
ANSWERS TO THE QUESTIONS FROM KATRIN WEHRHEIM

ON KURANISHI STRUCTURE.

KENJI FUKAYA

Dear all the members of google group ‘kuranishi’.

I am very happy that at last I heard some serious questions on Kuranishi struc-
ture, after 16 years. So far I heard only a rumor and nobody asked me anything
about Kuranishi strucrture itself directly, (except when I asked Dominic by writing
directly an E-mail to ask and discuss several points piecefully, some of which he
already mentioned in his E-mail.)

I am very happy to discuss to clarify mathematical points. As we write explicitly
in our book [FOOO1] there are certainly some errors in our paper [FOn] written
in 1996. But I am pretty sure that all the errors are correctable without changing
the main idea of the paper, so are not fatal. I hope this discussion group clarifies
the technical points around the definition of virtual fundamental chain and cycle
so that it becomes easier for everybody to use it.

I think virtual technique should be the basic tool and should be used by many
of the symplectic geometers. It should contribute for the symplectic geometry to
make more progress. It was rather unfortunate that not many people have used it
for 16 years. We have to improve this situation. That is my only purpose to be in
this group.

While writing this note I discussed with Oh-Ohta-Ono. They gave me various
important comments.

I use the notation of [FOOO1] appendix. If you do not have [FOOO1], its
appendix can be downloaded from my home page. (It may be an old version but
should be OK to see the notation.)

Question 1
(a) Yes. (b) We need to assume f to be strongly continuous and Kuranishi

structure has tangent bundle1 and orientation.

Question 2
(a)-(c)
Since there is an automorpism of Kuranishi neighborhood the correct notion of

germ is not for Kuranishi neighborhood but for Kuranishi structure itself.
We define Kuranishi struture in the way introduced in our book [FOOO1]. It

does not use germ. (We began to be aware of its danger at some point.) This is
enough for most of the purposes. (Including the proof of all the results in [FOn].)
In particular the cocycle condition

φpq ◦ φqr = φpr

1We need to take the version of [FOOO1] not of [FOn] for the definition of the existence of
tangent bundle
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is the exact equality and not modulo automorphism of Kuranishi neighborhood.
This is important to avoid 2-category. (φpq : Upq → Up is an embedding of the
orbifold Upq = Vq/Γq → Up = Vp/Γp, that is induced by the hpq : Γq → Γp
equivariant map φpq : Vpq → Vp.)

Actually I want to avoid using 2 category unless it is absolutely necessary because
it makes things complicated and harder to use.

On the other hand, I am very happy for somebody like Dominic takes his own
way to use 2 category or any higher category to built related but different theory
of virtual fundamental chain.

There is one point that is not so good in the way taken in [FOOO1]. The point
is that then the definition for the two Kuranishi structures to be the same (that
is isomorphic as I will define below) is too restrictive. For example under that
definition the fiber produt of Kuranishi structures (as defined in [FOOO1, Section
A1.2]) is not associative. (Also the definition of fiber product will involve choices 2.)
We can see however that ambiguity does not exist if we restrict to a neighborhood
of moduli space (original space itself). In case we want a notion to formulate it, a
germ of Kuranishi structure provides one. Its definition is as follows.

First two Kuranishi structures as in [FOOO1] are said to be isomorphic to each
other if there exists a diffeomorphisms between (effective) orbifolds Vp/Γp, V

′
p/Γ

′
p

for all p that is covered by an isomorphism of bundles Ep and E′p so that all maps
(coordinate change etc) commutes and Vqp/Γp etc. are sent to V ′qp/Γ

′
p.

We need to be careful about one point. Maps between (effective) orbifolds are
said to be equal to one other if its underlying map between sets are the same. This
is a correct definition since we assume that orbifolds are effective. (Two different
equivariant maps from Vpq to Vp may be the same as an orbifold map. That is the
case when two maps are transformed by the Γq action.)

We next define open sub Kuranishi structure.
It is defined as follows. We take open neighborhood of p in Vp. We call it V ′p .

We assume that it is Γp invariant. We put V ′qp = Vqp ∩ V ′p ∩ φ−1qp (V ′q ) and all the
other data is obtained by restricting the original one.

We say two Kuranishi structures are equivalent if their open substructures are
isomorphic in the above sense.

This is an equivalence relation since we can take intersection of two open sub-
structures and isomorphisms are composable.

The equivalence class is by definition a germ of Kuranishi structure.
This equivalence is somehow related to what Dr.Dingyu Yang wrote in his note.

However it is different from it and is much simpler thing. In fact we include open
embedding only. Yang includes the process to increase the dimension of the Kuran-
ishi neighborhood and obstruction bundle by the same number. This second process
is more dangerous as Dominic already mentioned. Namely there is a condition for
quotient category construction to work. (See [KS, Chapter 7] for example.)

The equivalence I explained above is not so strong and only a slightly better than
the too much strict one in our book. If the equivalence relation that Yang mentioned

2After I looked Dominic’s mail on March 18th, I think to add the following may be useful to
clarify the issue of fiber product of Kuranishi structure. (This point I told to Dominic during our
discussion over E-mail before.) The fiber product I mean is not in the sense of category theory.

It is defined in the way we wrote in [FOOO1] . So the well-defined-ness and associativity is not a
consequnce of general result of category theory.
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works it would be a much better equivalence relation and it could be expected to
give a canonical Kuranishi structure of the moduli space up to equivalence. The
one I exlained does not give canonical Kuranishi structure.

(d) We can use the definition written in our book [FOOO1]. To clarify the point
it may be better to explicitely state the following condition:

Condition 0.1 (Joyce[Jyo] formula (32)).

φpq(Vpq/Γq) ∩ φpr(Vpr/Γr) = φpr(φ
−1
qr (Vpq/Γq) ∩ Vpr/Γr).

This is due to Joyce [Jyo] (32)3. See [Ya] page 2. Yang said ‘A good coordinate
system will inherit this condition.’ Maybe it is. But let me put it as a part of
definition explicitely.

As for the Kuranihi structure we start with, we may assume the following

ψp(Uqp ∩ s−1p (0)) = ψp(s
−1
p (0)) ∩ ψq(s−1q (0)). (0.1)

in addition to [FOOO1] Definition A1.3, for the Kuranishi structure we start with.

Remark 0.2. Here sp is a section of orbibundle (Vp×Ep)/Γp → Up on Up = Vp/Γp
induced by the Kuranishi map Vp → Ep.
Uqp = Vqp/Γp. Here Vqp ⊂ Vp is an open set where the coordinate transformation

φqp : Vqp → Vq is defined. Vqp is Γp invariant.

Note (0.1) is somewhat similar to Condition 0.1. However (0.1) contains a con-
dition on the moduli space only. In fact if we have a Kuranishi struture which may
not satisfy (0.1) we replace Up by

Up \
⋃
q

(
ψ−1p (ψq(s

−1
q (0))) \ Uqp

)
.

Here the sum over q is taken appropriately according to the situation we apply it.
Since it is cumbersome to check that this process works we simply add (0.1) as a
part of the definition.

Let me explain why I mention Condtion 0.1. Kaoru told me that Katrin concerns
with the construction of multisection (on each chart maybe). After thinking for
a while, looking question 4 and Yang’s note, I guess the following might be her
concern. (Please let me know if her concern is on different point.)

Let r < q < p as as bove. Then there is a following trouble. The construction of
multisection is by induction on < on charts. So suppose we have one for q, r and
try to construct one for p. Let us denote the image of Uq, Ur in Up by Uq, Ur for
simplicity.

We need to extend the multisections on Uq and on Ur to one on Up. If Condition
0.1 above holds then since Uq ⊇ Ur we only need to extend one on Uq and forget
Ur. However if Condition 0.1 does not hold then the extended multisection on Uq
and on Ur may be inconsistent.

Given Condition 0.1, the construction of multisection by induction on < works as
follows. First note the following property Property 0.5 follows from two conditions
Conditions 0.3 and 0.4 we mention below.

Let me first remark the following point. Let P be the index set of the Kuranishi
chart of our good coordinate system. P is a partially ordered set. Let p, q ∈ P . In

3I thank Dominic Joyce very much who pointed out this important condition.
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some case when Up and Uq (the charts of good coordinate system) intersect (namly
s−1p (0) and s−1q (0) intersect in X after we send them by ψp, ψq), it may happen
that dimesions of Up and of Uq are the same and Γp is isomorphic to Γq by the
map appearing in the definition of coordinate change (from p to q say). (Note in
our formulation φqp is induced by φqp : Vp → Vq and hqp : Γp → Γq and hqp is an

isomorphism.) Then the map φqp in the coordiante change are diffeomorphism to
open sets. So we can invert it. In this case we redefine the partial order so that
p ≤ q and q ≤ p are both satisfied. It is s slight abuse of notation to call it partial
order, since p ≤ q and q ≤ p implies p = q does not hold. But it seems harmless
here, if the following Condition 0.3 is satisfied.

Condition 0.3. Let p, q ∈ P . If p ≤ q and q ≤ p then φqp(Uqp) = Upq and

φpq = φ
−1
pq

It seems that in a way we wrote our paper [FOn] the following condition is not
so clearly stated. So I will state it here as one of the assumptions for the good
coordinate system to satisfy.

Condition 0.4. Let p, q ∈ P . If Up ∩ Uq 6= ∅ then either p ≤ q or q ≤ p holds.
(Here Up = ψp(s

−1
p (0).)

Now the linearity property is stated as follows.

Property 0.5 (Linearity of partial order). Let pi ∈ P . Suppose

N⋂
i=1

ψpi(s
−1
pi (0)) 6= ∅. (0.2)

Then the set {pi | i = 1, . . . , N} are linearly ordered. (Namely for each pi, pj at
least one of pi ≤ pj , pj ≤ pi holds.)

It is easy to see that Property 0.5 follows from Conditions 0.3 and 0.4.

Let us take an inductive step to construct multisection on Ur. Suppose we
already constructed one for all Up with p < r. We denote the image of Urp in Ur by
Up for simplicity. Let NUp be a tubular neighborhood of Up in Ur. We will extend
the multisections (defined on the union of images of Up’s) to the union of NUp’s by
downward induction on p.

I explain the reason why Conditions 0.1, 0.3, 0.4 and Property 0.5 are enough to
construct multisection by induction. Let p be maximal among q’s with q < r. We
extend multisection defined on Up to NUp as follows. We have Er = Ep ⊕ E⊥p on
NUp. (Here we extend this decomposition to the tubular neighborhood.) Fot the
E⊥p component, we use the component of the original Kuranishi map itself. (This
is required by the compatibility of multisection.) On Ep component we extend the
given multisection on Up. This is transversal if NUp is sufficiently small.

Note Condition 0.5 implies that NUp are disjoint among maximal p’s. More pre-
cisely if NUp intersect with NUp′ and both p and p′ are maximal, then both p ≤ p′
and p′ ≤ p hold. Namely the coordinate change are diffeomorphism on the over-
lapped part. So using Conditions 0.1, 0.3, we can perform the above construction
on the union of such NUp’s.

Now we assume we have already extended to NUq for all q with p < q < r. We
will extend the multisection to NUp. We remark that if there are two such p’s say
p1 and p2 then one of the following holds.
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(1) NUp1 ∩NUp2 = ∅.
(2) The coordinate change between p1 and p2 is a diffeomorphism on open

subsets.

We collect all such p’s among which coordinate changes are diffeomorphisms.
Then we can repeat the first step in the relative setting to extend it on the union
of such NUp’s.

We have thus constructed multisection on the union of all NUp’s.
Then we can use the relative version of existence theorem of multisection (orb-

ifold case) to extend it to Ur.
We remark that we need to shrink Up several times in the above construction.

But we need to do it only finitely many times.

(e)(f) This is proved in page 957 - 958 of [FOn]. I will explain it in more detail
below and at the end of this note.

First a few words about a general strategy. It seems that Yang and maybe some
of other people’s idea to construct good coordinate system is first to glue Up’s and
obtain some space which we call M (following Yang in page 2 of his note) and then
we work on it. In other words to construct coordinate change etc. on Vqr they look
what happens in Up for p > q. This is related to Condition 0.1.

On the other hand, the method I will explain below do not use the space M (the
space obtained by glueing Up’s) at all. (Such a space never appeared in our paper
[FOn] or [FOOO1], except when we construct the zero section of the perturbed
multisection. That is a step which starts after the construction of good coordinate
system is completed.) On the contrary, to construct coordinate change from Up to
Up′ we use finer cover {U ′q} of Up ∩ Up′ . To see its properties, we take even finer
cover {U ′r}. In other words we do not care what will happen for Uo with o > p, p′.
We can do it as far as we stay in a neighborhood of the moduli space. Let me
explain this method more explicitely.

Any point p ∈ X has well defined Γp and dimUp. We put dp = dimUp and
mp = #Γp. We put

X(d,m) = {p | dp = d, mp = m}.
Note

CX(d0,m0) =
⋃

d≥d0,m≥m0

X(d,m)

is a closed subset of X. We will construct Kuranishi neighborhood on CX(d,m)
by downward induction of (d,m).4 (We say (d,m) ≤ (d′,m′) if both d ≤ d′ and
m ≤ m′ holds.)

We start with the case X(d,m) for which (d,m) is maximal. Such X(d,m) is
compact and disjoint from one another. We cover it by Upi . Note we set

ψpi(s
−1
pi (0)) = Upi

By a standard arguement in general topology we can choose it so that the following
holds.

Condition 0.6. If Upi ∩ Upj 6= ∅, then Upi ∩ Upj ∩X(d,m) 6= ∅.

4In this note we use induction on (d,m). In [FOn] induction on d is used. The reason for this

difference is as follows. In [FOn] the charts Up are orbifolds in general and φqp is an embedding of

orbifold. In [FOOO1] (whose formulation we follow here) the chart Up is a global quotient Vp/Γp

and φqp is obtained from an equivariant map Vq → Vp.
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For simplicity let me assume that the covering is by only two members Up1 and
Up2 . (The general case will be discussed at the last part of this note.) Our task
is to construct a coordinate change among them after shrinking it appropriately.
(After shrinking it should still cover X(d,m).)

Let q ∈ Upi ∩ Upj ∩ X(d,m). There exists U1
q a Kuranishi neighborhood (and

is an open subset of the Kuranishi neighborhood we starded with) so that there
exist coordinate change from U1

q to both Up1 and Up2 . Since the cardinalities of

the isotropy groups and the dimensions of the Kuranishi neighborhoods of U1
q and

Upi are both the same, the coordinate change has an inverse from the image. We
put Uqp1 , Uqp2 the image of coordinate change, and

φ
1

q;p2p1 = φp2qφ
−1
qp1 : Uqp1 → Uqp2 .

(Note in [FOOO1] the coordinate change is given by an equivariant map Vqp → Vq
where Vqp is an open subset of Vp. Here and hereafter Uqp etc. is a quotient space
Uqp/Γp.) Choose finitely many qj , j = 1, . . . , J so that Up1 ∩ Up2 ∩ X(d,m) is
covered by U1

qj ’s, where

U1
qj = ψqj (s−1qj (0) ∩ U1

qj ).

(We shrink Upi slightly here so that we can use compactness to obtain finiteness of
the cover.) We may also assume Uqj satisfies Conidition 0.6. (See Figure 1 in the
separate sheet.)

Put

U1
p2p1 =

⋃
j∈J

Uqjp1 .

If

φ
1

qj ;p2p1 = φ
1

qj′ ;p2p1
on Uqjp1 ∩ U

qj′
p1 (0.3)

holds for each j and j′ then U1
p2p1 ⊂ Up1 together with φ

1

qj ;p2p1 glued gives required

coordinate change. However (0.3) may not hold.
But we can show that (0.3) holds if we restrict the maps in (0.3) to a smaller

neighborhood of Upi ∩ Upj ∩X(d,m), as follows. We put

U1
qj = ψqj (s−1qj (0) ∩ U1

qj ).

Let r ∈ Up1 ∩ Up2 ∩X(d,m). We take U2
r so that we have a coordinate change

U2
r → U1

qj for any j with r ∈ U1
qj . Then the cocycle condition implies that the

composition

U2
r

φqjr−→ U1
qj

φpiqj−→ Upi

is independent of j with r ∈ U1
qj . (See Figures 2 and 3.)

Therefore we have (0.3) on the image φqjr(U
2
r ) for various j.

We cover Up1 ∩ Up2 ∩X(d,m) by finitely many U2
r ’s for r ∈ R. Here

U2
r = ψr(s

−1
r (0) ∩ U2

r ).

(We shrink Upi slightly for compactness argument.) Then on the union of φp1r(U
2
r )

over various r ∈ R, the equality (0.3) holds. We put

Up2p1 =
⋃
r∈R

φp1r(U
2
r ),

and define φp2p1 on it by (0.3). We thus have constructed coordinate change.
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Note, since we shrink Up2p1 two sets Up2 and Up1 may intersect away from
ψp1(Up2p1 ∩ s−1p1 (0)). But this occurs only away from X(d,m). We remove s−1p1 (0) \
Up2p1 from Up1 and s−1p2 (0)\φp2p1(Up2p1) from Up2 . Then (0.1) is satsified and they
still cover X(d,m).

We thus have constructed good coordinate system on X(d,m).
The inductive step of the constrution is similar to this first step. Suppose we

have defined a good coordinate system on a neighborhood U>(d,m) of

X>(d,m) =
⋃

(d′,m′)>(d,m)

X(d′,m′).

We will construct a good coordinate system on CX(d,m). Choose K>(d,m) that is
a neighborhood of X>(d,m) and its closure is compact and contained in U>(d,m).
(See Figures 4 and 5.) We construct Kuranishi neighborhood of the complement
X(d,m) \ U>(d,m) that is contained in X(d,m) \ K>(d,m). This construction is the
same as the first step above.

We need to define a coordinate change from Up to Uq, (after shrinking Up ap-
propriately). Here Uq is obtained in earlier step of induction (q ∈ X(d′,m′),
(d′,m′) > (d,m) and p ∈ X(d,m)). In this step we need to construct the co-
ordinate change only in one direction. (From p to q.) So a construction together
with the proof of cocycle condition is the same as the first step. (Again we need to
take V ’s for Kuranishi chart of X(d,m) smaller.)

Thus we are done. �

I will write more about this point, espacially how we obtain Condition 0.1, in
the end of this note. Maybe this is the point several people want to hear.

Let me add a remark about Dr.Dingyu Yang’s note especially its page 2. As the
above construction shows we never use the space obtained by glueing various Up’s
in the construction (the space written as M in the last paragraph of page 2 of his
note.) We use the topology of X (the space on which we define Kuranishi structure)
only 5. In the last part of this note, we will actully construct a Hausdorff metrizable
space to which our Kuranishi neighborhoods are embedded without assuming its
existence a priori.

Question 3
No further condition on sεp is necessary if it is close enough to original Kuranishi

map and if we shrink Up’s during the construction.
Since I heard indirectly that somebody has a question about Hausdorffness let

me explain a bit more about it.
The Hausdorffness of

⋃
p

(
(sεp)

−1(0)/ ∼
)

is broken if the following holds. (∼ is

defined by using coordinate change φqp.) Hereafter we denote by ∂AB the set B \B
where B is the closure on B in A. (Here B ⊂ A and A, B are topological spaces.)

Phenomenon 1 There exists a sequence xi ∈ (sεp)
−1(0) ∩ Uqp such that

lim
i→∞

xi = x ∈ ∂Up
Uqp.

lim
i→∞

φqp(xi) = y ∈ ∂Uq
(φqp(Uqp))

5I thank Dr.Dingyu Yang very much. He takes much time to try to understand our text and
found several important points which are very useful to clarify some points of the theory of virtual

fundamental chain.



8 KENJI FUKAYA

�
See Figure 6.

In fact then any neighborhood of y and x intersect and y is not in the image
of φqp and so is not equivalent (with respect to ∼) to x.6 I claim that we can
shrink each of Uq a bit (Vqp also at the same time) so that all the properties are
still satisfied and the above does not occur as far as (sεp)

−1(0) is sufficiently close

to s−1p (0).
We can show it as follows. Let U ′p be a Γp invariant open subset of U ′p such that

its closure U
′
p in Up is compact. We put

U ′qp = φ
−1
qp (U ′q) ∩ U ′p ∩ Uqp. (0.4)

This choice works obviously in the case when there are only two charts to glue.
Otherwise more complicated phenomena may occur. In the construction of good
coordinate system satisfying Condition 0.1, which I will explain at the end of this
note, we only need to consider the situation where we glue two spaces at each step
of the construction. So (0.4) is certainly the correct choice in the case we use.

I claim that Phenomenon 1 does not occur if (sεp)
−1(0) is sufficiently close to

s−1p (0). In fact we observe that the closure of U ′qp∩s−1p (0) is compact and contained

in Uqp. (This is because the space X to which s−1p (0) is embedded is compact and

Hausdorff.) So if ε is small enough then a neighborhood W of U ′qp ∩ (sεp)
−1(0)

does not intersect with ∂Upq. Moreover for xi ∈ W the sequence φqp(xi) does not

converge to a point in ∂Uq
(φqp(Uqp)).

Therefore a sequence xi in U ′qp ∩ (sεp)
−1(0) has a convergent subsequence unless

one of the following holds.

(1) xi has a subsequence converging to x ∈ ∂U ′p.
(2) φqp(xi) has a subsequence convergin to y ∈ ∂U ′q

Therefore it is impossible that

x ∈ ∂U ′
p
U ′qp, y ∈ ∂U ′

q
(φqp(U

′
qp))

both hold.
Let me remark that the trouble of non-Haudorff-ness occurs typically in the

following way. Let

Up = {(x, y) ∈ R2 | |y| > −x, or x > 0}

Uq = {(x, y) ∈ R2 | |y| > x− 1, or x < 1}
s(x, y) = y, Γp = Γq = {1}. Moreover we take

Uqp = {(x, y) | 1 > x > 0}.
The coordinate change is the identity map. (See Figure 7.)

Non-Hausdorff-ness occurs on lines x = 0, 1 minus y = 0.
Note also if we perturb s to sε(x, y) = y−ε, then its zero set after glued becomes

as in Figure 8 and is not a cycle. Undesirable noncompactness also occurs in a
similar way.

6The equivalence relation is defined as follows. If x ∈ Up and y ∈ Uq then x ∼ y if x ∈ Uqp

and y = φqp(x). Note in the case when p ≤ q and q ≤ p, we required that φqp(Uqp) = Upq and

φpq = φ
−1
pq . (Condition 0.3.)
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The solution above is to replace Up and Uq by

U ′p = {(x, y) ∈ R2 | |y| > −(x− ε), or x− ε > 0}

U ′q = {(x, y) ∈ R2 | |y| > (x+ ε)− 1, or x+ ε < 1}

U ′qp = U ′p ∩ U ′q ∩ Uqp.

The trouble now has gone, since there will be no longer non-Hausdorff-ness in the
neighborhood of y = 0. (See Figure 9.)

Question 4
(a) This seems to be related to page 979 of [FOn]. There is a bit more discussion

in [FOOO1, page 424]. This question is a bit vague and it is hard for me to see
which part you want to know in more detail. Let me explain one point according
to my guess that this may be your concern.

We cover the moduli space by finitely many sufficiently small closed sets Wi each
of which are centered at pi that is represented by ((Σi, ~zi), ui). (Σi is a (bordered)
Riemann surface and ~zi = (zi,1, . . . , zi,mi) are marked points. (Interior or bounary
marked points.) ui : Σi → M is a pseudo-holomorphic map.) We fix a subspace
Ei of Γ(Σi;u

∗
i TM ⊗ Λ0,1) as in (12.7) in page 979 of [FOn]. For p = ((Σp, ~zp), up)

we collect Ei for all i with p ∈ Wi and the sum of them is Ep. The Kuranishi
neighborhood of p is a set of solutions of

∂u ≡ 0 mod Ep. (0.5)

I will disuss the way how we identify Ei to a subset of Γ(Σ;u∗TM ⊗ Λ0,1) in
case ((Σ, ~z), u) is close to ((Σp, ~zp), up). (Please let me know if your concern is on
different point.)

When we fix Ei we also fix finitely many additional marked points ~zi+ = (zij)
where zij ∈ Σi, j = 1, . . . , ki at the same time and take transversals Dij to ui(Σi)
at ui(zij) as in appendix [FOn]. We take it sufficiently many so that after adding
those marked points (Σi, ~zi ∪ ~zi+) becomes stable.

We consider ((Σ, ~z), u). For each i we add marked points ~z′i = (z′ij), z
′
ij ∈ Σ,

j = 1, . . . , ki to (Σ, ~z) so that u(z′ij) is on the slice Dij . We add them to obtain
(Σ, ~z∪~z′i) that becomes stable, for each i. We require that it is close to (Σi, ~zi∪~zi+)
in Deligne-Mumford moduli space (or its bordered version). Then we obtain a
diffeomorphism (outside the neck region) between Σ and Σi which sends ~zi∪~zi+ to
~z ∪ ~z′i, preserving the enumeration. (See [FOn] the discussion of the identification
right before Definition 10.2.) Using this diffeomorphism and (complex linear part
of) the parallel transport on M (the sympletic manifold) with respect to the Levi-
Civita connection along the minimal geodesic joining u(w) with ui(wi) (where wi ∈
Σi is identified with w ∈ Σ by the above mentioned diffeomorphism), we send Ei
to a subspace of Γ(Σ;u∗TM ⊗ Λ0,1). We do it for each of i. (In other words the
stabilization we use depends on i.) Thus each of Ei is identified with a subspace of
Γ(Σ;u∗TM ⊗Λ0,1). We take its sum and that is Ep at (Σ, ~z). We may perturb Ei
a bit so that dimEp =

∑
i dimEi.

We thus make sense of (0.5).
An important point here is that the subspace Ei ⊂ Γ(Σ;u∗TM ⊗Λ0,1) at (Σ, ~z)

is independent of p as far as (Σ, ~z) is close to p. The data we use for stabilization
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is chosen on pi (not on p) once and for all. This is essential for cocycle condition
to hold7.

(b)(c) Once (a) is understood the coordinate chang φqp is just a map which
send an element ((Σ, ~z), u) to the same element. So the cocycle condition is fairly
obvious.

Question 5
Let me mention that there are two proofs of isomorphism between Floer homol-

ogy of periodic Hamiltonian system and ordinary homology of M , now. One is in
[FOn] and uses identification with Morse complex in the case when Hamiltonian
is small and time independent. The other uses Bott-Morse theorey and de Rham
theory and is in our paper [FOOO2]. (Several other proofs are written in 1996 by
Ruan [Ru], Liu-Tian [LT] also.)

(a)(b) I do not think it is possible in completely abstract setting. At least I do
not know how to do it. In a geometric setting such as one appearing in page 1036
[FOn], Kuranishi structure is obtained by specifying the choice of the obstruction
space Ep for each p. We can take Ep in an S1 equivariant way so the Kuranishi
structure on the quotientX/S1 is obtained. And it is a quotient of an S1 equivariant
Kuranishi structure on X. S1 equivariant multisection can be constructed in an
abstract setting so if the quotient has virtual dimension −1 the zero set is empty.

(c) We can take a direct sum of the obstruction bundles, the support of which
is disjoint from the points where two maps are glued. In the situation where two
solutions of perturbed Cauchy-Riemann equation that are not of Morse trajectory
(that is the situation of (1)) are glued, this obstruction bundle is S1×S1 equivariant.
The symmetry is compatible with the diagonal S1 action nearby.

(d) It is Theorem 20.5 [FOn].

Construction of good coordinate system (continued)
Let me go back to the construction of the good coordinate system and add more

explanation espacially on the way how to show that resulting good coordinate
system satisfies Condition 0.1.

As a short cut8 we can take the following way.
We first consider the construction of Kuranishi neighborhood of X(d,m) with

maximal (d,m). We cover X(d,m) by Upi . We already explained how to glue two of
them, say Up1 and Up2 . Condition 0.1 is satisfied since we have only two charts. We
then shrink them a bit as in the answer to Question 3. Then it becomes Hausdorff
in a neighborhood of X. In other words, the union of Up1 and Up2 after glued
becomes an effective orbifold in the usual sense. (We can throw away everything

away from X as follows. Put a metric of a neighborhood of
⋃2
i=1 s

−1
pi (0) in the

glued union of Up1 and Up2 . Throw away everything outside the ε neighborhood of⋃2
i=1 s

−1
pi (0) in this space. Then it becomes Hausdorff.) We denote it by U{p1,p2}.

Now we take U3. In the same way as before we can glue Up3 with U{p1,p2}.

7Since Equation (0.5) makes sense in a way independent of p it seems possible to simply take
the union of its solution space to obtain some Hausdorff metrizable space. That can play a role of

the metric space in which all the Kuranishi neighborhoods is contained. However I insiste that we
should not built the general theory of Kuranishi structure under the assumption of the existence

of such space, since it spoils the flexibility of the definition of the general story we have.
8There is a way to glue coordinate carefully so that it satisfies Condition 0.1. But the way

below looks shorter and closer to the way many people in this googole group get used to.
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Remark 0.7. To repeat the process described in the anwer 3 (e)(f) for the purpose
of this step, we remark the following. Let q ∈ Up3 ∩U{p1,p2}. To define a coordinate
change between Up3 and U{p1,p2}, we choose a sufficiently small Kuranishi neigh-
borhood of q. More precisely we require the following. Suppose q ∈ Up3 ∩Up1 ∩Up2 .
(Other cases are simpler.) We used a cover of Up1 ∩ Up2 to glue Up1 and Up2 . Let
{U ′qj} be those covers (that is a Kuranishi neighborhood). We take U ′′q a Kuranishi

neighborhood of q so that there exists a coordinate change U ′′q → U ′qj for any j

with q ∈ U ′qj . (Note the set U ′qj is the Kuranishi neighborhood that we wrote U1
qj

before. It was shrinked several times afterwards during the construction of earlier
steps.) We also assume that there exists a coordinate change U ′′q → Up3 . By this
choice, the Kuranishi chart U ′′q and the coordinate change from it determine a co-
ordinate change from the image of U ′′q in Up3 to a Kuranishi neighborhood U{p1,p2}
of U{p1,p2}. To find a domain where various maps U ′′q → U{p1,p2} are compatible,
we take U ′r as before and use it.

In each of further steps of the construction, we choose finer and finer neighbor-
hoods as construction goes.

We go back to our construction. We shrink Up3 and U{p1,p2} again to make the
union Hausdorff. Thus we obtain an effective orbifold U{p1,p2,p3} together with an

obstruction bundle and a section so that the zero set of the section goes to
⋃3
i=1 Upi

by a homeomorphism. Repeating it finitely many times, we obtain a Hausdorff and
effective orbifold together with an obstruction bundle and a section so that the zero

set of the section goes to
⋃N
i=1 Upi that contains X(d,m). We can use this orbifold

as one of the charts. Or (if we want a chart that is a global quotient V/Γ, for
examaple) we can work in this orbifold safely to obtain a good coordinate system
on a neighborhood of X(d,m) satisfying Condition 0.1.

The inductive step is as follows. We consider the step to find a Kuranishi neigh-
borhood of X(d,m). We assume that, for (d′,m′) > (d,m) we constructed U(d′,m′)
a Kuranishi neighborhood of X(d′,m′) that is an orbifold. They are glued together
by induction hypothesis. Also they satisfy Condition 0.1. We then can use the
previous argument that we can glue those orbifolds U(d′,m′) to obtain a Hausdorff
space, that we call M(d,m). (See Figure 10.)

Note when we perform this glueing we can add U(d′,m′) one by one inductively
(downward induction on <) so that we need to glue only two spaces in each step.
So the process to shrink a bit to obtain Hausdorff space, that we explained in the
answer to 3, works safely here.

The space M(d,m) is a union of various orbifolds with various dimensions. So
M(d,m) itself is not an orbifold. This is a typical situation of Kuranishi structure.

Let U>(d,m) be the union of the images to X of the zero set of Kuranishi maps in
Kuranishi neighborhoods of X(d′,m′) with (d′,m′) > (d,m). We choose a relatively
compact neighborhood K>(d,m) of X>(d,m) in U>(d,m). (See Figures 4, 5.) We

take an open neighborhood K>(d,m)
+ of K>(d,m) so that its closure is compact in

U>(d,m). We also take U>(d,m)
− ⊂ U>(d,m) such that the closure of U>(d,m)

− is in

U>(d,m) and the closure of K>(d,m)
+ is in U>(d,m)

− . (See Figure 11.)

We take points p ∈ X(d,m) ∩
(
U>(d,m)
− \ K>(d,m)

+

)
and ist Kuranishi neighbor-

hoods U ′p so that U ′p ⊂ U>(d,m) \ K>(d,m). (Here U ′p = ψp(s
−1
p (0) ∩ U ′p).) We take
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finitely many of them so that {U ′p} covers X(d,m)∩
(
U>(d,m)
− \ K>(d,m)

+

)
. We glue

them to obtain an orbifold L(d,m). (This process is exactly the same as before.)
Using the fact that we already have a Hausdorff metrizable space M(d,m) it is

easy to glue the embeding of each U ′p toM(d,m) to obtain an embedding L(d,m)→
M(d,m). (See Figure 12). We need to shrink L(d,m) to construct this embedding
without changing the intersection of its image in X and X(d,m).

We remove a small neighborhood of ∂K>(d,m)
+ fromM(d,m) and obtain another

Hausdorff metrizable space M(d,m)−. (See Figure 13.)
We then glue M(d,m)− and L(d,m) in M(d,m). The glued union of them is a

Hausdorff metrizable space that we call M(d,m)+. (See Figure 14.)
We observe that the intersection ofM(d,m)+ with a neighborhood of ∂U>(d,m)

is an orbifold of dimension d. This is because we removed the part of M(d,m)
which is close to ∂U>(d,m).

Now we start glueing U ′p’s for p ∈ X(d,m) \ U>(d,m) to M(d,m)+. During this
glueing, we glue U ′q with L(d,m) both of which are orbifolds of dimension d. (This

is because M(d,m)− is away from ∂U>(d,m).) Therefore we obtain a Hausdorff
metrizable space after this glueing. (See Figure 15.) It is an orbifold outside a
neighbhorfoold of X>(d,m). We can use this space to extend a good coordinate
system to X(d,m) that has required properties.

March 21, 2012
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