a holomorphic one-form that appears as the asymptotic limit of the
complex-valued (1, 0)-form

w∗λ ◦ j +
√
−1w∗λ.

The following asymptotic invariants seem to be also useful to introduce in relation
to the precise study of asymptotic behavior of contact instantons near punctures.

Definition 1.7 (Asymptotic Hick’s charge). Let (Σ, j) be a closed Riemann surface

and Σ̇ its associated punctured Riemann surface with finite energy with bounded
gradient. Let p be a given puncture of Σ̇. We define the asymptotic Hick’s charge
of the instanton w : Σ̇→ Q to be the complex number

Q(p) +
√
−1T (p)

defined by

Q(p) = −
∫
S1

Reχ(0, t) dt = −
∫
∂∞;pΣ

w∗λ ◦ j (1.7)

T (p) =

∫
S1

Imχ(0, t) dt =

∫
∂∞;pΣ

w∗λ (1.8)

where z = e−2π(τ+it) is the analytic coordinates of Dr(p) centered at p. We call
Q(p) the contact instanton charge of w at p hand T (p) the contact instanton action
of w at p.

We define the asymptotic Hick’s field (or charge) of a map w : C→ Q at infinity
by regarding ∞ as a puncture associated C ∼= CP 1 \ {∞}.

We next prove the following removable singularity result (see Theorem 8.7).

Theorem 1.8. Suppose Q(p) = 0 = T (p). Then w is smooth across p and so the
puncture p is removable.
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This theorem will be of fundamental importance in that it enables us to construct
a good compactification of the moduli space of exact contact instantons without
involving symplectization. This will be dealt in a sequel to this paper.

The theorem also allows us to make the following classification of the punctures.

Definition 1.9 (Classification of punctures). Let Σ̇ be a puncture Riemann surface

with punctures {p1, · · · , pk} and let w : Σ̇→ Q be a contact instanton map.

(1) We call a puncture p removable if T (p) = Q(p) = 0, and non-removable
otherwise. Among the non-removable punctures p, we call it non-adiabatic
if T (p) 6= 0, adiabatic if T (p) = 0 but Q(p) 6= 0.

(2) We say a non-removable puncture positive (resp. negative) puncture if the
function ∫

∂Dδ(p)

w∗λ

is increasing (resp. decreasing) as δ → 0.

The appearance of adiabatic punctures is a new phenomenon when the form
w∗λ ◦ j is not exact. In the exact case considered via the case of symplectization
picture [Ho1, BEHWZ], the associated puncture with T (p) = 0 is removable and
can be dropped in this classification by filling in the puncture.

Unlike the exact case, the puncture cannot be removed in general for the non-
exact case, i.e., that of non-zero charge Q(p) 6= 0, even when T (p) = 0. Therefore
this new asymptotic behavior has to be included in the study of moduli space of
contact instantons. What happens at such a puncture is that the instanton w
spirals around a leaf of Reeb foliation when the leaf is closed and chases along the
leaf when it is not closed.

We would like to point out the similarity between the relationship of the forms
w∗λ ◦ j and w∗λ for the contact instanton w and the relationship between the
electricity and magnetism in the electro-magnetic duality, in that in both cases the
first is associated to the closed one-form while the second is not. The following
highlights the similarity between the two:

electricity ←→ contact instanton charge field w∗λ ◦ j
electric potential ←→ contact instanton potential f

magnetism ←→ contact instanton action field w∗λ

(1.9)

1.3. Triad connection, Fredholm theory and index calculations. Next we
establish the Fredholm theory and compute the index of the linearization map
and hence the virtual dimension of the relevant moduli space of contact instan-
tons. Establishing the Fredholm theory for the linearization map DΥ(w) is rather
non-trivial because the operator has different orders depending on the direction of
contact distribution ξ or on the Reeb direction Xλ and mixes the directions of the
two. See Theorem 1.10 below. Our Fredholm theory and its index calculations
strongly relies on our precise calculation of the linearization map via the contact
triad connection introduced in [OW1]. We refer to section 10 for the details of the
computations.

We denote by Σ either the closed Riemann surface or the punctured one. Re-
calling the decomposition

Y = Y π + λ(Y )Xλ,
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we have the decomposition

Ω0(w∗TQ) ∼= Ω0(Σ,R) ·Xλ ⊕ Ω0(w∗ξ).

Here we use the splitting

TQ = spanR{Xλ} ⊕ ξ
where spanR{Xλ} := L is a trivial line bundle and so

Γ(w∗L) ∼= C∞(Σ).

Define the map Υ(w) = (∂
π
w,w∗λXλ). From the expression of the map Υ =

(Υ1,Υ2), the map defines a bounded linear map

DΥ(w) : Ω0(w∗TQ)→ Ω(0,1)(w∗ξ)⊕ Ω2(Σ). (1.10)

We choose k ≥ 2, p > 2. We then establish the following formula

Theorem 1.10 (Theorem 10.1). Decompose DΥ(w) = DΥ1(w)⊕DΥ2(w) accord-
ing to the codomain of (1.10). Then we have

DΥ1(w)(Y ) = ∂
∇π
Y π + T

π,(0,1)
dw (Y π) +B(0,1)(Y π)

+
1

2
λ(Y )(LXλJ)J(∂πw) (1.11)

DΥ2(w)(Y ) = −∆(λ(Y )) dA+ d((Y πcdλ) ◦ j) (1.12)

where T
π,(0,1)
dw and B(0,1) are the (0, 1)-components of Tπdw and B respectively where

B : Ω0(w∗TQ)→ Ω1(w∗ξ), Tπdw are the zero-order differential operators given by

B(Y ) = −1

2
w∗λ ((LXλJ)JY )

and

Tπdw(Y ) = πT (Y, dw).

We denote by Σ the real blow-up of the punctured Riemann surface Σ̇ associated
to the set of positive and negative punctures

{p1, · · · , ps+}, {q1, · · · , qs−}

and denote by ∂+
i Σ and ∂−j Σ the associated boundary components. We also denote

by γ+
i and γ−j the given asymptotic Reeb orbits at the punctures.

We fix a trivialization Φ : w∗ξ → Σ × R2n and denote by Ψ+
i (resp. Ψ−j ) the

induced symplectic paths associated to the trivializations Φ+
i (resp. Φ−j ) along the

Reeb orbits γ+
i (resp. γ−j ) at the punctures pi (resp. qj) respectively. Then we

have the following index formula for the case of vanishing charge. We leave more
accurate statements and proof to section 11, and the case of non-exact contact
instantons elsewhere.

Theorem 1.11. Consider the map Υ defined by Υ(w) = (∂
π
w, d(w∗λ ◦ j)) on a

puncture Riemann surface Σ̇. Let w be an exact contact instanton, i.e. a solution
of Υ(w) = 0 with Q(pi) = 0 for all punctures pi.

(1) There exists a compact operator

K : Ω0
k,p(w

∗TQ)→ Ω
(0,1)
k−1,p;δ(w

∗ξ)⊕ Ω2
k−2,p;δ(Σ)
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such that

‖DΥ(w)Y ‖k,p;δ ≤ C(‖DΥ1(w)(Y )‖k−1,p;δ + ‖π1K(Y )‖k−1,p;δ

+‖DΥ2(w)(Y )‖k−2,p;δ + ‖π2K(Y )‖k−2,p)

and so the completed map

DΥ(w) : Ω0
k,p;δ(w

∗TQ)→ Ω
(0,1)
k−1,p;δ(w

∗ξ)⊕ Ω2
k−2,p;δ(Σ)

is a Fredholm operator if δ ∈ R \ Dw for some discrete subset Dw of R.
(2) Furthermore, provided 0 < δ < δ0 for a sufficiently small δ0 depending only

on w,

IndexDΥ(w) = n(2− 2g − s+ − s−) + 2c1(w∗ξ)

+

s+∑
i=1

µCZ(Ψ+
i )−

s−∑
j=1

µCZ(Ψ−j )

+

s+∑
i=1

(m(γ+
i ) + 1) +

s−∑
j=1

(m(γ−j ) + 1)− g

where µCZ(Ψ) is the Conley-Zehnder index of the symplectic path Ψ asso-
ciated to the closed Reeb orbit [CZ, RS, Ho1].

We would like to highlight the appearance of the second line that extracts ex-
plicit contribution depending on the mutiplicity of the closed Reeb orbits. Such an
appearance in this kind of index formula seems to be new, at least such an explicit
dependence on the multiplicity does not shows up in the standard index formula in
symplectic field theory such as in Proposition 5.3 [Bo] (with N = 0.)

One important feature of our analysis of (1.5) is that we do not take symplectiza-
tion of contact triad (Q,λ, J) but directly work on the contact manifold Q. Hence it
enables us to get ready to construct compactification of the smooth moduli space of
contact instantons (at least of exact contact instantons) with punctured Riemann
surfaces as their domains and contact manifold Q as their targets, and so to define
a genuinely contact topological invariants without taking the symplectization of Q.
Indeed the question if two contact manifolds having symplectomorphic symplec-
tization are contactomorphic or not was addressed in the book by Cieliebak and
Eliashberg [CE] and recently S. Courte [Co] announced construction of two contact
manifolds that have symplectomorphic symplectization which are not contactomor-
phic. In this regard, we hope to investigate the following question stated in [Co] in
the future.

Question 1.12. Does there exist contact structures ξ and ξ′ on a closed manifold
M that have the same classical invariants and are not contactomorphic, but whose
symplectizations are (exact) symplectomorphic?

We thank Rui Wang for the collaboration of the works [OW1, OW2, OW3]
which the current research is partially based on. We also thank her for some useful
comments on the present paper.
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2. Three elliptic twistings of contact Cauchy-Riemann map equation

The contact Cauchy-Riemann equation itself ∂
π
w = 0 does not form an elliptic

system because it is degenerate along the Reeb direction: Note that the rank of
w∗TQ has 2n+ 1 while that of w∗ξ ⊗ Λ0,1(Σ) is 2n. Therefore to develop suitable
deformation theory and a priori estimates, one needs to lift the equation to an
elliptic system. In hindsight, the pseudoholomorphic curve system of the pair (a,w)
is one such lifting via introducing an auxiliary variable a a function on the Riemann
surface, when the one-form w∗λ ◦ j is exact. Hofer [Ho1] did this by lifting the
equation to the symplectization R×Q and considering the pull-back function a :=
s ◦ w of the R-coordinate function s of R × Q. By doing so, he added one more
variable to the equation ∂

π
w = 0 while adding 2 more equations w∗λ ◦ j = da and

produced an elliptic system which is exactly becomes Gromov’s pseudoholomorphic
curve system on the symplectization R×Q.

2.1. Contact instanton lifting of contact Cauchy-Riemann map. It turns
out, again by hindsight, the current contact instanton map system

∂
π
w = 0, d(w∗λ ◦ j) = 0 (2.1)

is such an elliptic lifting which is more natural in some respect in that it does not
introduce any additional variable and keeps the original ‘bulk’, the contact manifold
Q.

The relevant a priori (local) elliptic estimates and the global exponential decay

estimates near the puncture of the punctured Riemann surface Σ̇ have been estab-
lished in [OW2]. This is the lifting whose study is the main theme of the present
paper and is also closely related to the following lifting of gauged sigma model with
abelian Hick’s field. We would like to emphasize that this lifting includes the study
of pseudoholomorphic curves in symplectization as the special case of exact w∗λ◦j.

2.2. Gauged sigma model lifting of contact Cauchy-Riemann map. There
is another lifting of w this time involving a section of complex line bundle

Lλ → Q (2.2)

whose fiber at q ∈ Q is given by

Lλ,q = Rλ,q ⊗ C

where Rλ → Q is the trivial real line bundle whose fiber at q is given by

Rλ,q = R{Xλ(q)}.
Note that Lq has a canonical identification with the bundle

T (R+ ×Q)|{r=1} = R · ∂
∂s
⊕ R ·Xλ ⊕ ξ

in the symplectization R+ ×Q.
Now let w : Σ → Q be a smooth map where Σ is either closed or a punctured

Riemann surface, and χ be a section of the pull-back bundle w∗Lλ.

Definition 2.1. We call a triple (w, j, χ) consisting of a complex structure j on Σ,
w : Σ→ Q and a C-valued one-form χ a gauged contact instanton if they satisfy{

∂
π
w = 0

∂χ = 0, Imχ = w∗λ.
(2.3)
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This system is a coupled system of the contact Cauchy-Riemann map equation
and the well-known Riemann-Hilbert problem of the type which solves the real part
in terms of the imaginary part of holomorphic functions in complex variable theory.
A detailed study of this elliptic system will be carried out elsewhere.

2.3. Pseudoholomorphic lifting of contact Cauchy-Riemann map. The above
two liftings do not have any restriction on the cohomology class [w∗λ◦j] ∈ H1(Σ̇;R).
On the other hand, there is the more commonly known elliptic twisting under the
restriction that w∗λ ◦ j is exact, and with the specification of the anti-derivative of
w∗λ ◦ j as an auxiliary variable a : Σ→ R by requiring

w∗λ ◦ j = da

whose expounding is now in order. We call a contact instanton exact if [w∗λ◦j] = 0.

Remark 2.2. We would like to point out that the exact case itself forms a closed
realm in the study of contact instantons and does not need to involve symplecti-
zation in its study. If we restrict to the exact contact instantons, any adiabatic
puncture with T = 0 will be removable as in the case of pseudoholomorphic curves
by Theorem 1.8. This enables us to perform the standard Gromov-Floer theory
type compactification of the moduli space of exact contact instantons and to define
a Floer homology type invariants. However the geometry of contact instantons is
not exactly the same as that of pseudoholomorphic curves in symplectization and
so we do not expect the algebraic structures of the contact homology type invari-
ants coincide. We will come back elsewhere to the study of compactification of the
moduli space of exact contact instantons and of construction of the relevant contact
homology type invariants.

We consider the canonical symplectization E → Q (see section 3).

Note that in the presence of contact form λ, any smooth map w : Σ̇→ Q can be
naturally lifted to a map w̃ : Σ̇→W so that

w̃(z) = a(z)λ(w(z)) ∈Ww(z) ⊂ T ∗w(z)Q (2.4)

for some function a : Σ̇→ R+ or equivalently to a map

(a,w) : Σ̇→ R×Q

via the trivialization exp ◦Φλ : R×Q→W .
Now we equip (Q, ξ) with a triad (Q,λ, J) and the cylindrical almost complex

structure J̃ = J0 ⊕ J . Then the derivative dw̃ = da ∂
∂s ⊕ dw can be further decom-

posed to

dw̃(z) = da
∂

∂s
⊕ w∗λXλ ⊕ dπw. (2.5)

as a TW -valued 1-form with respect to the splitting

Hom(TzΣ̇, Tw̃(z)W ) = Hom(TzΣ̇, V Tw̃(z)W )⊕Hom(TzΣ̇, HTw̃(z)W ).

By definition, we have

dπd̃w = dw.

It was derived by Hofer [Ho1] that w̃ is J̃-holomorphic if and only if (a,w) satisfies{
∂
π
w = 0

w∗λ ◦ j = da.
(2.6)
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3. Canonical symplectization and Hofer’s λ-energy; revisit

In this subsection, we first recall the canonical symplectization of contact mani-
fold (Q, ξ) explained in Appendix 4 [Ar], which does not involve the choice of contact
form. We denote this canonical symplectization by (W,ωW ) which is defined to be

{α ∈ T ∗Q | α 6= 0, kerα = ξ} ⊂ T ∗Q \ {0}. (3.1)

When Q is oriented and a positive contact form λ is given, we can canonically
lift a map w : Σ̇ → Q to a map ŵ : Σ̇ → W . We then examine the relationship
between w being a contact instanton and ŵ being a pseudoholomorphic curves
on W with respect to scale-invariant almost complex structure on W . We give a
geometric description of Hofer’s remarkable energy introduced in [Ho1] in terms
of this canonical symplectization. This energy is the key ingredient needed in
the bubbling-off analysis and so in the construction of the compactification of the
moduli spaces of pseudoholomorphic curves needed to develop the symplectic field
theory [EGH], [BEHWZ]. In section 5, we will then introduce its variant for the
study of contact instanton maps whose charge is not necessarily vanishing, i.e.
w∗λ ◦ j does not have to be exact.

Consider the (2n+2)-dimensional submanifold W of T ∗Q defined in (3.1). When
we fix an orientation Q, we can consider

W = {α ∈ T ∗Q \ {0} | kerα = ξ, α(~n) > 0} (3.2)

where ~n is a vector such that R{~n} ⊕ ξ becomes a positively oriented basis. Note
that W is a principal R+-bundle over Q that is trivial.

We denote by iW : W ↪→ T ∗Q and by Θ the Liouville one-form on T ∗Q. The
basic proposition is that W carries the canonical symplectic form

ωW = −i∗W dΘ.

One important point of this canonical symplectization is the fact that it depends
only on the orientation of Q but does not depend on the choice of contact form
λ. The symplectic form ωW provides a natural symplectic (Ehresman) connection
provided by the splitting

TW = V TW ⊕ T̃Q (3.3)

where V TW is the vertical tangent bundle and

T̃Q|α = {η ∈ TαW | ωW (η, ·) ≡ 0}. (3.4)

Now we choose a contact form λ so that λ∧ (dλ)n is positive with respect to the
given orientation. Since λ provides a section of of W → Q, it induces a trivialization
of W as the principal R+-bundle

Φλ : R+ ×Q→W ; (r, q) 7→ r λ(q)

which in turn leads to the natural isomorphism

R⊕ TQ ∼= TW = R · λ⊕ T̃Q (3.5)

defined by (c, Z) 7→ cλ⊕ Z̃. Combining this with (3.3), we obtain the splitting

TW = R̃ · λ⊕ R̃ ·Xλ ⊕ ξ̃. (3.6)

We note that there is a canonical paring on R̃ · λ⊕ R̃ ·Xλ given by

〈λ,Xλ〉 = 1
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and so it carries the canonical symplectic form thereon. We summarize the above
discussion into

Proposition 3.1. Suppose Q is given an orientation and a positive contact form
λ. Then it provides a natural R+-equivariant symplectomorphism

Φλ : R+ ×Q→W

whose derivative induces a canonical R+-equivariant symplectic vector bundle iso-
morphism

dΦ : (R2 ⊕ TQ, ω0,2 ⊕ dλ)→ (TW,ωW )

dΦλ(a, b, Z) = a λ̃+ b X̃λ + Z̃. (3.7)

The usual symplectization of (Q,λ) used in the literature is nothing but R− ×
Q with the pull-back symplectic form (Φλ)∗ωW thereto, which can be explicitly
written as

(Φλ)∗ωW = (Φλ ◦ iW )∗Θ = d(r π∗λ)

where r = rλ ∈ R+ is the radial coordinate such that the embedding Q ↪→ W
corresponds to the hypersurface r = 1 and π : R+ × Q → Q the projection. If we
now pull-back this form to R × Q by the diffeomorphism exp : R × Q → R+ × Q
defined by exp(s, q) = (es, q), then the corresponding symplectic form becomes

es(π∗dλ+ ds ∧ π∗λ), π : R×Q→ Q.

Next we involve an endomorphism J : ξ → ξ with J2 = −id such that (ξ, J, gλ)
with gλ = dλ(·, J ·) becomes a Hermitian vector bundle. For the purpose of doing
analysis on R×Q, we need to provide a cylindrical metric thereon which we choose

gλ + dr2 = dλ(·, J ·) + λ⊗ λ+ dr2

and cylindrical almost complex structure

J̃ = J0 ⊕ J

on T (R×Q) ∼= R{ ∂∂r} ⊕ R{Xλ} ⊕ ξ. On the other hand, the pull-back symplectic
form becomes

es(π∗dλ+ ds ∧ π∗λ)

which is not cylindrical. The above fact that the pull-back symplectic form is

not cylindrical makes the topological control of the full harmonic energy of a J̃-
holomorphic map u : Σ → R × Q by the symplectic area of this symplectic form
not possible in general, unless one has the control of the coordinate a = s ◦ w.

Instead one tries to control the local (in target) harmonic energy by considering
the map

ψ̂ : R×Q→W ; ψ̂(s, x) = ψ(s) (π∗λ)(x)

associated to each monotonically increasing function ψ such that

ψ(s) =

{
1 for s ≥ R1

1
2 for s ≤ R0

(3.8)

for any pair R0 < R1 of real numbers. We measure the symplectic area of the

composition ψ̂ ◦ w : Σ̇ → W for all possible variations of such ψ. Hofer’s original
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definition of this type of energy then can be expressed as the integral

EC(u) := sup
ψ

∫
Σ̇

(ψ̂ ◦ u)∗ωW (3.9)

= sup
ψ

∫
Σ̇

(ψ̂ ◦ u)∗d(r π∗λ)

= sup
ψ

∫
Σ̇

d(ψ(s)π∗λ) (3.10)

= sup
ψ

(∫
Σ̇

ψ(a)dw∗λ+ ψ′(a) da ∧ w∗λ
)
. (3.11)

Note that (3.10) is precisely the same as Hofer’s original definition of his energy
given in [Ho1]. Later in [BEHWZ], the authors split this energy into two parts, one
purely depending on w

Eπ(w) =

∫
Σ̇

dw∗λ

and the other

Eλ(u) = sup
ψ

∫
Σ̇

ψ′(a) da ∧ w∗λ.

In retrospect, it was an amazing insight of Hofer [Ho1] that this way of considering
nicely controls the bubbling-off analysis when there is no apparent way of controlling
the asymptotic behaviour of the bubble map C → R ×Q when the bubble map is
not confined in a compact domain of R×Q.

4. Jenkins-Strebel quadratic differential and minimal area metrics

For any given marked Riemann surface (Σ, {r1, · · · , rk}), we denote by Σ̇ the
associated punctured Riemann surface. We assume either genus Σ ≥ 1 or genus Σ =
0 with k ≥ 2.

Following Zwiebach [Z], we give a description of the notion of minimal area metric

associated to the given punctured Riemann surface Σ̇ and its relationship with the
Jenkins-Strebel quadratic differentials. We also refer to section 2 of Bergmann’s
preprint [Be] for some discussion that is in the similar spirit as that of this section.

Definition 4.1. A metric h = ρ |dz| is called admissible for a set of constants Aj
if ∫

γ;γ∼γj
ρ |dz| ≥ Aj

for any curve γ homotopic to γj in Σ̇.

In this metric, one has the semi-infinite tubes of circumference ` ≥ Aj at each
puncture rj . Near the puncture rj , one must have

ρ2(z) ∼ (Aj/2π|z|)2.

Definition 4.2 (Reduced area [Z]). The reduced area, denoted by Areared(Σ, h)
is given by

Areared(Σ, h) = lim
δ→0

∫ ∫
Σ(δ)

dA+
1

2π
ln δ

k∑
j=1

A2
j

 (4.1)

where Σ(δ) denotes the surface obtained by excising the discs |zj | ≤ δ from Σ.
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Definition 4.3 (Minimal area metric). A metric h on Σ̇ is called a minimal area
metric if the reduced area is minimal among all possible metrics arising from qua-
dratic differentials.

From now on, we restrict ourselves to the case of g = 0. We will need the
following basic existence and the uniqueness result proved in [Z]

Theorem 4.4 (Zwiebach [Z]). When g = 0 and k ≥ 3, there exists a unique
minimal area metric associated to each (Σ, j) ∈ M0,k, which continuously extends

to the compactification M0,k.

In other words, the minimal area metric provides a natural slice to the well-
known isomorphism between the set of complex structures and the set of conformal
isomorphism classes of associated metrics, which respects the sewing rule of the
degeneration of conformal structures. A similar representation of the conformal
structure on the boundary punctured discs, the open string analogue of the above
theorem, was used in Fukaya and the author’s work [FO] in their study of adiabatic
degeneration of pseudo-holomorphic polygons with Lagrangian boundaries on the
cotangent bundle.

It is also shown that each minimal area metric arises from Jenkins-Strebel qua-
dratic differential [J], [St] whose singularities are at most a pole. Some brief account
on Jenkin-Strebel quadratic differential should be in order. A quadratic differential
ϕ on a Riemann surface Σ is a set of function elements φi(zi), meromorphic in the
local coordinates zi = xi + iyi with transformation property

φi(zi)(dzi)
2 = φj(zj)(dzj)

2, (4.2)

under a change of local coordinates. A quadratic differential defines a metric
|φi(zi)||dzi|2.

A horizontal trajectory of a quadratic differential is a curve along which φ(z)(dz)2

is real and positive.

Definition 4.5. A Jenkins-Strebel quadratic differential is a quadratic differential
for which the nonclosed trajectories cover a set of measure zero on the surface.

A JS quadratic differential decomposes a surface into characteristic ring domains,
the maximal ring domains swept by the closed trajectories. These ring domains can
be annuli or punctured discs.

On a punctured discs D(1)\{0} with coordinates w, the JS quadratic differential
is given by the form

φJS(z) dz2, φJS(z) = − a2

(2π)2

1

z2
(4.3)

where 2πa is the length of the horizontal trajectory of the associated minimal area
metric. The metric is flat and isometric to the semi-infinite tube (−∞, 0]×S1 with
coordinates (τ, t) with u = τ+i t and proportional to the standard metric dτ2 +dt2.
This is nothing but the canonical isothermal coordinate of the metric and satisfies

du2 = − a2

(2π)2

1

z2
dz2. (4.4)

Under the minimal area metric for the case of g = 0, Σ̇ is a finite union of k
semi-infinite cylinders and a finite set of cylinders with finite height of circumference
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2π. So each cylinder is isometric to the standard cylinders, either [0,∞) × S1 or
[0, `]× S1 with metric

h =
( a

2π

)2

(dτ2 + dt2)

where (τ, t) is the standard coordinates on the cylinder. On each cylinder it carries
the vector field ∂

∂τ ,
∂
∂t which are invariant under the transformation

(τ, t) 7→ (τ + τ0, t+ t0)

and so depends only on the metric. Denote by S ⊂ Σ̇ the union of sewing seams of
the set of cylinders given above. Then Σ̇ carries a vector field V = V (j) that restrict
to the coordinate vector field ∂

∂τ on each cylinder. As a result V (j) is discontinuous
along the S but its flow lines form a foliation those leaves are continuous even across
the seams. The vector field V is called the vertical vector field and the associated
foliation is called the vertical foliation of the quadratic differential associated to
the minimal area metric [St]. Similarly the vector field ∂

∂t glues to define a global
vector field H(j) called the horizontal vector field, which is continuous except at a
finite number of points.

We would like to mention that when we give a distinguished marked point r0

as the ‘output’ and put the rest as the ‘input’ marked points as in the definition
of A∞-structures as in [FO, FOOO], the flow of the vector field V (j) becomes an
oriented foliation whose leaves consist of the flow lines of V (j). Then the flow
become continuous even across the seams.

We will also need to consider the case g = 0 and k = 2. (See [WZ] for the

relevant discussion.) In this case, Σ̇ with the minimal area metric is isometric
to the standard cylinder R × S1 with the metric dτ2 + dt2. While the metric is
uniquely determined, its associated flat coordinates are defined uniquely modulo
the translations and rotations

(τ, t) 7→ (τ + τ0, t+ t0), τ0 ∈ R, t0 ∈ S1.

5. Off-shell energy of contact instantons

Fix a Kähler metric h on (Σ, j). The norm |dw| of the map

dw : (TΣ, h)→ (TQ, g)

with respect to the metric g is defined by

|dw|2g :=

2∑
i=1

|dw(ei)|g2
,

where {e1, e2} is an orthonormal frame of TΣ with respect to h.
The following are the consequences from the definition of contact Cauchy-Riemann

map and the compatibility of J to dλ on ξ, whose proofs we omit but refer to [OW1].

Proposition 5.1. Denote gJ = ω(·, J ·) and the associated norm by | · | = | · |J . Fix
a Hermitian metric h of (Σ, j), and consider a smooth map u : Σ → M . Then we
have

(1) |dπw|2 = |∂πw|2 + |∂πw|2,

(2) 2w∗dλ = (−|∂πw|2 + |∂πw|2) dA where dA is the area form of the metric h
on Σ.

(3) w∗λ ∧ w∗λ ◦ j = |w∗λ|2 dA
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(4) |∇w∗λ|2 = |dw∗λ|2 + |δw∗λ|2.

We then introduce the ξ-component of the harmonic energy, which we call the
π-harmonic energy. This energy equals the contact area

∫
w∗dλ ‘on shell’ i.e., for

any contact Cauchy-Riemann map, which satisfies ∂
π
w = 0

Definition 5.2. For a smooth map Σ̇→ Q, we define the π-energy of w by

Eπ(j, w) =
1

2

∫
Σ̇

|dπw|2. (5.1)

As discovered by Hofer in [Ho1] in the context of symplectization, the π-harmonic
energy itself is not enough for the crucial bubbling-off analysis needed for the equa-
tion (2.1). This is only because the bubbling-off analysis requires the study of
asymptotic behavior of contact instantons on the complex place C. A crucial dif-
ference between the current case of contact instantons from Gromov’s theory of
pseudoholomorphic curves on symplectic manifolds is that there is no removal sin-
gularity result of the type of harmonic maps (or pseudoholomorphic maps). Because
of this, one needs to examine the Xλ-part of energy that controls the asymptotic
behavior of contact instantons near the puncture. For this purpose, the Hofer-type
energy introduced in [Ho1] is crucial. In this section, we generalize this energy to
the general context of non-exact case without involving the symplectization.

Following the modification made in [BEHWZ] of Hofer’s original definition [Ho1]
(and denoting ϕ = ψ′ for the function ψ given in section 3), we introduce the
following class of test functions

Definition 5.3. We define

C = {ϕ : R→ R≥0 | suppϕ is compact,

∫
R
ϕ = 1}. (5.2)

Let w : Σ̇ → Q be a contact instanton with the asymptotic charge Q(p) at the
puncture. Recall this number depends only on the homology class [γ] of the loop

γ = w|Dδ(p)(τ, ·) ⊂ Σ̇ \ {p} by the closedness equation of w∗λ ◦ j, which does not
depend on τ either.

Then on the given cylindrical neighborhood Dδ(p) \ {p}, we can write

w∗λ ◦ j +Q(p) dt = df

for some function f : [0,∞) × S1 → R. Here dt is the one-form that is made of
the one-form dt defined before on each cylinder. The form is globally continuous
except at the finite number points at which the vector field ∂

∂t is not continuous.
We call f the contact instanton potential.

We remark that when w is given, the function f on Dδ(p) \ {p} is uniquely
determined modulo the shift by a constant.

Definition 5.4 (EC-energy). Let w satisfy d(w∗λ ◦ j) = 0. Then we define

EC(j, w) = sup
ϕ∈C

∫
Σ

d(ψ(f)) ∧ df ◦ j = sup
ϕ∈C

∫
Σ

d(ψ(f)) ∧ (−w∗λ+Q(p) dτ).

We note that

d(ψ(f)) ∧ df ◦ j = ψ′(f)df ∧ df ◦ j = ϕ(f)df ∧ df ◦ j ≥ 0

and hence we can rewrite EC(j, w) into

EC(j, w) = sup
ϕ∈C

∫
Σ

ϕ(f)df ∧ df ◦ j.
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Proposition 5.5. For a given smooth map w satisfying d(w∗λ ◦ j) = 0, we have
EC;f (w) = EC,g(w) whenever df = w∗λ ◦ j + Q(p) dt = dg on D2

δ(p) \ {p} (and so
g(z) = f(z) + c for some constant c on each connected component of Q).

Proof. Certainly df or df ◦ j are independent of the addition by constant c. On the
other hand, we have

ϕ(g) = ϕ(f + c)

and the function a 7→ ϕ(a + c) still lie in C. Therefore after taking the supremum
over C, we have derived

EC,f (j, w) = EC,g(j, w).

This finishes the proof. �

This proposition enables us to introduce the following

Definition 5.6 (λ-energy at a puncture p). We denote the common value of
EC,f (j, w) by Eλp (w), and call the λ-energy at p.

The following then would be the preliminary definition of the total energy.

Definition 5.7 (Total energy). Let w : Σ̇→ Q be any smooth map. We define the
total energy of w by

E(j, w) = Eπ(j, w) +

k∑
l=1

Eλpl(j, w). (5.3)

We denote

Eλ(j, w) =

k∑
l=1

Eλpl(j, w).

Remark 5.8. (1) To take further analogy with physics, one may regard the
π-harmonic energy as the ‘kinetic energy’ of the contact instanton and the
λ-energy as the ‘potential energy’ thereof respectively.

(2) The above definition is unsatisfying and incomplete as an off-shell energy of

the pair (j, w) when we vary complex structure j on the punctured surface Σ̇.
For this purpose, we need to involve the complex structure in the definition
of Eλ also like Eπ(j, w) does. This is where the Zwiebach’s notion of
minimal area metric [Z], [WZ] enters which extends the cylindrical structure
to the full Riemann surface not just to the punctured neighborhoods.

In the rest of the section, we assume Σ has genus 0. The reason for this restriction
is only because for the higher genus case, the minimal area metric representation of
conformal structure is over-counting [Z]. Other than this, the discussion below is
equally applied to any conformal structure represented by a minimal area metric.

First, we assume k ≥ 2, i.e., the number of marked points at least 2. In this case,
the conformal structure carries the minimal area metric representation [Z]. Under

the minimal area metric for the case of g = 0, Σ̇ is a finite union of k semi-infinite
cylinders and a finite set of cylinders with finite height of circumference 2π. So
each cylinder is isometric to the standard cylinders, either [0,∞)×S1 or [0, `]×S1

with metric

h =
( a

2π

)2

(dτ2 + dt2)
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where (τ, t) is the standard coordinates on the cylinder. On each cylinder it carries
the vector field ∂

∂τ which is invariant under the transformation

(τ, t) 7→ (τ + τ0, t+ t0)

and so depends only on the metric. Denote by S ⊂ Σ̇ the union of sewing seams
of the set of cylinders given above. We label the marked points as {r0, · · · , rk} for

k ≥ 1 so that r0 is incoming and the rest are outgoing. Then Σ̇ carries a vector
field V = V (j) that is rotationally invariant and restricts to the coordinate vector
field ∂

∂τ on each cylinder. (Here ‘V ’ stands for ‘vertical’ since the meridian circles
are often called ‘horizontal foliation’.) (See section 4 and [J, St, Z].)

We can also associate a tree T consisting of the cores of the above cylinders
that is naturally oriented consistently with the unique incoming assignment of the
puncture r0. We denote by `(e) the length of the edge e of the tree. There is also
the unique incoming exterior edge incident to r0 and the unique interior vertex of
the exterior edge. We denote by vdist the unique distinguished interior vertex.

Denote by Q(ri) = Q(eexti ) the charge at the puncture ri, and assign these num-
bers to the exterior edges incident to the punctures respectively. We then associate
charge Q(e) to each interior edge e so that the following balancing condition holds∑

e∈E(v)

Q(e) = 0 (5.4)

for all interior vertex v ∈ V int(T ) where E(v) is the set of edges incident to the
vertex v. This uniquely determines the charge functionQ : E(T )→ R. Furthermore
this balancing condition makes the following lemma hold.

Lemma 5.9. Consider the current
∑
e∈E(T )Q(e) dte, i.e., the distributional one-

form on Σ̇. Then it is closed as a current, provided (5.4) holds at every interior
vertex v ∈ V (T ).

We remark that the coordinate te defined up to the rotation of S1 can be uniquely
determined by assigning a tangent direction at each puncture. But the one-form
Q(e) dte is well-defined independently of the rotations. In particular the current∑

e∈E(T )

Q(e) dte

is smooth away from a finite number of Lipschitz singularities located in the sewing
seams.

Next we associate the charges Q(w; e) of contact instanton w by the integrals

Q(w; e) = −
∫
S1
e

w∗λ ◦ j

where S1
e is a meridian circle of the cylinder associated to the edge e ∈ E(T ). Then

we consider the one-form

w∗λ ◦ j +
∑

e∈E(T )

Q(e) dte

as a current, where (τe, te) ∈ [0, `(e)] × S1 the natural cylindrical coordinates on
the cylinder associated to the edge e. By construction this current is exact and so
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we can solve the distributional equation

w∗λ ◦ j +
∑

e∈E(T )

Q(w; e) dte = df

a priori for some distribution f .

Proposition 5.10. The distribution f is a continuous function on Σ̇ which is
smooth away from the singularities mentioned above.

Proof. By the property of the minimal area metric which is rotationally symmetric
on each cylinder, the function f depends only on the coordinate τe and can be
uniquely determined by the integral formula

f(z) =

∫ z

vdist

w∗λ ◦ j +
∑

e∈E(T )

Q(w; e) dte


and setting the normalization condition

f(vdist) = 0. (5.5)

This integral is path-independent by the exactness of the current and so is well-
defined. All the properties stated then immediately follows from the expression of
f . �

This function f seems to deserve a name.

Definition 5.11 (Contact instanton potential). We call the above normalized func-
tion f the contact instanton potential of the contact instanton charge form w∗λ◦ j.

If Σ̇ carries only one puncture, Σ̇ ∼= C and so cannot carry the above minimal
area representation but in this case the closed form w∗λ ◦ j is automatically exact.
Therefore there exists a function f : Σ̇ → R such that w∗λ ◦ j = df in which case
we may regard the pair (f, w) as a pseudoholomorphic map to the symplectization
as in [Ho1].

Now we define the final form of the off-shell energy. Let w : Σ̇ → Q be any
smooth map. We define the total energy of w by

E(j, w) = Eπ(j, w) + Eλ(j, w) (5.6)

We define

Eλ(j, w) = sup
ϕ∈C

∫
Σ

d(ϕ(f)) ∧ df ◦ j. (5.7)

This energy will be used in our construction of the compactification of moduli space
of contact instantons of genus 0 in a sequel. In the rest of the paper, we suppress
j from the arguments of the energy E(j, w) and just write E(w).

6. Contact instantons on the plane

As in Hofer’s bubbling-off analysis in pseudo-holomorphic curves on symplecti-
zation [Ho1], it turns out that study of contact instantons on the plane plays a
crucial role in the bubbling-off analysis of contact instantons too.

We recall the following useful lemma from [HV] whose proof we refer thereto.



20 YONG-GEUN OH

Lemma 6.1. Let (X, d) be a complete metric space, f : X → R be a nonnegative
continuous function, x ∈ X and δ > 0. Then there exists y ∈ X and a positive
number ε ≤ δ such that

d(x, y) < 2δ, max
By(ε)

f ≤ 2f(y), ε f(y) ≥ δf(x).

For this purpose, we start with a proposition which is an analog to Theorem 31
[Ho1]. Our proof is a slight modification and some simplification of Hofer’s proof
of Theorem 31 [Ho1] in our generalized context.

Proposition 6.2. Let w : C→ Q be a solution of (2.1). Regard ∞ as a puncture
of C = CP 1 \ {∞}. Suppose |dw|C0 <∞ and

Eπ(w) = 0, Eλ∞(w) <∞. (6.1)

Then w is a constant map.

Proof. From the equality |dπw|2 dA = d(w∗λ) and the hypothesis Eπ(w) = 0 imply
|dπw|2 = 0 = d(w∗λ) in addition to d(w∗λ ◦ j) = 0. Therefore we derive that
dπw = 0. This implies

dw = w∗λXλ(w)

with w∗λ a bounded harmonic one-form. The boundedness of w∗λ follows from the
hypothesis |dw|C0 < ∞. Since C is connected, the image of w must be contained
in a single leaf of Reeb foliation. We parameterize the leaf by γ : R→ Q, γ = γ(t).

Then there is a smooth function b = b(z) such that

w(z) = γ(b(z)).

Since w∗λ is exact on C, w∗λ = db for some function b. Since we also have d(w∗λ ◦
j) = 0,

d(db ◦ j) = 0

i.e., b : C → R is a harmonic function and hence b is the imaginary part of a
holomorphic function f , i.e., f(z) = a(z) + ib(z). Since b has bounded gradient.
the gradient of f is also bounded on C. Therefore f(z) = αz+β for some constants
α, β ∈ C.

Once this is achieved, the rest of the argument is exactly the same as Hofer’s
proof of Lemma 28 [Ho1] via the usage of the λ-energy bound Eλ∞(w) <∞ and so
omitted. �

Using the above proposition, we prove the following fundamental result.

Theorem 6.3. Let w : C→ Q be a solution of (2.1). Suppose

E(w) = Eπ(w) + Eλ∞(w) <∞. (6.2)

Then |dw|C0 <∞.

Proof. Suppose to the contrary that |dw|C0 = ∞ and let zα be a blowing-up se-
quence. We denote Rα = |dw(zα)| → ∞. Then by applying Lemma 6.1, we can
choose another such sequence z′α and εα → 0 such that

|dw(z′α)| → ∞, max
z∈Dεα(z′α)

|dw(z)| ≤ 2Rα, εαRα → 0. (6.3)

We consider the re-scaling maps w̃α : D2
εαRα

(0)→ Q defined by

wα(z) = w

(
z′α +

z

Rα

)
.
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Then we have

|dwα|C0;εαRα ≤ 2, |dwα(0)| = 1.

Applying Ascoli-Arzela theorem, there exists a continuous map w∞ : C → Q such
that wα → w∞ uniformly on compact subsets. Then by the a priori W k,2-estimates,
Theorem 1.4, the convergence is in compact C∞ topology and w∞ is smooth. Fur-
thermore w∞ satisfies ∂

π
w∞ = 0 = d(w∗∞λ ◦ j) = 0, Eλ(w∞) ≤ E(w) <∞ and

|dw∞|C0;C ≤ 2, |dw∞(0)| = 1.

On the other hand, by the finite π-energy hypothesis and density identity |dπw|2 dA =
d(w∗λ), we derive

0 = lim
α→∞

∫
Dεα (z′α)

d(w∗λ) = lim
α→∞

∫
DεαRα (z′α)

d(w∗αλ)

= lim
α→∞

∫
DεαRα (z′α)

|dπw̃α|2 =

∫
C
|dπw∞|2.

Therefore we derive

Eπ(w∞) = 0.

Then Proposition 6.2 implies w∞ is a constant map which contradicts to |dw∞(0)| =
1. This finishes the proof. �

An immediate corollary of this theorem and Proposition 6.2 is the following

Corollary 6.4. For any non-constant contact instanton w : C→ Q with the energy
bound E(w) <∞, we obtain

Eπ(w) =

∫
z∗λ > 0

for z = limR→∞ w(Re2πit). In particular Eπ(w) ≥ Tλ > 0.

Now we have the following refinement of the asymptotic convergence result from
[Ho1] and [OW1]. It is a refinement of Theorem 6.3 of [OW1] in that the derivative
bound |dw|C0 <∞ imposed therein is replaced by the more natural energy bound
E(w) <∞.

Theorem 6.5 (Compare with Theorem 31 [Ho1], Theorem 6.3 [OW2]). Let Σ̇
be a punctured Riemann surface equipped with a Kähler metric that is cylindrical
around punctures. Let w : Σ̇→ Q be a solution of (2.1). Let p be a given puncture.
Suppose

E(w) <∞. (6.4)

Then for any given sequence Ri →∞, there exists a subsequence, again denoted by
Ri, and a map w∞ : R× S1 → Q such that

(1) for any given K > 0, wi defined by wi(τ, t) = w(τ + τi, t) converges to w∞
uniformly on [−K,K]× S1,

(2) the image of w∞ is contained in a single leaf of Reeb foliation. Therefore
if we fix a parametrization of this leaf by γ = γ(t) for t ∈ R, then

w∞(τ, t) = γ(Q(p)τ + T (p)t).
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Furthermore one of the following alternatives holds: Consider

T (p) =

∫
w(0, ·)∗λ +

1

2

∫
[0,∞)×S1

|dπw|2 = lim
i→∞

∫
w(τi, ·)∗λ (6.5)

Q(p) = −
∫
S1

(w(0, ·))∗λ ◦ j (6.6)

(1) When T 6= 0, there exists a Reeb orbit γ of period T such that

w∞(τ, t) = γ(Q(p)τ + T (p)t)

as i→∞ where zRi(t) = w(τi, t) at each puncture p, and its period is given
by T . In this case, w(τi, ·)→ γ(T (·)) as i→∞.

(2) When T = 0, w∞(τ, t) = γ(Q(p) τ). In this case, w(τi, ·) converges to a
point in the leaf.

Combining Theorem 6.5 and Theorem 6.3, we immediately derive

Corollary 6.6. Let w be a non-constant contact instanton on C with

E(w) <∞. (6.7)

Then there exists a sequence Rj →∞ and a Reeb orbit γ such that zRj → γ(T (·))
with T 6= 0 and

T = Eπ(w), Q =

∫
z

w∗λ ◦ j = 0.

Proof. If T = 0, the above theorem shows that there exists a sequence τi →∞ such
that w(τi, ·) converges to a constant in C∞ topology and so∫

{τ=τi}
w∗λ→ 0

as i→∞. By Stokes’ formula, we derive∫
Deτi (0)

w∗dλ =

∫
τ=τi

w∗λ→ 0.

On the other hand, we have

Eπ(w) = lim
i→∞

∫
Deτi (0)

|dπw|2 = lim
i→∞

∫
Deτi

w∗dλ = 0.

This contradicts to Corollary 6.4, which finishes the proof. �

The following is the analog to Proposition 30 [Ho1].

Corollary 6.7. Let w be a contact instanton on R × S1 with E(w) < ∞. Then
|dw|C0 <∞.

Proof. As in Hofer’s proof of Proposition 30 [Ho1], we apply the same kind of
bubbling-off argument as that of Theorem 6.3 and derive the same conclusion. �
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7. Bubbling-off analysis and ε-regularity theorem

We recall from [OW2] that the local a priori W k,2-regularity estimates are es-
tablished with respect to the bounds of ‖dw‖L4 and ‖dw‖L2 . Therefore in addition
to the local a priori W k,2-regularity estimates, one should establish another crucial
ingredient, the ε-regularity result, for the study of moduli problem as usual in any
of conformally invariant geometric non-linear PDE’s. This will in turn establish
the W 1,p-bound with p > 2 (say p = 4) appears in many problems in geometry and
physics under the suitable smallness hypothesis on the relevant energy. (See [SU].)

In the current setting of contact instanton map, it is not obvious what would be
the precise form of relevant ε-regularity statement is. We formulate this ε-regularity
theorem in the setting of contact instantons. It turns out that the relevant energy
is the π-harmonic energy.

Definition 7.1. Let λ be a contact form of contact manifold (Q, ξ). Denote by
Reeb(Q,λ) the set of closed Reeb orbits. We define Spec(Q,λ) to be the set

Spec(Q,λ) =

{∫
γ

λ | λ ∈ Reeb(Q,λ)

}
and call the action spectrum of (Q,λ). We denote

Tλ := inf

{∫
γ

λ | λ ∈ Reeb(Q,λ)

}
.

We set Tλ =∞ if there is no closed Reeb orbit.
The following is a standard lemma in contact geometry

Lemma 7.2. Let (Q, ξ) be a closed contact manifold. Then Spec(Q,λ) is either
empty or a countable nowhere dense subset of R+ and Tλ > 0. Moreover the subset

SpecK(Q,λ) = Spec(Q,λ) ∩ (0,K]

is finite for each K > 0.

Remark 7.3. A priori we cannot rule out the possibility Spec(Q,λ) = ∅. Nonemp-
tyness of this set is precisely the content of Weinstein’s conjecture: Any contact
form λ of a contact manifold (Q, ξ) carries a closed Reeb orbit. The conjecture
has been proved by Taubes [T] in 3 dimensional case after other scattered results
obtained earlier.

The constant Tλ will enter in a crucial way in the following ε-regularity statement.
The proof of this theorem will closely follow the argument used in [Oh3, section 8.4]
and [Oh2] by adapting it to the proof of the current ε-regularity theorem with the
replacement of the standard harmonic energy by the π-harmonic energy. However
there is one marked difference between the current ε-regularity statement and that
of pseudoholomorphic curves because of the second order part d(w∗λ ◦ j) = 0 of
contact instanton map: The local W k,2 a priori estimate given in Theorem 1.4
plays a crucial role in establishing that the limit map of a subsequence obtained via
application of Ascoli-Arzela theorem still satisfies the equation ∂

π
w = 0, d(w∗λ ◦

j) = 0.

Theorem 7.4. Denote by D2(1) the closed unit disc. Let w : D2(1)→ Q satisfy

∂
π
w = 0, d(w∗λ ◦ j) = 0, Eλ(w) < K0.
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Then for any given 0 < ε < Tλ and w satisfying Eπ(w) < Tλ− ε, and for a smaller

disc D′ ⊂ D′ ⊂ D, there exists some K1 = K1(D′, ε,K0) > 0

‖dw‖C0;D′ ≤ K1 (7.1)

where K1 depends only on (Q,λ, J), ε, D′ ⊂ D.

Proof. Suppose to the contrary that there exists a disc D′ ⊂ D with D′ ⊂
◦
D and

a sequence {wα} such that

∂
π
wα = 0, d(wα ◦ j) = 0

and satisfy

Eπλ,J;D(wα) < Tλ − ε, , Eλ(wα) < K0, ‖dwα‖C0,D′ →∞ (7.2)

as α→∞. Let xα ∈ D′ such that |dwα(xα)| → ∞. By choosing a subsequence, we

may assume that xα → x∞ ∈ D
′ ⊂

◦
D. We take a coordinate chart centered at x∞

on Dx∞(δ) ⊂
◦
D and identify Dx∞(δ) with the disc D2(δ) ⊂ C and x∞ with 0 ∈ C.

This can be done by choosing δ > 0 sufficiently small since we assume D
′ ⊂

◦
D.

Then xα → 0. We choose δα → 0 so that δα|dwα(xα)| → ∞.
We adjust the sequence xα to yα by applying Hofer’s lemma, Lemma 6.1, so that

yα → 0 and

max
x∈Byα (εα)

|dwα| ≤ 2|dwα(yα)|, δα|dwα(yα)| → ∞. (7.3)

We denote Rα = |dwα(yα)| and consider the re-scaled map

vα(z) = wα

(
yα +

z

Rα

)
.

Then the domain of wα at least includes z ∈ C such that

yα +
z

Rα
∈ D2(δ),

i.e., those z’s satisfying ∣∣∣∣yα +
z

Rα

∣∣∣∣ ≤ δ.
In particular, if |z| ≤ Rα(δ − |yα|), vα(z) is defined. Since yα → 0 and δα → 0
as α → ∞, Rα(δ − |yα|) > Rαεα eventually, vα is defined on D2(εαRα) for all
sufficiently large α’s. Since δαRα →∞ by (7.3), for any given R > 0, D2(δαRα) of
vα(z) eventually contains BR+1(0).

Furthermore, we may assume,

BR+1(0) ⊂
{
z ∈ C | ηαz + yα ∈ D

′}
Therefore, the maps

vα : BR+1(0) ⊂ C→M

satisfy the following properties:

(i) Eπ(vα) < Tλ − ε, ∂
π
vα = 0, Eλ(vα) ≤ K0, (from the scale invariance)

(ii) |dvα(0)| = 1 by definition of vα and Rα,
(iii) ‖dvα‖C0,B1(x) ≤ 2 for all x ∈ BR(0) ⊂ D2(εαRα),

(iv) ∂
π
vα = 0 and d(v∗αλ ◦ j) = 0.
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For each fixed R, we take the limit of vα|BR , which we denote by wR. Applying
(iii) and then the local W k,2 estimates, Theorem 1.4, we obtain

‖dvα‖k,2;B 9
10

(x) ≤ C

for some C = C(R). By the Sobolev embedding theorem, we have a subsequence

that converges in C2 in each B 8
10

(x), x ∈ D′. Then we derive that the convergence

is in C2-topology on B 8
10

(x) for all x ∈ D′ and in turn on BR(0).

Therefore the limit wR : BR(0)→M of vα|BR(0) satisfies

(1) Eπ(wR) ≤ Tλ − ε, ∂
π
wR = 0, d(w∗Rλ ◦ j) = 0 and Eλ(vα) ≤ K0,

(2) Eπ(wR) ≤ lim supαE
π
(λ,J;BR(0))(vα) ≤ Tλ − ε,

(3) Since vα → wR converges in C2, we have

‖dwR‖2p,B1(0) = lim
α→∞

‖dvα‖2p,B1(0) ≥
1

2
.

By letting R → ∞ and taking a diagonal subsequence argument, we have derived
nonconstant contact instanton map w∞ : C→ Q. Therefore by definition of Tλ, we
must have Eπ(w∞) ≥ Tλ.

On the other hand, the bound Eπ(wR) ≤ Tλ − ε for all R and again by Fatou’s
lemma implies

Eπ(w∞) ≤ Tλ − ε

which gives rise to a contradiction. This finishes the proof of (7.1). �

8. Asymptotic behaviors of finite energy contact instantons

In this section, we study the asymptotic behavior of contact instanton w : Σ̇→ Q
with finite energy E(w) < ∞ near the punctures. We start with classifying the
solutions of (2.1) of zero energy on the cylinder R× S1.

We start with the following lemma

Lemma 8.1. Suppose E(w) = Eπ(w) + Eλ(w) <∞. Then

|dw|C0 <∞.

Proof. By the finiteness Eπ(w) < ∞, we can choose sufficiently small δ > 0 such
that

Eπ(w|Σ\Σ(δ)) <
1

2
Tλ.

Denote

Σ(δ) = Σ̇ \ ∪k`=1Dr`(δ).

Then we apply the ε-regularity theorem, Theorem 7.4, to w on ∪k`=1Dr`(δ) =

Σ̇ \ Σ(δ) to derive

|dw|∪k`=1Dr`
<∞.

Obviously |dw|Σ(δ)|C0 <∞ and hence the proof. �
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8.1. Massless contact instantons. The following is a key lemma in which the
closed condition w∗λ ◦ j plays a crucial role.

Lemma 8.2. Let Σ̇ be any punctured Riemann surface. Suppose w : Σ̇ → Q is a
massless contact instanton on Σ̇. Then w∗λ is a harmonic 1-form and the image
of w lies in a single leaf of the Reeb foliation.

Proof. From the equation, we have ∂
π
w = 0. We also have ∂πw = 0 from the

massless condition and so dπw = πdw = 0. This implies the values of dw are
parallel to Xλ at all points of Σ̇. By the connectedness of Σ̇, this implies that the
image of w must be contained in a leaf.

Next we obtain d(w∗λ) = 0 from Eπ(λ,J)(w) = 0 and the identity |dπw|2 =

|∂πw|2 dA = d(w∗λ) since ∂
π
w = 0. We also have

δ(w∗λ) dA = −d(w∗λ ◦ j) = 0

where the first follows since the metric h on Σ̇ is Kähler with respect to j and the
second equality follows from the equation. This finishes the proof. �

The following result connects the basic hypotheses for the a priori W k,2-estimates
to the study of structure of singularities of contact instanton.

Proposition 8.3. Let w be a contact instanton on Σ̇ with punctures p ∈ {p1, · · · , pk}.
Let p ∈ {p1, · · · , pk} and let z be an analytic coordinate at p. Suppose

E(w) = Eπ(w) + Eλ(w) <∞.

Then for any given sequence δj → 0 there exists a subsequence, still denoted by δj,
and a conformal diffeomorphism ϕj : [− 1

δj
,∞) × S1 → Dδj (p) \ {p} such that the

one form ϕ∗jχ converges to a bounded holomorphic one-form χ∞ on (−∞,∞)×S1.

Proof. By Lemma 8.1, |dw|C0 <∞. Let C = |dw|C0 . Then |w∗λ|C0 ≤ C.
By the finiteness Eπ(w) <∞, Fatou’s lemma implies

lim
r→0

∫
Dr(p)\{0}

|dπw|2 = 0.

We fix a sequence rj → 0 and fix a conformal diffeomorphism

ϕj :

[
− 1

δj
,∞
)
× S1 → Drj (p) \ {0}, ϕr(τ, t) = δ0e

− 1
δj e−2π(τ+it) = z

for each j > 0. In particular, the map (ϕ∗jw,ϕ
∗
jχ) are contact-instantons on [0,∞)×

S1 which satisfy

Eπ(ϕ∗jw)→ 0.

By W k,2 a priori estimates, Theorem 1.4, and the ε-regularity theorem, Theorem
7.4, we obtain the gradient bound |d(ϕ∗jw)|[−1/δj ,∞)×S1 ≤ C and in particular
|(ϕ∗jw)∗λ|C0 ≤ C for all j.

Applying the diagonal subsequence argument, we can select a sequence δj → 0
such that ϕ∗δjw converges to w∞ : (−∞,∞)×S1 → Q and ϕ∗δjχ→ χ∞ in compact

C∞ topology so that the pair (w∞, χ∞) is a contact instanton satisfying

Eπ(w∞) = 0, |χ∞|C0 ≤ 3C

2
. (8.1)
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Since |dπw∞|2 dA = d(w∗∞λ), this implies

d(w∗∞λ) = 0.

Together with d(w∗∞λ ◦ j) = 0, this implies that χ∞ is a non-zero holomorphic
one-form that is bounded on R× S1. This finishes the proof. �

We would like to emphasize that at the moment, the limiting holomorphic one-
form χ∞ may depend on the choice of subsequence.

The following theorem slightly strengthens the convergence results from [Ho1],
[OW2].

Theorem 8.4. Let Σ be a closed Riemann surface of genus 0 with a finite number
of marked points {p1, · · · , pk} for k ≥ 3, and let Σ̇ = Σ \ {p1, · · · , pk} be the
associated punctured Riemann surface equipped with a metric as before. Suppose
that w is a contact instanton map w : (Σ̇, j) → (Q, J) with finite total energy
E(w) = Eπ(w) + Eλ(w) and fix a puncture p ∈ {p1, · · · , pk}.

Then for any given sequence I = {τk} with τk → ∞, there exists a subsequence
I ′ ⊂ I and a closed parameterized Reeb orbit γ = γI′ of period T and some (τ0, t0) ∈
R× S1 such that such that

lim
i→∞

w(τ + τki , t) = γ(Q(p) τ + T (p) t)

in compact C∞ topology.
If λ is nondegenerate and T 6= 0, then the convergence w(τ, ·) → γ(T ·) is uni-

form.

Proof. The finiteness of E(w) and the ε-regularity implies the C1 bound |dw|C0 <
∞ on [R,∞) × S1 for a sufficiently large R > 0. Once this bound is established,
the same proof as that of Theorem 6.3 of [OW2] proves that there exists a closed
Reeb orbit (T, γ) and a subsequence ki →∞ such that

w(τki + τ, ·)→ γ(Q(p)(τki + τ), T (p)t)

uniformly on [−K,K] × S1 in C∞ topology for any given K ≥ 0. Once we have
established this subsequence convergence result, the same proof as that of Theorem
6.5 [OW2] applies to conclude the theorem. We refer to [OW2] for the complete
detail of the proof and the proof of uniform convergence for the nondegenerate
case. �

We would like to call the readers’ attention to the case where T (p) = 0. In
this case the asymptotic limit w∞ is t-independent, i.e., w∞(τ, t) ≡ γ(Q(p)τ). In
particular, the image of the instanton is 1 dimensional.

8.2. Classification of punctures. Assume that λ is nondegenerate. We would
like to further analyze the asymptotic behavior of the instanton w.

Associated to the splitting

TQ = span{Xλ} ⊕ ξ,

Q carries the canonical (trivial) complex line bundle L → Q with connection form√
−1λ. When we are given a map w : Σ̇ → Q, it induces the pull-back bundle

w∗L with the pull-back connection
√
−1w∗λ. The associated (abelian) Yang-Mills

equation is nothing but

δw∗λ = 0
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with respect to the Kähler metric associated to the complex structure j on the
surface Σ is precisely equivalent to d(w∗λ ◦ j) = 0.

Now we introduce the complex valued one-form

χ = w∗λ ◦ j +
√
−1w∗λ. (8.2)

It appears to be worthwhile to give a name to the complex valued (1, 0)-form in
the general context.

Definition 8.5. Let (Σ, j) be a closed Riemann surface with finite number of

marked points {p1, · · · , rk}. Denote by Σ̇ the associated punctured Riemann surface
with cylindrical metric near the punctures, and let Σ the real blow-up of Σ along
the punctures. Let w be a contact instanton map. Let p ∈ {p1, · · · , rk}. We call
the integrals

Q(p) := −
∫
∂∞;rΣ

w∗λ ◦ j (8.3)

T (p) :=

∫
∂∞;rΣ

w∗λ (8.4)

the contact instanton charge and contact instanton action at p respectively. Here
∂∞;rΣ is the boundary component corresponding to p of the real blow-up Σ of Σ̇.

Then we call the form χ = w∗λ ◦ j +
√
−1w∗λ the contact Hick’s field of w and

Q(p) +
√
−1T (p)

the charge of the Hick’s field of the instanton w at the puncture p.

Note that by the closedness d(w∗λ ◦ j) = 0, the charge Q(p) is the same as the
initial integral ∫

{τ=0}
w∗λ ◦ j

which does not depend on the choice of subsequence but is determined by the
initial condition at τ = 0 and homology class of the loop w|τ=0 ∈ H1(Σ̇) = H1(Σ \
{p1, · · · , pk}.

Proposition 8.6. For any finite energy contact instanton w, we have

N∑
l=1

Q(p`) = 0. (8.5)

We call this equation the balancing condition of the contact Hick’s charge.

Proof. This is an immediate consequence of Stokes’ formula applied to the closed
1-form w∗λ ◦ j on the real blow-up Σ of Σ̇. �

Now we consider the asymptotic Hick’s field χ∞ associated to the asymptotic
instanton w∞ obtained in the proof of Proposition 8.3, and call χ∞ the asymptotic
Hick’s field of w at the puncture p. Because w∞ is massless and has bounded
derivatives on R × S1, χ∞ becomes a bounded holomorphic one-form. Therefore
we derive

χ∞ = c (dτ + i dt) (8.6)

for some complex number c ∈ C. We denote c = b+ ia for a, b ∈ R. Equivalently,
we obtain

w∗λ = a dτ + b dt.
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Here a, b are nothing but the period integrals

a = −
∫
S1

(w(τ, ·))∗λ ◦ j, b =

∫
S1

(w(τ, ·))∗λ

which do not depend on τ for the massless instantons, thanks to the closedness of
w∗λ, w∗λ ◦ j. We denote them by a = Q(p), b = T (p) and call them as the Hick’s
charge at p.

We now examine the various cases arising depending on the constant c. Let
χ∞ = c (dτ + i dt) as above.

Theorem 8.7. Suppose c = 0. Then w is smooth across p and so the puncture p
is removable.

Proof. When c = 0, we obtain dw∞ = dπw∞ + λ∗w∞Xλ = 0 and so w∞ must be
a constant map q ∈ Q. By the convergence wj → w∞ in compact C∞ topology, it
follows that wj(0, ·)→ q or equivalently

d(w|r=δj , q)→ 0

and w∗jλ → 0 converges uniformly. Using the compactness of Q and applying
Ascoli-Arzela theorem, we can choose a sequence zi → p in Dδ(p) \ {p} such that
w(zi) → p and w∗λ|r=δj → 0 uniformly. Then this continuity of w∗λ at p in turn
implies dw is continuous at p by the expression

dw = dπw + w∗λXλ(w)

In particular |dw|Dδ(r) is bounded and so lies in L2 ∩ L4 on Dδ(r). Then the local

W k,2 a priori estimate implies that w is indeed smooth across p. This finishes the
proof. �

If c 6= 0, we obtain ∫
S1

χ∞|τ ≡ c

for all τ . In particular, we derive

lim
j→∞

∫
S1

(χ|r=δj )∗λ = c

and so

lim
k→∞

∫
S1

(w|r=δk)∗λ ◦ j = Re c

lim
k→∞

∫
S1

(w|r=δk)∗λ = Im c.

In fact by the closedness of w∗λ ◦ j and convergence of w|r=δj → p, the integral
(w|r=δk)∗λ ◦ j does not depend on k’s eventually.

We divide our consideration of the remaining cases into two different cases, one
with b = Im c = 0 and the other with b = Im c 6= 0.

Proposition 8.8. Suppose b 6= 0. Then there exists a closed Reeb orbit γ of period
T = b

2π such that there exists a sequence τk → ∞ for which w(τk, ·) → γ(T (·)) in
C∞ topology.
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Proof. When b 6= 0, we obtain

dw∞ = (a dτ + b dt)Xλ.

Again by the connectedness of [0,∞) × S1, it follows that the image of w∞ must
be contained in a single leaf of the Reeb foliation and so

w∞(τ, t) = γ(aτ + b t)

for a parameterized Reeb orbit γ such that γ̇ = Xλ(γ). Such a parameterization is
unique modulo the time-shift. Since the map w is one-periodic for any τ , we derive

γ(b) = γ(0).

This implies first that γ is a periodic Reeb orbit of period g. �

If we denote by T > 0 its minimal period, then we obtain

2π b = mT

for some integer m. Since we assume b 6= 0, it follows that mT 6= 0.

Proposition 8.9. Suppose b = 0, a 6= 0. Then w∞ does not depend on the t-
variable and the map τ → w∞(τ) becomes a Reeb trajectory which is not necessarily
closed.

Proof. In this case, w∗∞λ = a dτ . Therefore w∞ does not depend on t and satisfies

∂w∞
∂τ

= aXλ(w(τ, t))

and so w(τ, t) ≡ z(aτ) for a path satisfying ż = Xλ(z). This finishes the proof. �

Remark 8.10. (1) We would like to remark that all the above three scenarios
can actually occur and have to be examined in the asymptotic study of
contact instantons. For the exact case, we have a = 0.

(2) Each massless contact instanton on R×S1 induces a linear foliation thereon.
When the charge is zero, the foliation becomes the standard foliation but
when the instanton carries a non-trivial charge the ‘horizontal’ foliation is
skewed. This could be interpreted as the change of conformal structure (or
‘gravity’ by physical terms) of the cylinder that is powered by non-trivial
charge carried by the instanton. This phenomenon seems to be worthwhile
to further study which is a subject of future study.

(3) Presence of the above non-trivial ‘spiraling’ massless instantons on the
cylinder which does not exist in the exact case, makes the asymptotic
study of contact instantons for the non-exact case more complicated but
also makes more interesting.

Now we are ready to define the notion of positive and negative punctures of
contact instanton map w. Assume λ is nondegenerate.

Let p be one of the punctures of Σ̇. In the disc Dδ(p) ⊂ C with the standard
orientation, we consider the function∫

∂Dδ(p)

w∗λ
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as a function of δ > 0. This function is either decreasing or increasing by the Stokes’
formula, the positivity w∗dλ ≥ 0 and the finiteness of π-energy

1

2

∫
Σ̇

|dπw|2 =

∫
Σ̇

w∗dλ <∞.

Definition 8.11 (Classification of punctures). Let Σ̇ be a puncture Riemann sur-

face with punctures {p1, · · · , pk} and let w : Σ̇→ Q be a contact instanton map.

(1) We call a puncture p removable if T (p) = Q(p) = 0, and non-removable
otherwise. Among the non-removable punctures p, we call it non-adiabatic
if T (p) 6= 0, adiabatic if T (p) = 0 but Q(p) 6= 0.

(2) We say a non-removable puncture positive (resp. negative) puncture if the
function ∫

∂Dδ(p)

w∗λ

is increasing (resp. decreasing) as δ → 0.

The appearance of adiabatic punctures is a new phenomenon when the form
w∗λ ◦ j is not exact. In the latter case considered via the case of symplectization
picture [Ho1], the associated puncture is removable and can be dropped in this
classification by removing the puncture. However in the non-exact case, such a
puncture is not necessarily removable and so has to be considered separately.

9. Properness of contact instanton potential function and λ-energy

In this section, we examine the relationship between the π-energy, the λ-energy
and the contact instanton potential function f .

We first note that the function f : Σ̇→ R is proper if and only if

f(vj) = ±∞ (9.1)

for all exterior vertex vj ∈ V (T ). One immediate corollary of Lemma 8.1 is the
following C1-bound of the contact potential function f .

Corollary 9.1. Suppose that E(w) <∞ and let f be the function defined in section
5. Then |df |C0 <∞.

Proof. From Lemma 8.1 and the defining equation of f

w∗λ ◦ j +
∑

e∈E(T )

Q(w; e) dte = df,

we obtain |df |C0 < |dw|C0 + maxe∈E(T ) |Q(w; e)| <∞. �

The following proposition is the analog to Lemma 5.15 [BEHWZ] whose proof is
also similar.

Proposition 9.2. Suppose that Eπ(w) <∞ and the function f : Σ̇→ R is proper.
Then E(w) <∞.

Proof. Since f is assumed to be proper, f(r`) = ±∞ for each puncture r` of Σ̇
depending on whether the puncture is positive or negative.
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The rest of the argument is very similar to that of the proof of Lemma 5.15
[BEHWZ] with replacement of a and the equation dw∗λ ◦ j = da therein by f and
the equation

dw∗λ ◦ j +
∑

e∈E(T )

Q(w; e) dte = df

respectively in our current context. (We would also like point out that [BEHWZ]
used the letter ‘f ’ for the map w which should not confuse the readers with our
notation f for the function which corresponds to a in their notation.)

Since our setting does not use the setting of symplectization, we provide the full
details of the proof in Appendix. �

By the same argument as the derivation of Lemma 5.16 [BEHWZ], we obtain

Lemma 9.3. Suppose Eπ(w) < ∞ and f is proper. Denote by γ+
1 , · · · , γ

+
k (resp.

γ−1 , · · · , γ
−
` ) the periodic orbits of Xλ asymptotic to the positive (resp. negative

punctures) of Σ̇. Then

Eπ(w) =

k∑
j=1

∫
γ∗jλ−

∑̀
i=1

∫
γ∗
i
λ

Eλ(w) =

k∑
j=1

∫
γ∗jλ

E(w) = 2

k∑
j=1

∫
γ∗jλ−

∑̀
i=1

∫
γ∗
i
λ.

10. Calculation of the linearization map with contact triad
connection

Let Σ be a closed Riemann surface and Σ̇ be its associated punctured Riemann
surface. We allow the set of whose punctures to be empty, i.e., Σ̇ = Σ. We would
like to regard the assignment

w 7→
(
∂
π
w, d(w∗λ ◦ j)

)
for a map w : Σ̇ → Q as a section of the (infinite dimensional) vector bundle over
the space of maps of w. In this section, we lay out the precise relevant off-shell
framework of functional analysis.

Let (Σ̇, j) be a punctured Riemann surface, the set of whose punctures may be

empty, i.e., Σ̇ = Σ is either a closed or a punctured Riemann surface. We will fix j
and its associated Kähler metric h.

We consider the map

Υ(w) =
(
∂
π
w, d(w∗λ ◦ j)

)
which defines a section of the vector bundle

H → F = C∞(Σ, Q)

whose fiber at w ∈ C∞(Σ, Q) is given by

Hw := Ω(0,1)(w∗ξ)⊕ Ω2(Σ).
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We decompose Υ = (Υ1,Υ2) where

Υ1 : Ω0(w∗TQ)→ Ω(0,1)(w∗ξ); Υ1(w) = ∂
π
(w) (10.1)

and

Υ2 : Ω0(w∗TQ)→ Ω2(Σ̇); Υ2(w) = d(w∗λ ◦ j). (10.2)

We first compute the linearization map which defines a linear map

DΥ(w) : Ω0(w∗TQ)→ Ω(0,1)(w∗ξ)⊕ Ω2(Σ)

where we have

TwF = Ω0(w∗TQ).

We note

rank Λ0(w∗TQ) = 2n+ 1

rank Λ(0,1)(w∗ξ)⊕ Λ2(Σ) = 2n+ 1.

For the optimal expression of the linearization map and its relevant calculations,
we use the contact triad connection ∇ of (Q,λ, J) and the contact Hermitian con-
nection ∇π for (ξ, J) introduced in [OW2].

Theorem 10.1. In terms of the decomposition dπ = dπw + w∗λXλ and Y =
Y π + λ(Y )Xλ, we have

DΥ1(w)(Y ) = ∂
∇π
Y π +B(0,1)(Y π) + T

π,(0,1)
dw (Y π) (10.3)

+
1

2
λ(Y )(LXλJ)J(∂πw) (10.4)

DΥ2(w)(Y ) = −∆(λ(Y )) dA+ d((Y πcdλ) ◦ j) (10.5)

where B(0,1) and T
π,(0,1)
dw are the (0, 1)-components of B and T

π,(0,1)
dw , where B, Tπdw :

Ω0(w∗TQ)→ Ω1(w∗ξ) are zero-order differential operators given by

B(Y ) = −1

2
w∗λ ((LXλJ)JY )

and

Tπdw(Y ) = πT (Y, dw)

respectively.

Proof. Let Y be a vector field over w and ws be a family of maps ws : Σ → Q

with w0 = w and Y = d
ds

∣∣∣
s=0

ws, and a = dγ
dt

∣∣∣
t=0

for a curve γ with γ(0) = z. We

decompose

Y = Y π + λ(Y )Xλ

into the sum of ξ-component and Xλ-component. Now we calculate

Dw(dπ)(Y ) := ∇πs (πdws)
∣∣∣
s=0

= π∇s(πdws)
∣∣∣
s=0

(10.6)

We will evaluate

∇πs (πdws) = π∇s(Πdws)
= π(∇sΠ)(dws) + π∇s(dws).

To evaluate this, we recall the following basic identity
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Lemma 10.2 (Equations (5.2) & (5.3) [OW1]). Let ∇ be the contact triad connec-
tion. Then

Π(∇Π)Y = 0 (10.7)

for all Y ∈ ξ, and

(∇Π)Xλ = −Π∇Xλ = −Π

(
1

2
(LXλJ)J

)
. (10.8)

Using this lemma, we compute

π(∇sΠ)(dws) = π(∇sΠ)(dπws + w∗sλXλ)

= π(∇sΠ)(w∗sλXλ) = w∗sλπ(∇sΠ)(Xλ)

= −w∗sλπ
(

1

2
(LXλJ)JY

)
. (10.9)

Next, the standard computation of ∇s(dws)|s=0 gives rise to

π∇s(dws)|s=0(a) = π∇s
(
dws

(
dγ

dt

)) ∣∣∣
(s,t)=(0,0)

= π∇s
d

dt
(ws ◦ γ)

∣∣∣
(s,t)=(0,0)

= π(∇aY + T (Y, dw(a))

= π(∇aY ) + π(T (Y, dw(a)). (10.10)

On the other hand, we compute

π(∇aY ) = π(∇aY π +∇a(λ(Y )Xλ)

= ∇πaY π + λ(Y )∇aXλ

= ∇πaY π + λ(Y )∇dπw(a)Xλ

= ∇πaY π +
1

2
λ(Y )(LXλJ)Jdπw(a)

where we used the formula ∇Xλ = 1
2 (LXλJ)J for the second equality. This proves

π(∇Y ) = ∇πY π +
1

2
λ(Y )(LXλJ)Jdπw.

Substituting this into (10.10), we derive

π∇s(dws)|s=0 = ∇πY π +
1

2
λ(Y )(LXλJ)Jdπw.

Combining this with (10.9), we obtain

∇πs (πdws)|s=0 = ∇πY π +Tπ(Y, dw) +
1

2
λ(Y )(LXλJ)Jπdw−w∗λ

(
1

2
(LXλJ)JY

)
.

Therefore we have derived

Dw(dπ)(Y ) = ∇πs (πdws)|s=0

= ∇πY π + Tπ(Y, dw) +
1

2
λ(Y )π(LXλJ)Jdw − 1

2
w∗λ ((LXλJ)JY ) .
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We note that

1

2
(λ(Y )(LXλJ)Jπdw)

(0,1)
=

1

2
λ(Y )

(
(
LXλJ)Jπdw + J(LXλJ)Jπdw ◦ j

2

)
=

1

2
λ(Y )LXλJJ

(
πdw − Jπdw ◦ j

2

)
=

1

2
λ(Y )(LXλJ)J∂πw

where ∂πw = (πdw)(1,0). By taking the (0, 1)-projection, we have proved (10.4).
Next we compute DΥ2(w) and prove (10.5). We compute d

ds |s=0d(w∗sλ ◦ j)

d

ds

∣∣∣
s=0

d(w∗sλ ◦ j) = d

(
d

ds

∣∣∣
s=0

w∗sλ ◦ j
)
. (10.11)

By Cartan’s formula applied to the vector field Y over the map w, we obtain

d

ds

∣∣∣
s=0

w∗sλ = Y cdλ+ d(Y cλ)

where c is the interior product over the map w. Substituting this into (10.11), we
derive

d

ds

∣∣∣
s=0

d(w∗sλ ◦ j) = d(d(λ(Y )) ◦ j) + d((Y cdλ) ◦ j)

= −∆(λ(Y )) dA+ d((Y cdλ) ◦ j).

This proves

DΥ2(w)(Y ) = −∆(λ(Y )) dA+ d((Y cdλ) ◦ j) = −∆(λ(Y )) dA+ d((Y πcdλ) ◦ j)
(10.12)

which finishes the proof of Theorem 10.1. �

Now we evaluate the DΥ1(w) more explicitly. We have

∂
∇π
Y =

1

2

(
∇πY + J∇πj(·)Y

)
and B(0,1)(Y ) becomes

−1

4
(w∗λπ((LXλJ)JY ) + w∗λ ◦ j π(LXλJ)Y ) .

11. Fredholm theory and index calculations

We divide our discussion into the closed case and the punctured case.

11.1. The closed case. We start with the following classification result. This is
stated by Abbas as a part of [Ab, Proposition 1.4]. A somewhat different proof is
also given in [OW2]. (See Proposition 3.3 [OW2].)

Proposition 11.1. Assume w : Σ → M is a smooth contact instanton from a
closed Riemann surface. Then

(1) If g(Σ) = 0, w can only be a constant map;
(2) If g(Σ) ≥ 1, w is either a constant or has its locus of its image is a closed

Reeb orbit.

In particular, any such instanton is massless and satisfies [w] = 0 in H2(Q;Z).
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From the expression of the map Υ = (Υ1,Υ2), the map defines a bounded linear
map

DΥ(w) : Ω0
k,p(w

∗TQ)→ Ω
(0,1)
k−1,p(w

∗ξ)⊕ Ω2
k−2,p(Σ). (11.1)

We choose k ≥ 2, p > 2. Recalling the decomposition

Y = Y π + λ(Y )Xλ,

we have the decomposition

Ω0
k,p(w

∗TQ) ∼= Ω0
k,p(w

∗ξ)⊕ Ω0
k,p(Σ̇,R) ·Xλ.

Here we use the splitting

TQ = spanR{Xλ} ⊕ ξ

where spanR{Xλ} := L is a trivial line bundle and so

Γ(w∗L) ∼= C∞(Σ).

By definition as the linearization operator DΥ2(w) acts trivially for the section Y
tangent to the Reeb direction.

It follows that the map DΥ(w) is a partial differential operator whose symbol
map is given by σ(DΥ) = σ(DΥ1)⊕ σ(DΥ2) where

σ(DΥ1(w))(η) = JΠ∗η

σ(DΥ2(w))(η) = 〈λ, η〉2 = (η(Xλ))2 (11.2)

where η is a cotangent vector in T ∗Q \ {0} and has decomposition

η = ηπ + η(Xλ(π(η))λ(π(η)).

Therefore DΥ(w) can be written into the matrix form(
∂
∇π

+ T
π,(0,1)
dw +B(0,1) 1

2λ(·)(LXλJ)J∂πw
d ((·)cdλ) ◦ j) −∆(λ(·)) dA

)
(11.3)

where

∂
∇π

+B(0,1) : Ω0
k,p(w

∗ξ)→ Ω
(0,1)
k−1,p(w

∗ξ)

− ∗∆ : Ω0
k,p(Σ)→ Ω2

k−2,p(Σ)

d ((·)cdλ) ◦ j) : Ω0
k,p(w

∗ξ)→ Ω2
k−1,p(Σ) ↪→ Ω2

k−2,p(Σ).

In particular we note that the restriction DΥ1(w)|Ω0(w∗ξ) has the same symbol as
that of

∂
∇π

: Ω0(w∗ξ)→ Ω(0,1)(w∗ξ)

which is the first order elliptic operator of Cauchy-Riemann type, and DΥ2(w) has
the symbol of the Hodge Laplacian acting on zero forms

∗∆ : Ω0(Σ)→ Ω2(Σ).

We now establish Fredholm property and the index formula of the operator
DΥ(w) by dividing the study into the closed and the punctured cases.

For the closed case, we derive
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Proposition 11.2. Consider the completion of DΥ(w), which we still denote by
DΥ(w), as a bounded linear map from Ω0

k,p(w
∗TQ) to Ω(0,1)(w∗ξ)⊕Ω2(Σ) for k ≥ 2

and p ≥ 2. Then the operator DΥ(w) is homotopic to the operator(
∂
∇π

+ T
π,(0,1)
dw +B(0,1) 0

0 −∆(λ(·)) dA

)
(11.4)

via the homotopy

s ∈ [0, 1] 7→

(
∂
∇π

+ T
π,(0,1)
dw +B(0,1) s

2λ(·)(LXλJ)J(πdw)(1,0)

s d ((·)cdλ) ◦ j) −∆(λ(·)) dA

)
=: Ls (11.5)

which is a continuous family of Fredholm operators. And the principal symbol

σ(z, η) : w∗TQ|z → w∗ξ|z ⊕ Λ2(TzΣ), 0 6= η ∈ T ∗z Σ

of (11.4) is given by the matrix(
η+iη◦j

2 Id 0
0 |η|2

)
after applying the isomorphism ∗ : Ω2(Σ)→ Ω0(Σ) and so is elliptic.

Proof. It is enough to establish the inequality

‖Y ‖k,p ≤ C(‖π1(Ls(Y ))‖k−1,p + ‖π1(Ks(Y ))‖k−1,p)

+‖π2(Ls(Y ))‖k−2,p + ‖π2(Ks(Y ))‖k−2,p) (11.6)

for a family of compact operators Ks : Ω0
k,p(w

∗TQ) → Ω
(0,1)
k−1,p(w

∗ξ) ⊕ Ω2
k−2,p(Σ)

and a constant C independent of s ∈ [0, 1] for all Y ∈ Ωk,p(w
∗TQ).

We decompose Y = Y π + λ(Y )Xλ. We have already computed above

π1(Ls(Y )) = (∂
∇π

+ T
π,(0,1)
dw +B(0,1))(Y π) +

s

2
λ(Y )(LXJ)J(πdw)(1,0)

π2(Ls(Y )) = s d(Y cdλ) ◦ j −∆(λ(Y )) dA.

By the ellipticity of ∂
∇π

+ T
π,(0,1)
dw + B(0,1) : Ω0(w∗ξ) → Ω(0,1)(w∗ξ) and of ∆ :

Ω0(Σ)→ Ω0(Σ), we have

‖Y π‖k,p ≤ C(‖(∂∇
π

+ T
π,(0,1)
dw +B(0,1))(Y π)‖k−1,p + ‖Y π‖k−1,p) (11.7)

and

‖λ(Y )‖k,p ≤ C(‖∆(λ(Y ))‖k−2,p + ‖λ(Y )‖k−2,p). (11.8)

Then we get

‖λ(Y )(LXJ)J(πdw)(1,0)‖k−1,p

≤ Ck(‖(LXJ)J(πdw)(1,0)‖k−2,∞‖λ(Y )‖k−1,p + ‖(LXJ)J(πdw)(1,0)‖k−1,∞‖λ(Y )‖k−2,p)

≤ Ck‖(LXJ)J(πdw)(1,0)‖k−2,∞ (C(‖∆(λ(Y ))‖k−2,p + ‖λ(Y )‖k−2,p)

(Here the last line can be improved by k− 3 for k ≥ 3 but k− 2 will be enough for
our purpose which we have to use anyway for k = 2), and

‖d(Y cdλ) ◦ j‖k−2,p ≤ Ck(‖Y π‖k−1,p‖dλ‖k−2,∞ + ‖Y π‖k−1,p‖dλ‖k−1,∞)
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for some constant Ck depending only on k (and dw) but independent of Y . Combin-
ing all the above, using the bounds for ‖(LXJ)J(πdw)(1,0)‖k−2,∞ and ‖dλ‖k−1,∞
and substituting

(∂
∇π

+ T
π,(0,1)
dw +B(0,1))(Y π) = π1(Ls(Y ))− s

2
λ(Y )(LXJ)J(πdw)(1,0)

and

−∆(λ(Y )) dA = π2(Ls(Y ))− s d(Y cdλ) ◦ j
into (11.7) and (11.8) and then rearranging terms, we derive

‖Y ‖k,p ≤ C(‖π1(Ls(Y ))‖k−1,p+‖Y π‖k−1,p+‖π2(Ls(Y ))‖k−2,p+‖Y ‖k−2,p) (11.9)

for a constant C independent of s ∈ [0, 1] for all Y ∈ Ωk,p(w
∗TQ). By the com-

pactness of the Sobolev embedding W l,p into W l−1,p for l = k, k − 1 (on compact
Σ), we have finished the proof of (11.6) by taking the operator Ks = K1,s +K2,s:
Here K1,s is the composition of the bounded map

Ω0
k,p(w

∗TQ)→ Ω
(0,1)
k,p (w∗ξ)⊕ Ω2

k−1,p(Σ)

defined by

Y 7→
(
s
2λ(Y )(LXJ)J(πdw)(1,0)

s d ((·)cdλ) ◦ j)

)
and the inclusion map

Ω
(0,1)
k,p (w∗ξ)⊕ Ω2

k−1,p(Σ)→ Ω
(0,1)
k−1,p(w

∗ξ)⊕ Ω2
k−2,p(Σ)

which is compact. In particular, K1,s is a compact operator.
And we define K2,s is just the inclusion map

Ω0
k,p(w

∗TQ) ∼= Ω0
k,p(w

∗ξ)⊕ Ω0
k,p(Σ) ↪→ Ω0

k−1,p(w
∗ξ)⊕ Ω0

k−2,p(Σ)

which is also compact. Obviously

‖Y π‖k−1,p + ‖λ(Y )‖k−2,p ≤ ‖π1(K2,s(Y ))‖k−1,p + ‖π2(K2,s(Y )‖k−2,p.

Therefore combining all the above, we have established (11.6) which finishes the
proof. �

From this, we immediately derive the following index formula for DΥ(w) from
the homotopy invariance of the index

Theorem 11.3. Let Σ be any closed Riemann surface of genus g, and let w : Σ→ Q
be a solution to (2.1) with finite energy. Then the operator (11.1) is a Fredholm
operator whose index is given by

IndexDΥ(w) = 2n(1− g). (11.10)

Proof. We already know that the operators ∂
∇π

+ T
π,(0,1)
dw + B(0,1) and −∆ are

Fredholm. Furthermore we can homotope the operator (11.3) to the direct sum
operator

(∂
∇π

+ T
π,(0,1)
dw +B(0,1) +

1

2
λ(·)(LXλJ)J∂πw ⊕ (− ∗∆(λ(·)))

by considering the continuous deformation of Fredholm operators

s 7→

(
∂
∇π

+ T
π,(0,1)
dw +B(0,1) 1

2λ(·)(LXλJ)J∂πw
s d ((·)cdλ) ◦ j) − ∗∆(λ(·))

)
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from s = 1 to s = 0. From this, the Fredholm property immediately follows. Then
the index is given by

Index ∂
∇π

+ Index(−∆) = 2c1(w∗ξ) + 2n(1− g) + 0 = 2c1(w∗ξ) + 2n(1− g)

in general. But since [w] = 0 in H2(Q;Z) by Proposition 11.1, this is reduced to
(11.10). This finishes the proof. �

We would like to call attention of readers that the index Index ∂
∇π

= 2n when
g = 0 is 1 smaller than the dimension of Q.

11.2. The punctured case. For the punctured case, we need to make some prepa-
ration. For the exposition of this section, we adapt the exposition given by Bour-
geois and Mohnke in [BM] to the current context of contact Cauchy-Riemann maps.
Because the structure of the linearization of (2.1) is significantly different, estab-
lishing the Fredholm property of the linearization map and its index calculation is
also different. In particular, a priori the ellipticity itself of the linearization map is
not obvious.

From now on in the rest of the paper, we will restrict ourselves to the case of
vanishing charge, i.e., we put the following hypothesis.

Hypothesis 11.4 (Charge vanishing). We assume the asymptotic charges of w at
all ends vanish, i.e.,

−a = lim
τ→∞

∫
∂`Σ(ρ)

w(τ, ·)∗λ ◦ j = 0 (11.11)

for all ` = 1, · · · , k where ρ = e−2πτ .

Let (Σ̇, j) be a punctured Riemann surface and let

p1, · · · , ps+ , q1, · · · , qs−

be the positive and negative punctures. Fix an elongation function ρ : R → [0, 1]
so that

ρ(τ) =

{
1 τ ≥ 1

0 τ ≤ 0

0 ≤ ρ′(τ) ≤ 2.

Let γ+
i for i = 1, · · · , s+ and γ−j for j = 1, · · · , s− be two given collections of

Reeb orbits. For each pi (resp. qj), we associate the isothermal coordinates (τ, t) ∈
[0,∞)× S1 (resp. (τ, t) ∈ (−∞, 0]× S1) on the punctured disc De−2πR0 (pi) \ {pi}
(resp. on De−2πR0 (qi) \ {qi}) for some sufficiently large R0 > 0. Then we consider
sections of w∗TQ by

Y i = ρ(τ −R0)Xλ(γ+
k (t)), Y j = ρ(τ +R0)Xλ(γ+

k (t)) (11.12)

and denote by Γs+,s− ⊂ Γ(w∗TQ) the subspace defined by

Γs+,s− =

s+⊕
i=1

R{Y i} ⊕
s−⊕
j=1

R{Y j}.

Let k ≥ 2 and p > 2. We denote by

Wk,p
δ (Σ̇, Q; J ; γ+, γ−), k ≥ 2
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the Banach manifold such that

lim
τ→∞

w((τ, t)i) = γ+
i (Ti(t+ ti)), lim

τ→−∞
w((τ, t)j) = γ−j (Tj(t− tj)) (11.13)

for some ti, tj ∈ S1, where

Ti =

∫
S1

(γ+
i )∗λ, Tj =

∫
S1

(γ−j )∗λ.

Here ti, tj depends on the given analytic coordinate and the parameterization of
the Reeb orbits.

The local model of the tangent space ofWk,p
δ (Σ̇, Q; J ; γ+, γ−) at w ∈ C∞δ (Σ̇, Q) ⊂

W k,p
δ (Σ̇, Q) is given by

Γs+,s− ⊕W k,p
δ (w∗TQ) (11.14)

where W k,p
δ (w∗TQ) is the Banach space

{Y = (Y π, λ(Y )Xλ) | e
δ
p |τ |Y π ∈W k,p(Σ̇, w∗ξ), λ(Y ) ∈W k,p(Σ̇,R)}

∼= W k,p(Σ̇,R) ·Xλ(w)⊕W k,p(Σ̇, w∗ξ).

Here we measure the various norms in terms of the triad metric of the triad (Q,λ, J).
To describe the choice of δ > 0, we need to recall the covariant linearization of the
map DΥλ,T : W 1,2(z∗ξ)→ L2(z∗ξ) of the map

Υλ,T : z 7→ ż − T Xλ(z)

for a given T -periodic Reeb orbit (T, z). The operator has the expression

DΥλ,T =
Dπ

dt
− T

2
(LXλJ)J =: A(T,z) (11.15)

where Dπ

dt is the covariant derivative with respect to the pull-back connection z∗∇π
along the Reeb orbit z and (LXλJ)J is (pointwise) symmetric operator with respect
to the triad metric. (See Lemma 3.4 [OW1].) We choose δ > 0 so that 0 < δ/p < 1
is smaller than the spectral gap

gap(γ+, γ−) := min
i,j
{dH(specA(Ti,zi), 0), dH(specA(Tj ,zj), 0)}. (11.16)

Now for each given w ∈ Wk,p
δ :=Wk,p

δ (Σ̇, Q; J ; γ+, γ−), we consider the Banach
space

Ω
(0,1)
k−1,p;δ(w

∗ξ)

the W k−1,p
δ -completion of Ω(0,1)(w∗ξ) and form the bundle

H(0,1)
k−1,p;δ(ξ) =

⋃
w∈Wk,p

δ

Ω
(0,1)
k−1,p;δ(w

∗ξ)

over Wk,p
δ . Then we can regard the assignment

Υ1 : w 7→ ∂
π
w

as a smooth section of the bundleH(0,1)
k−1,p;δ(ξ)→W

k,p
δ . Furthermore the assignment

Υ2 : w 7→ d(w∗λ ◦ j)

defines a smooth section of the trivial bundle

Ω2
k−2,p(Σ)×Wk,p

δ →Wk,p
δ .
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We have already computed the linearization of each of these maps in the previous
section.

With these preparations, the following is a corollary of exponential estimates
established in Part II [OW2] for the case Q(pi) = 0. We hope that the relevant
off-shell analytical framework for the case Q(pi) 6= 0 can be treated elsewhere.

Proposition 11.5 (Theorem 1.12 [OW2]). Assume λ is nondegenerate and Q(pi) =

0. Let w : Σ̇→ Q be a contact instanton and let w∗λ = a1 dτ + a2 dt. Suppose

lim
τ→∞

a1,i = −Q(pi), lim
τ→∞

a2,i = T (pi)

lim
τ→−∞

a1,j = −Q(qj), lim
τ→−∞

a2,j = T (pj) (11.17)

at each puncture pi and qj. Then w ∈ Wk,p
δ (Σ̇, Q; J ; γ+, γ−).

Now we are ready to define the moduli space of contact instantons with pre-
scribed asymptotic condition as the zero set

M(Σ̇, Q; J ; γ+, γ−) =Wk,p
δ (Σ̇, Q; J ; γ+, γ−) ∩Υ−1(0) (11.18)

whose definition does not depend on the choice of k, p or δ as long as k ≥ 2, p > 2
and δ > 0 is sufficiently small. One can also vary λ and J and define the universal
moduli space whose detailed discussion is postponed.

In the rest of this section, we establish the Fredholm property of the linearization
map

DΥ(λ,T )(w) : Ω0
k,p;δ(w

∗TQ; J ; γ+, γ−)→ Ω
(0,1)
k−1,p;δ(w

∗ξ)⊕ Ω2
k−2,p(Σ)

and compute its index. Here we also denote

Ω0
k−2,p;δ(w

∗TQ; J ; γ+, γ−) = W k−2,p
δ (w∗TQ; J ; γ+, γ−)

for the semantic reason.
For this purpose, we remark that as long as the set of punctures is non-empty,

the symplectic vector bundle w∗ξ → Σ̇ is trivial. We denote by Φ : E → Σ × R2n

and by

Φ+
i := Φ|∂+

i Σ, Φ−j = Φ|∂−j Σ

its restrictions on the corresponding boundary components of ∂Σ. Using the cylin-
drical structure near the punctures, we can extend the bundle to the bundle E → Σ
where Σ is the real blow-up of the punctured Riemann surface Σ̇.

We then consider the following set

S := {A : [0, 1]→ Sp(2n,R) | 1 6∈ spec(A(1)), A(0) = id, Ȧ(0)A(0)−1 = Ȧ(1)A(1)−1}
of regular paths in Sp(2n,R) and denote by µCZ(A) the Conley-Zehnder index of
the paths following [RS]. Recall that for each closed Reeb orbit γ with a fixed trivi-
alization of ξ, the covariant linearization A(T,z) of the Reeb flow along γ determines

an element Aγ ∈ S. We denote by Ψ+
i and Ψ−j the corresponding paths induced

from the trivializations Φ+
i and Φ−j respectively.

We have the decomposition

Ω0
k,p;δ(w

∗TQ; J ; γ+, γ−) = Ω0
k,p;δ(w

∗ξ)⊕ Ω0
k,p;δ(Σ)

and again the operator

DΥ(λ,T )(w) : Ω0
k,p;δ(w

∗TQ; J ; γ+, γ−)→ Ω
(0,1)
k−1,p;δ(w

∗ξ)⊕ Ω2
k−2,p;δ(Σ)
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can be written into the matrix(
∂
∇π

+ T
π,(0,1)
dw +B(0,1) 1

2λ(·)(LXλJ)J∂πw
d ((·)cdλ) ◦ j) − ∗∆(λ(·))

)
(11.19)

where

∂
∇π

+ T
π,(0,1)
dw +B(0,1) : Ω0

k,p;δ(w
∗ξ; J ; γ+, γ−)→ Ω

(0,1)
k−1,p;δ(w

∗ξ)

− ∗∆ : Ω0
k,p;δ(Σ)→ Ω2

k−2,p;δ(Σ)

d ((·)cdλ) ◦ j) : Ω0
k,p;δ(w

∗ξ; J ; γ+, γ−)→ Ω2
k−1,p;δ(Σ) ↪→ Ω2

k−2,p;δ(Σ).

The following proposition can be derived from the arguments used by Lockhart
and McOwen [LM]. However before applying their general theory, one needs to pay
some preliminary measure to handle the fact that the order the operators DΥ(w)
are different depending on the direction of ξ or on that of Xλ.

Proposition 11.6. Suppose δ > 0 satisfies the inequality

0 < δ < min

{
gap(γ+, γ−)

p
,

2π

p

}
where gap(γ+, γ−) is the spectral gap, given in (11.16), of the asymptotic operators
A(Tj ,zj) or A(Ti,zi) associated to the corresponding punctures. Then the operator
(11.19) is Fredholm.

Proof. We first note that the operators ∂
∇π

+T
π,(0,1)
dw +B(0,1) and −∆ are Fredholm:

The relevant a priori coercive W k,2-estimates for any integer k ≥ 1 for the derivative
dw on the punctured Riemann surface Σ̇ with cylindrical metric near the punctures

are established in [OW2] for the operator ∂
∇π

+ T
π,(0,1)
dw + B(0,1) and the one for

−∆ is standard. From this, the standard interpolation inequality establishes the
W k,p-estimates for DΥ(w) for all k ≥ 2 and p ≥ 2.

Secondly, it follows that the operator (11.19) can be homotoped to the direct
sum operator

(∂
∇π

+ T
π,(0,1)
dw +B(0,1))⊕ (−∆)

by considering the continuous deformation of operators

s 7→

(
∂
∇π

+ T
π,(0,1)
dw +B(0,1) s

2λ(·)(LXλJ)J∂πw
s d ((·)cdλ) ◦ j) − ∗∆(λ(·))

)
from s = 1 to s = 0. Once these two are established, the proof of the proposition
is parallel to that of Proposition 11.2 and so omitted. �

Then by the continuous invariance of the Fredholm index, we obtain

IndexDΥ(λ,T )(w) = Index(∂
∇π

+ T
π,(0,1)
dw +B(0,1)) + Index(−∆). (11.20)

Therefore it remains to compute the latter two indices. For this, we obtain

Theorem 11.7. We fix a trivialization Φ : E → Σ and denote by Ψ+
i (resp. Ψ−j )

the induced symplectic paths associated to the trivializations Φ+
i (resp. Φ−j ) along
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the Reeb orbits γ+
i (resp. γ−j ) at the punctures pi (resp. qj) respectively. Then we

have

Index(∂
∇π

+ T
π,(0,1)
dw +B(0,1)) = n(2− 2g − s+ − s−) + 2c1(w∗ξ) + (s+ + s−)

+

s+∑
i=1

µCZ(Ψ+
i )−

s−∑
j=1

µCZ(Ψ−j ) (11.21)

Index(−∆) =

s+∑
i=1

m(γ+
i ) +

s−∑
j=1

m(γ−j )− g. (11.22)

In particular,

IndexDΥ(λ,T )(w) = n(2− 2g − s+ − s−) + 2c1(w∗ξ)

+

s+∑
i=1

µCZ(Ψ+
i )−

s−∑
j=1

µCZ(Ψ−j )

+

s+∑
i=1

(m(γ+
i ) + 1) +

s−∑
j=1

(m(γ−j ) + 1)− g. (11.23)

Proof. The formula (11.21) can be immediately derived from the general formula
given in the top of p. 52 of Bourgeois’s thesis [Bo]: The summand (s+ + s−) comes
from the factor Γs+,s− in the decomposition (11.14) which has dimension s+ + s−.

So it remains to compute the index (11.22). We recall that any harmonic function

on Σ̇ can be written as the imaginary part of a holomorphic function on Σ̇ with the
same orders of zeros and poles respectively. (The converse also holds.) Therefore
to compute the (real) index of −∆, we consider the Dolbeault complex

0→ Ω0(Σ;D)→ Ω1(Σ;D)→ 0

where D = D+ +D− is the divisor associated to the set of punctures

D+ =

s+∑
i=1

m(γ+
i )pi, D− =

s−∑
j=1

m(γ−j )qj

where m(γ+
i ) (resp. m(γ−j )) is the multiplicity of the Reeb orbit γ+

i (resp. γ−j ).
The standard Riemann-Roch formula then gives rise to the formula for the Euler
characteritic

χ(D) = dimCH
0(D)− dimCH

1(D) = deg(D)− g

=

s+∑
i=1

m(γ+
i ) +

s−∑
j=1

m(γ−j )− g.

This finishes the proof.
�

12. Generic transversality under the perturbation of J

We start with recalling the linearization of the equation ẋ = Xλ(x) along a closed
Reeb orbit. Let z be a closed Reeb orbit of period T > 0. In other words, z : R→ Q
is a periodic solution of ż = Xλ(z) with period T , thus satisfying z(T ) = z(0).
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Denote the Reeb flow φt = φtXλ of the Reeb vector field Xλ, we can write

z(t) = φtXλ(z(0)). In particular p := z(0) is a fixed point of the diffeomorphism φT .

Further, since LXλλ = 0, the contact diffeomorphism φT induces the isomorphism

Ψz := dφT (p)|ξp : ξp → ξp

which is the tangent map of the Poincaré return map φT restricted to ξp.

Definition 12.1. We say a Reeb orbit with period T is nondegenerate if Ψz : ξp →
ξp with p = z(0) has no eigenvalue 1.

Denote Cont(Q, ξ) the set of contact 1 forms with respect to the contact structure
ξ and L(Q) = C∞(S1, Q) the space of loops z : S1 = R/Z→ Q. Let L1,2(Q) be the
W 1,2-completion of L(Q). We would like to consider some Banach vector bundle L
over the Banach manifold (0,∞)× L1,2(Q)× Cont(Q, ξ) whose fiber at (T, z, λ) is
given by L2(z∗TQ). We consider the assignment

Υ : (T, z, λ) 7→ ż − T Xλ(z)

which is section of L.
Denote D the covariant derivative. Then we have the following expression of the

full linearization.

Lemma 12.2.

d(T, z, λ)Υ(a, Y,B) =
DY

dt
− TDXλ(z)(Y )− aXλ − TδλXλ(B),

where a ∈ R, Y ∈ TzL1,2(Q) = W 1,2(z∗TQ) and B ∈ TλCont(Q, ξ) and the last
term δλXλ is some linear operator.

By using this full linearization, one can study the generic existence of the contact
one-forms which make all Reeb orbits nondegenerate. We refer to Appendix of
[ABW] for its complete proof. We now assume that λ is such a generic contact
form.

Now we involve the set J (Q,λ) given in (1.1). We study the linearization of the
map Υuniv which is the map Υ augmented by the argument J ∈ J (Q,λ). More
precisely, we define

Υuniv(j, w, J) =
(
∂
π

Jw, d(w∗λ ◦ j)
)

∂ at each (j, w, J) ∈ ∂
−1

(0). In the discussion below, we will fix the complex
structure j on Σ, and so suppress j from the argument of Υuniv.

We denote the zero set (Υuniv)−1(0) by

M(Q,λ; γ, γ) =
{

(w, J) ∈ Wk,p
δ (Σ̇, Q; γ, γ))× J `(Q,λ)

∣∣∣Υuniv(w, J) = 0
}

which we call the universal moduli space. Denote by

π2 :Wk,p(Σ̇, Q; γ, γ)× J `(Q,λ)→ J `(Q,λ)

the projection. Then we have

M(J ; γ, γ) =M(Q,λ, J ; γ, γ) = π−1
2 (J) ∩M(Q,λ; γ, γ). (12.1)

One essential ingredient for the generic transversality under the perturbation of
J ∈ J (Q,λ) is the usage of the following unique continuation result. We take a short
cut in its proof relating the (local) contact instanton to a (local) pseudoholomorphic
curves in a (local) symplectization exploiting the well-known unique continuation
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result for the pseudoholomorphic maps. Here again the closedness condition d(w∗λ◦
j) for the contact instanton map w enters in an essential way.

Proposition 12.3 (Unique continuation lemma). Any non-constant contact Cauchy-
Riemann map does not have an accumulation point in the zero set of dw.

Proof. Suppose to the contrary that there exists a point z0 ∈ Σ and a sequence
z → z0 such that dw(z) = 0 for all i. Since w∗λ ◦ j is closed on Σ, it can be
written as w∗λ ◦ j = da on a neighborhood of z0 for some locally defined function
a. Then the pair (a,w) defines a pseudo-holomorphic map to R × Q. From the
equation w∗λ ◦ j = da, we also have da(z) = 0 too. This implies z are critical
points of the pseudoholomorphic map (a,w) with z0 as an accumulation point of
z which are critical points of (a,w). Then the unique continuation lemma applied
to (a,w) implies (a,w) ≡ const and so w must be constant, a contradiction to the
hypothesis. This finishes the proof. �

The following theorem summarizes the main transversality scheme needed for the
study of the moduli problem of contact instanton map, whose proof is not very dif-
ferent from that of pseudo-holomorphic curves, once the above unique continuation
result is established, and so omitted.

Theorem 12.4. Let 0 < ` < k − 2
p . Consider the moduli space M(Q,λ; γ, γ).

Then

(1) M(Q,λ; γ, γ) is an infinite dimensional C` Banach manifold.

(2) The projection Πα = π2|M(Q,λ,J;γ,γ) : M(Q,λ, J ; γ, γ)) → J `(Q,λ) is a

Fredholm map and its index is the same as that of DΥ(w) for a (and so
any) w ∈M(Q,λ, J ; γ, γ).

One should compare this with the corresponding statement for Floer’s perturbed
Cauchy-Riemann equations on symplectic manifolds.

13. Appendix: Proof of energy bound for the case of proper
potential

In this appendix, we give the proof of Proposition 9.2.
Since f is assumed to be proper, f(r) = ±∞ for each puncture r` of Σ̇ depending

on whether the puncture is positive or negative.
The proof is entirely similar to the proof of Lemma 5.15 [BEHWZ] verbatim with

replacement of a and the equation dw∗λ ◦ j = da therein by f and the equation

dw∗λ ◦ j +
∑

e∈E(T )

Q(w; e) dte = df

respectively in our current context. (We would also like point out that [BEHWZ]
used the letter ‘f ’ for the map w while our notation f is for the contact instanton
potential function which corresponds to a in their notation. This should not confuse
the readers, hopefully.)

In a neighborhood Dδ(p) ⊂ C of a given puncture p with analytic coordinate z
centered at p and Cδ(p) = ∂Dδ(p), with oriented positively for a positive puncture,
and negatively for a negative puncture. Consider the function

δ 7→
∫
Cδ(p)

w∗λ.
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It is increasing and bounded above (resp. decreasing and bounded below), if the
puncture is positive (resp. negative), since dλ ≥ 0 on any contact Cauchy-Riemann
map w and

∫
Dδ(p)

dw∗λ ≤ Eπ(w) <∞. Therefore the integral∫
Cδ(p)

w∗λ

has a finite limit as δ → 0 for all punctures. Now let ϕ ∈ C and let ϕn ∈ C such
that ‖ϕ− ϕn‖C0 → 0 and ϕn ◦ f = 0 on D 1

n
(p) for all punctures p. Such function

exists by the assumption on properness of potential function f . Moreover we can
choose ϕn so that∫

Σ̇

(ϕn ◦ f) df ∧ w∗λ =

∫
Σ̇

w∗d(ψnw
∗λ)−

∫
Σ̇

(ψn ◦ f)w∗dλ,

where ψn(s) =
∫ s
−∞ ϕn(σ) dσ. Notice that ψn ◦f = 1 in D 1

n
(p) when p is a positive

puncture and ψn ◦ f = 0 therein when p is negative. By Stokes’ theorem,∫
Σ̇

w∗d(ψnλ) = lim
δ→0

∑
`+

∫
∂`+Σ(δ)

w∗λ

where the sum is taken over all positive punctures p`+ . Therefore∫
Σ̇

(ϕn ◦ f) df ∧ w∗λ = lim
δ→0

∑
`+

∫
∂`+Σ(δ)

w∗λ−
∫

Σ̇

(ψn ◦ f)w∗dλ

≤ lim
δ→0

∑
`+

∫
∂`+Dδ(p)

w∗λ < C ′ <∞.

Moreover ∫
Σ̇

(ϕn ◦ f) df ∧ w∗λ→
∫

Σ̇

(ϕ ◦ f) df ∧ w∗λ

as n→∞, which implies ∫
Σ̇

(ϕ ◦ f) df ≤ C ′,

and so E(w) ≤ Eπ(w) + C ′ <∞. This finishes the proof.
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