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ABSTRACT. This is a survey of a series of papers [FOOO3, FOOO4, FOOO5].
We discuss the calculation of the Floer cohomology of Lagrangian submanifold
which is a 7™ orbit in a compact toric manifold. Applications to symplectic
topology and to mirror symmetry are also discussed.
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1. INTRODUCTION

This is a survey of a series of papers [FOOO03, FOO04, FOOO5] we have writ-
ten about Lagrangian Floer theory of toric manifolds and their mirror symmetry.
Our main purpose is to perform systematic computation of the Lagrangian Floer
cohomology of the T™ orbit in toric manifolds together with various operations
introduced in [FOOO1] Section 3.8 and apply them to mirror symmetry between
toric A model and Landau-Ginzburg B model and to symplectic topology of toric
manifolds.

Let X be a compact toric manifold with complex dimension n and L(u) a
T™ orbit. (Here u is an element of the interior of the moment polytope which
parametrizes the T orbit. See Section 4 Formula (12).) We show that the num-
ber (counted with multiplicity) of the pair (L(u),b) (where b is an element of
HY(L(u); Ag)/H*(L(u); 2my/—1Z)) for which Floer cohomology H F((L(u),b), (L(u),b); A)
is nonzero is equal to the Betti number of X. (Theorem 11.6.)

Such a pair (L(u), b) corresponds one to one to a critical point of certain function
PO, the potential function, where u (the position of L(u)) is the valuation of the
coordinate of the critical points. Given X the valuation of the critical points of
PO can be calculated by solving explicitly calculable algebraic equations finitely
many times. (We illustrate these examples in sections 6 and 10. We use the result
of Cho-Oh [CO] for this calculation.)

This identification is induced by an isomorphism between quantum cohomology
QH(X;Ap) of X and the Jacobian ring Jac(PO) of the potential function PO,
which goes back to Givental [Gil, Gi2] and Batyrev [B1, B2] in the case when X
is Fano. We remark that the rank of QH (X; Ap) is the Betti number of X and the
rank of Jac(PO) is the number of critical points of PO counted with multiplicity.

The isomorphism QH (X;Ag) = Jac(PO) is a ring isomorphism. In the case
QH(X;A) is semi-simple, the ring QH (X; A) splits to the product of the copies of
the field A and each of the factors corresponds to a critical point of PO. (Propo-
sition 11.8.)

Thus we associate a non-displaceable Lagrangian submanifold L(u) to each of
the direct factor of QH(X;A). Entov-Polterovich [E, EP1, EP2, EP3] and others
[Os, Us| associated a Calabi quasi-homomorphism to each of the direct factors of
QH(X;A) and also a non-displaceable Lagrangian submanifold L(u) to such Calabi
quasi-homomorphism. The non-displaceable Lagrangian submanifold associated by
the theory of Entov-Polterovich coincides with one associated by Lagrangian Floer
theory, as we prove in [FOOO7]. (Our construction and proof are very different
from Entov-Polterovich’s however.)

The ring isomorphism QH (X; Ag) = Jac(PO) is generalized to the case when we
consider big quantum cohomology in the left hand side and the potential function
in Lagrangian Floer theory with bulk deformation in the right hand side. Moreover
it intertwines the pairings which is the Poincaré duality pairing in the left hand
side and is (a version of) residue pairing in the right hand side. This implies the
coincidence of two Frobenius manifold structures. One is the Frobenius manifold
structure induced by big quantum cohomology which is due to Dubrovin [Dub],
and the other is one associated to the isolated singularity by Saito [Sa, MSa]. This
isomorphism is regarded as a version of mirror symmetry between Toric A model
and Landau-Ginzburg B model. It is closely related to the story of Hori-Vafa [HV]
and also of Givental.
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The mirror symmetry between toric manifold and singularity theory have been
studied by many mathematicians. Besides those already mentioned above, here is
a list of some of them (this list is not exhaustive).

In this paper we focus on the case in which we study the A model (symplectic
geometry and pseudo-holomorphic curve) on toric manifold and the B model (de-
formation theory and complex geometry) on singularity theory side. The papers
[Aurl, Aur2, Bar, CLe, CO, Grol, Gro2, GPS, Iril, Iri2, Iri3, OT, Ta, W] also deal
with that case.

There have been more works in the other side of the story namely B model in
toric side and A model in singularity theory side. [Abl, AKO, FLTZ, Se2, Ue, UY]
are some of the papers on this side.

Acknowledgements: KF is supported partially by JSPS Grant-in-Aid for Sci-
entific Research No. 18104001 and Global COE Program GO08, YO by US NSF
grant # 0904197, HO by JSPS Grant-in-Aid for Scientific Research No. 19340017,
KO by JSPS Grant-in-Aid for Scientific Research No. 21244002.

2. PRELIMINARY

2.1. Notations and terminologies. The universal Novikov ring Ag is the set of

all formal sums -
> ™ &)
i=0

where a; € C and \; € R>¢ such that lim;_,o A\; = 00, and T is a formal parameter.
We allow \; € R in (1) (namely negative A;) to define A which we call universal
Novikov field. Tt is a field of fraction of Ag. We require A; > 0 in (1) to define A4,
which is the maximal ideal of Ag.

We define a valuation by on A by

o (i aZ-T)”) = inf{\; | a; # 0}. (2)

(Here we assume \; # \; for i # j.) A, Ao, A4 are complete with respect to vy and
(Ao, Ay) is a valuational ring with valuation vp.

Remark 2.1. In [FOOOL] a slightly different Novikov ring Ag nov which contains
another formal parameter e is used. The role of e is to adjust all the operators
appearing in the story so that they have well-defined degree. (e has degree 2.)
In [FOO03, FOOO04, FOOO5] and this paper we use Ag since ring theoretical
properties of Ay is better than one of Agnov. As a drawback only the parities of
various operators are well-defined.

Let Z1, ..., Z,, be variables. We define the strongly convergent power series ring
Ao Z1y. . s Zm))
as the set of all formal sums

Z Z Cheyoey, 28 - 7

E1=0  km=0
where Cp, ..k, € Ao such that

li or(C, = +oo.
k1+"'41rr1£11,L~>oo T( kl...km) 400
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We define strongly convergent Laurent power series rTing
Ao((Z1, 278, Zns Z0)

as the set of all formal sums
S Chikn 2 2y
ki1€Z km €EZ

where Cy, .k, € Ao such that

lim o7 (Ck, .. k,,) = +00.
a4+ | =00

See [BGR] about those rings.
We also define

N2, 27 2o, Z0) = Mol 20, 27 oy Z00) @A A

The definition of A{(Z1,...,Z,,)) is similar.

Let C be a graded free Ay module. The valuation vy induces a norm on C'
in an obvious way, by which C is complete. We define its degree shift C[1] by
C[1]¥ = C*¥*1. The shifted degree deg’ is defined by

deg’ x = degx — 1.
We put
BC=C® ---0C. (3)
~———
k times

Let BC = @;O:OBkC be the completed direct sum of them. Let &y be the sym-
metric group of order k!. It acts on B;C by

o (1@ ®ak) = (—1)"To1) @+ @ To(r) (4)
where * = Zi<j:o(i)>o(j) degz; deg x;. We define E,C as the subset of &, invariant

elements of BpC and put EC = @;OE;CC its completed direct sum.
On BC we define a coalgebra structure A : BC' — (BC)®? by

k
A(x1®"'®$k):Z(ivl®"'®$i)®($i+1®”'®$k)~ (5)
=0

(Note the summand in the case i =0is 1 ® (1 ® - - ® x).) A is coassociative.
We can define A : EC — (EC)®? by restriction. It is coassociative and graded
cocommutative.

We also consider a map A¥~!: BC — (BCO)®k

AF 1= (A®id® - ®id) o (AQid®---®@id)o---oA.
N—— — —_——
k—2 k—3

For an indecomposable element x € BC, it can be expressed as

Az =) xF @ @ xbh (6)

where ¢ runs over some index set. We use the same notation for EC.
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2.2. Moduli spaces of pseudo-holomorphic disks. Lagrangian Floer theory is
based on the moduli space of pseudo-holomorphic disks. We recall its definition
below. See [FOOO1] subsection 2.1.2 for detail.

Let X = (X,w) be a symplectic manifold and L its Lagrangian submanifold. We
pick a compatible almost complex structure J on X. Let 8 € Ho(X, L; Z).

The moduli space g’flln[(ﬁ) is the compactified moduli space of the genus zero
bordered holomorphic maps u : (£,0%) — (X,L), in class § € Hy(X, L(u);Z)
with k + 1 boundary marked points and ¢ interior marked points. This means the
following:

Conditions 2.2. (1) X is a connected union of disks and spheres, which we
call (irreducible) components. We assume the intersection of two different
irreducible components is either one point or empty. The intersection of
two disk components is if nonempty, a boundary point of both of the com-
ponents. The intersection of a disk and a sphere component is an interior
point of the disk component. We assume that intersection of three different
components is empty. We also require X to be simply connected. A point
which belongs to two different components is called a singular point.

(2) u: ¥ — X is a continuous map which is J-holomorphic on each of the
components. u(0¥X) C L. Here 0% is the union of the boundary of disk
components.

(3) There are k + 1 points zp,...,z; on 0%. (We call them boundary marked
points.) They are mutually distinct. None of them are singular point. We
require the order of k¥ + 1 boundary marked points to respect the counter-
clockwise cyclic order of the boundary of X.

(4) There are ¢ points z,...,2, on ¥\ 0%. (We call them interior marked
points.) They are mutually distinct. None of them are singular point.

(5) For each of the components X, of ¥, one of the following conditions hold :
(a) u is not a constant map on 3.

(b) ¥, is a disk component. We have 2nin + npary > 3. Here niy is
the sum of the numbers of the interior marked points and the interior
singular points. npdry is the sum of the numbers of the boundary
marked points and the boundary singular points.

(¢) X, is a sphere component. The sum of the numbers of the marked
points and the singular points on ¥, is > 3.

The condition 5) is called the stability condition. It is equivalent to the condition
that the automorphism group of this element is a finite group.

In case £ = 0 we write M (3) in place of MPF{(5).

We define the evaluation maps

ev - M (8) — X x LiH (7)

where we put

ev = (evh,ev) = (ev],...,ev/ evo,...,evy),

as follows:
evi(X,u) = u(z)

where z; is the i-th boundary marked point as in 3).
ev) (2, u) = u(z)

K3

where z;" is the interior marked point as in 4).
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Our moduli spaces M2, (3) have Kuranishi structure in the sense of [FO]
section 5 and [FOOO]1] section Al.

Its boundary is described by using fiber product. For example, in case £ = 0 we
have the equality

ompr) = U U UMmf; B1) evo Xevi MR (B2). (8)
ki+ko=k+1 B1+F2=01i=1

as spaces with Kuranishi structures. ([FOOO1] subsection 7.1.1.)

3. A QUICK REVIEW OF LAGRANGIAN FLOER THEORY

Let X = (X,w) be a symplectic manifold and L its Lagrangian submanifold. We
assume L is oriented and spin. (Actually relative spinness in the sense of [FOOO1]
Definition 1.6 is enough.)

In [FOOO1] Theorem A, we defined a structure of gapped unital filtered A
algebra {my | & = 0,1,...} on the cohomology group H(L;Aq) of L with Ag
coefficient.

Namely there exists a sequence of operators

k - BkH(L, Ao)[l] — ‘E[(L7 Ao)[l]
of odd degree' (for k > 0).
Theorem 3.1. (1)

Z Z mkz a:l,...,mkl(xi,...,kal_l),...,zk):0, (9)
ky+ko=k+1 i=1
where * = deg' x1 + -+ - + deg’ z;_1.
(2) mp(1) =0 mod A,.
(3) (Unitality) e = PD[L] € HY(L; Ao) is the strict unit. (Here PD : Hy(L) —
H"k(L) is the Poincaré duality.) Namely
Mgy1(xy, -, ) =0 fork>2ork=0.
and
mg(e,x) = (71)degzm2(l,’e) =
(4) (G-gappedness) There exists an additive discrete submonoid G = {\; | i =
0,1,2,...} ()\0 =0< A <A< -o- im0 Ay = OO) OfRZO such that
our structure is G-gapped. Namely my, is written as

o0
mg = E T’\imk,i
=0

where my, ; : ByH(L; C)[1] — H(L;C)[1] is C-linear.
(5) mgg coincides with cup product up to sign.
The triple (C,{m}, e) that satisfies 1)-4) of Theorem 3.1 (with H(L;Ag) being
replaced by C) is called a G-gapped unital filtered Ao, algebra.

main

The operator my, is constructed by using the moduli spaces M}"(3) as follows.
(Here we use de Rham cohomology, following [FOOO03, FOO04, FOOO5, Fu2, Fu3].
In [FOOO1] singular homology is used. Morse homology version is in [FOOO02].)

1See Remark 2.1. Only the parity of the degree is well-defined in Floer cohomology over Ag.
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Let hq, ..., hy be differential forms on L. We define a differential form my, g(h1, ...
on L as follows:

my g(h1, ..., hi) = evoi(evy, ..., evg) (h1 X -+ X hy) (10)
for (k, ) # (1,0). We use evaluation maps (7) in (10). We put
ml,O(h> _ (71)77,eregh+1dh7

where d is the de Rham differential. (See [FOOO1] Remark 3.5.8.)

Here we regard hy x --- x hy as a differential form on L*. Then the pull back
(evi,...,evy)* defines a differential form on MP2(3). The symbol evy denotes
the integration along the fiber associated to the map evg : g‘j‘ln(ﬂ) — L. We
remark that g‘j‘ln(ﬂ) itself is not necessarily transversal. So it may have wrong di-
mension. However we can use general theory of Kuranishi structure to obtain a mul-
tisection s ([FO] section 5, [FOOO1] section A1) so that the perturbed moduli space

e (8)* (that is the zero point set of the multisection s) has a virtual fundamen-
tal chain (over Q). However still after perturbation, the map evy : zl_ﬁiln(ﬁ)s — L
may not be a submersion on the perturbed moduli space M22"(3)° . So we take a
continuous family of perturbations written as {s, }wew parametrized by a certain

smooth manifold W so that
etV | (M@ x {u)) - L

weWw
is a submersion.? So we can justify (10) as
mkﬁ(hl, ceey hk) = evg[!/ ((evl, ce ,evk)*(hl X oo X hk) A wW) .

Here wy is a smooth form of degree dim W on W that has compact support and
satisfies [, ww = 1. We pull it back to e (MPHR(8)* x {w}) in an obvious
way. The fiberwise evaluation map ev{! is evg on MPA(3)w x {w}.

We omit the detail of this construction and refer [FOOO4] section 12 or [Fu2]
section 13. In the toric case, which is the case of our main interest in this article, this
construction can be simplified in most of the cases. Namely evy : M (5)* — L
itself can be taken to be a submersion (without using continuous family). See
Section 5.

We now put

my = Z T(Bm[“])/%mk,g.
BeHy(X,L;Z)

We can use various properties of the moduli space to check Theorem 3.1. In fact,
for example, Theorem 3.1 1) is a consequece of Formula (8) and Theorem 3.1 4) is
a consequence of Gromov compactness.

Thus we obtain a structure of G-gapped unital filtered A, algebra on de Rham
complex of L. Then it induces one on cohomology H(X, L; Ag), by a purely algebraic
result. ([FOOO1] Theorem 5.4.2.)

The filtered Ao, algebra (H (X, L;Ao),{mg | K =0,1,...}) is independent of the
choices (such as compatible almost complex structures and perturbations etc.) up
to an isomorphism of a gapped unital filtered A, algebra, (that is gapped unital
filtered Ao homomorphism which has an inverse). We omit the precise definition
of this notion and refer readers to [FOOO1] Definition 3.2.29 and Proposition 5.4.5.

2Actually the parameter space W is defined only locally. See [FOOO4] section 12.

ahk)
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Let (C,{my | K = 0,1,...},e) be a unital filtered A, algebra. We define its
weak Maurer-Cartan scheme Myear(C') as the set of solutions of the equation

> my(b,-+,b) =0 mod Age, (11)
k=0

for b € C°4 with b=0 mod A,. (Here and hereafter e denotes the unit.)
For b € C°% with b=0 mod A, we define m® by

oo oo

mp(zr,.ak) = Y oo > mg(b,. .. bbb ag b, D).

mo=0 myp=0
mo mi mp

The right hand side converges in vy topology. We can show that (C, {mz | & =
0,1,...},e) is a filtered A, algebra.

In our geometric situation, where C' = H(L; Ag), we can remove the assump-
tion b = 0 mod A, using a trick due to Cho [Cho3] and can define m} for any
b € H°M(L;Ag). (See [FOOO3] section 12 for toric case and [Fu3] section 5
for the general case.) Moreover the left hand side of (11) makes sense for any
b€ H°M(L;Ay). In case we need to distinguish it from the case b € H°%(L; A, ),

we denote the former by ./T/l\weak(H(L; Ao); Ao).
It is easy to see that m3(1) coincides with the left hand side of (11). Therefore

ifbe /T/l\weak(C’) then m§(1) = ce for some ¢ € A, It follows that
(m} o mb)(2) = —c (mh(e, z) + (~1) ¥ “mi(z,e) ) = 0.

Here we use Properties 3.1 1) in the first equality and Properties 3.1 3) in the
second equality. Now we define

Definition 3.2. Let b € H°%(L; Ay). We define Floer cohomology by:

Ker(m?)
()

HF((L,b),(L,b); A) is defined by taking ®a,A.

It is proved in [FOOO1] Proposition 3.7.75 and the discussion right after that
(general case, singular homology version) [FOOO4] section 8 (toric case, de Rham
homology version) that HF((L,b), (L,b); A) # 0 implies that L is Hamiltonian non-
displaceable.®> Namely for any Hamiltonian diffeomorphism F : X — X we have
F(L)NL #0.

Let b e ﬂweak(C). Then there exists PO(b) € AL such that

HF((va)v (Lab)aAO) =

> (b, ..., b) = PO(b)e.
k=0

Definition 3.3. We call PO : ./T/l\weak(C) — A, the potential function.

In the geometric situation we have B9 : Muyear (H(L; Ag); Ag) — Ay

3We need to take A (not Ag) for the coefficient ring for this statement. Actually
HF((L,b), (L,b); Ao) = 0 never occurs when Floer cohomology is defined.
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4. A QUICK REVIEW OF TORIC MANIFOLD

In this section we review a very small portion of the theory of toric variety. We
explain only the points we use in this article. See for example [Ful] for an account
of toric variety.

Let (X,w,J) be a Kéhler manifold, where J is its complex structure and w is
its Kahler form. Let n be the complex dimension of X. We assume n dimensional
real torus T™ = (S1)™ acts effectively on X such that J and w are preserved by
the action. We call such (X,w, J) a Kdhler toric manifold if the T™ action has a
moment map in the sense we describe below. Hereafter we simply say (X, w, J) (or
X) is a toric manifold.

Let (X,w,J) be as above. We say a map 7 = (71,...,7,) : X — R is a
moment map if the following holds. We consider the i-th factor S} of 7™. (Here
i=1,...,n.) Then m; : X — R is the moment map of the action of S}. In other
words, we have the following identity of m;

dri(X) = w(X, 1),

where t is the Killing vector field associated to the action of the circle S} on X.
Let u € IntP. Then the inverse image 7! (u) is a Lagrangian submanifold which
is an orbit of the T™ action. We put

L(u) =7 (). (12)

This is a Lagrangian torus. The main purpose of this article is to study Lagrangian
Floer cohomology for such L(u).

It is well-known that P = #(X) is a convex polytope. We can find a finitely
many affine functions ¢; : R™ — R (j = 1,...,m) such that

P={ueR"|{i(u)>0, Vj=1,...,m}. (13)
We put §;P = {u € P | ¢;j(u) =0} and D; = 71 (9;P). (dimgd;P = n —1.)

Dy U---U D, is called the toric divisor.
Moreover we may choose £; so that the following holds.

Conditions 4.1. (1) We put
dgj = ’17j = (’l}j717 . 7Uj,n) € R".
Then v;; € Z.
(2) Let p be a vertex of P. Then the number of faces 0; P which contain p is
n. Let 0;, P, ..., 0;, P be those faces. Then ¥},,..., 7}, (which is contained

in Z" by item 1)) is a basis of Z".

The affine function ¢; has the following geometric interpretation. Let u € IntP.
There exists m elements 8; € Hy(X, L(u); Z) such that

1 j=J

14
0 j#i" ()

5jﬂDa‘/{

Then we have
21l (u) = / w. (15)
Bj
The existence of such ¢; and the property above is proved in [Gu] Theorem 4.5.
(See [FOOO3] section 2 also.)
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Example 4.2. We consider the complex projective space CP™. Using homogeneous
coordinate [xg : @1 : -+ : x,] we define T™ action by

(t1yeeoytn) X0t xy) = [0 : 2V Tl eQTr\/Tlt”xn].

Here we identify R/Z =2 S'.) The moment map 7 = (m1,...,m,) is given by
g

mi([xo - xpl)

We have
Uj ) 75 0
1-— Z?:O Uj 1 = 0.

Example 4.3. We consider CP? as above. For 1 > a > 0, let us consider

éi(ul,...,un) = { (16)

P(a):PO\{(ul,UQ)EPO|u2>1—a}:{(u1,u2)€P0|u2§1—a}.

The inverse image 7~ !({(u1,u2) € Py | uz > 1 — a}) is a ball of radius \/a/2
centered at [0 : 1 : 0]. The boundary of 7#~*(P(«)) has an induced contact
form which is identified with the standard contact form of S3. We identify two
points on 97 1(P(«)) if they lie on the same orbit of Reeb flow. After this
identification we obtain from 7~ !(P(«)) a symplectic manifold which we write
X () = CP24CP(a).

It is well-known (see for example [MS] section 6.2) and can be proved from the
above description that X (a) is a blow up of CP? with Kihler form w such that the
symplectic area of the exceptional divisor is a.

The T? action on CP? induces a T? action on X (a) so that it becomes a toric
manifold. The moment polytope is P(«).

There are 4 faces of P(«) and 4 affine functions ¢; (i = 0,1,2,3). Three of them
are fy, {1, {3 as in (16). The fourth one is given by

E3(U1,U2) = l—Oé—UQ. (17)

Example 4.4. We can blow up again and may regard a two points blow up of CP?
as a toric manifold. For o, o’ > 0, with @ + o/ < 1 we consider the polytope

P(a, o) = {(ur,uz) € Py |ug <1—a, up +ug >a'}.

There exists a toric manifold X (a,a’) that is a two points blow up of CP? and
whose moment polytope is P(a, o).

P(a, ') has 5 faces. There are 5 affine functions £, . .., ¢4 associated to each of
the faces. g, ¢1, {2 are as in (16) and 3 is as in (17). ¢4 is given by

K4(U1,U2) = Uy + ug — o (18)
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5. FLOER COHOMOLOGY AND POTENTIAL FUNCTION OF THE 1™ ORBITS

In this section we give a description of Floer cohomology of the T™ orbit L(u)
of the toric manifold X. Here u € IntP and P is the moment polytope of X.

In this toric case the calculation of the Floer cohomology becomes significantly
simpler. This is because in this case the calculation of Floer cohomology is reduced
to the calculation of the potential function. Moreover the leading order term of the
potential function is calculated by the work of Cho-Oh [CO]. We will explain those
points in this section.

We first fix a basis of H!(L(u);Z) as follows. In Section 4 we fix a splitting 7" =
(S1)™ and the associated coordinate (t1,...,t,) € (R/Z)". Let e; € H*(T™;Z) be
the element represented by dt; in de Rham cohomology, where ¢; is the coordinate
of the i-th factor of (S!)". (Here we identify S! with R/Z.) The elements e;,
i=1,...,n form a basis of H'(T";Z) = Z". Since the T™ action on L(u) is free
and transitive, we may identify H*(T™;Z) = H'(L(u);Z). Hence we have a basis
e,i=1,...,nof H'(L(u);Z).

Let b € H'(L(u); Ag). We can write b =Y, z;e;. Hence we take (z1,...,x,)
as a coordinate of H(L(u);Ag). We also put y2* = e®i.

Remark 5.1. The expression e** determines an element of Ag in case z; € Ag as
follows. We write x; = x; 0 + x; + where z; o € C and x; € A;. Then we put

[eS)
y;'l = e%i = eTi0 E l’ﬁ_,'_/k'
k=0

Note e*i0 € C is defined as usual. The sum y_;~ xf’Jr/k! converges in vr-topology.

Now we consider a toric manifold X with its moment polytope P. We consider
affine functions ¢; (j = 1,...,m). We define v;; € Z as in Properties 4.1 1). We
define

2 = THO Ry ()i, (19)

Theorem 5.2. (1) HY(L(u); Ao) is contained in Myyear(H (L; Ag); Ao).
(2) Letb=> x;x; € H'(L(u); Ag). Then we have
N
PO®) =21+ -+ 2m+ DT Pulz1,..., 2m). (20)
k=1
Here N € Z>o or N = oo. The numbers pi, > 0 are positive and real.
In case N = oo, the sequence of numbers pp goes to oo as k goes to oo.
Pi(21,---,2m) are monomials of z1,...,zn of degree > 2 with Ay coeffi-
cient. We remark that z; is defined from y* = ™ by (19).
(3) If X is Fano then Py are all zero.
(4) The monomials Py, and the numbers py are independent of u and depends
only on X.

Item 1) is [FOOO3] Proposition 4.3 plus the last line of [FOOO3] section 4.

Ttem 2) is [FOOO3] Theorem 4.6 in the form (slightly) improved in [FOOO4]
Theorem 3.4. In [FOOO03, FOOO4] this formula is written using y;* in place of z;.
But it is easy to see that they are the same by the identification (20). We use the
result of Cho-Oh [CO] to calculate the term z; + - - - + 2, in the right hand side of
(20).
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Item 3) is [FOOO3] Theorem 4.5.
Item 4) follows from [FOOO3] Lemma 11.7.

Sketch of the proof. The linear terms z; in (20) come from the contribution (that
is my g, (b, -+, b)) of MP2(5;) to my(b,--- ,b), where 3; € Ha(X, L(u);Z) is as
n (14). Its coefficient 1 is the degree of the map

evo : MP™(3;) — L(u), (21)
which is calculated by [CO].

The term T?* P, is a contribution of M2i%(3) for some 3. We will assume 3 # 0
in the rest of the argument.

We can use a T" equivariant multisection to define virtual fundamental chain.
To see this we first observe that the 7™ action on MP#%(3) is free. This is because
T™ action on L(u) is free and (21) is T™ equivariant. Therefore to find a transversal
multisection we can proceed as follows. We first take the quotient with respect to
T™ action, next find transversal multisection on the quotient space and then lift it.

Let s be a T™ equivariant multisection which is transversal to 0. Then 7" acts
freely on its zero set M (3)s. Therefore the dimension of M¥#%(3)% is not
smaller than n if it is nonempty. We can show

dim MP¥™(B)° = n + p(f) — 2
where p : Hy(X, L(u);Z) — Z is the Maslov index. It implies that p(5) > 2 if
M (3)° 2 0.
This is the key point of the proof.

Remark 5.3. In case X is Fano, u(3) > 2 automatically holds if M2 (3) # ().
But in non-Fano case this holds only after taking T equivariant perturbation.

Moreover T™ equivariance implies that evy : M8 (3) — L(u) is a submersion if
Main(3) £ (). Therefore we may use this 7™ equivariant s to define my 3. Namely
we do not need to use a continuous family of multisections in this case.

Now if degb =1 then

degmk,ﬂ<ba--~7b) =2 _u(ﬁ) <0.

Namely my g(b,...,b) is either 0 or is proportional to the unit. This proves item

1).

To study my, (b, ...,b) for B # 3;, we again use the classification of J holomor-
phic disks in [CO] to find that if M8"(3) is nonempty the homology class 3 is
decomposed to a sum of 3;’s (j = 1,...,m) and sphere bubbles. Therefore

B=0+ - +pFj o+ +af
where bj, is one of b;’s and «; € Ha(X;Z) is represented by J-holomorphic sphere.
We put

cp = deglevy : M (B)* — L(u)].
Here the right hand side is the mapping degree of the map evy. It is well-defined
since in case u(3) = 2 the boundary of MPa"(3)* is empty. (This is because

Mpain(3hs §g empty if p(8') <0, 8 #0.)
Then we can show that

e

Z my g(b,...,b) = c@TZ{:MazﬂW)/?Tijl Lz
k=0
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Item 2) follows from this formula.

Item 3) follows from the fact that in the Fano case, M1 (3) # () and u(B3) = 2
imply 8 = (3; for some j.

Item 4) follows from the fact that cg is independent of u. O

Remark 5.4. In the general situation, the filtered A,  structure associated to
a Lagrangian submanifold is well-defined only up to isomorphism. In particular
potential function PO is well-defined only up to a coordinate change. (Namely it
may depend on the choice of perturbation etc.) However in our toric case we can
use a T™ equivariant perturbation s and then BO is well-defined as a function on
H'(L(u); Ap) without ambiguity. This is a consequence of well-definedness of cg
and is [FOOO3| Lemma 11.7.

We have the following useful criterion which reduces computation of Floer coho-
mology to the critical point theory of potential function.

Theorem 5.5. Let b = > x;e; € H'(L(u); Ag). Then the following three condi-
tions are equivalent.
(1) For each of i=1,...,n we have:

OPO| 0.

al’i b

(2)
HE((L(a),b), (L(u),b); Ag) = H(T™; Ao).

(3)
HF((L(w),b), (L(1),b); A) #0.

Sketch of the proof. By definition

PO(b)e = my(b,...,b). (22)
k=0
We differentiate (22) by z;. Then using 0b/dx; = e; we obtain:
aspD €= Z Z mk1+k2+1(b7"'7bae’iaba'"’b) :mll)(e’i)' (23)
Ox; b K1=0 k5—0 N~——— N——

k1 ko

Here the second equality is the definition of m?.

Now we assume item 2). Then we have m$(e;) = 0. Therefore (23) implies item
1).
We next assume item 1). Then (23) implies m%(e;) = 0. We use it together with
the fact that e; generates H(L(u);Ag) by cup product, and A, formula to prove
that m® = 0. (See [FOOO3] proof of Lemma 13.1.) Item 2) follows.

The equivalence between item 2) and item 3) is proved in [FOOO3] Remark
13.9. U

To apply Theorems 5.2 and 5.5 for the calculation of Floer cohomology of T,
we need some algebraic discussion, which is in order.

Let y1, . . ., yn be n formal variables. We consider the ring Aly1, ..., Yn, ¥y s>y ']
of Laurent polynomials of n variables with A coefficient. We write it as Afy, y ]
for simplicity.



14 KENJI FUKAYA, YONG-GEUN OH, HIROSHI OHTA, KAORU ONO

Let u= (uy,...,u,) € P. We put

yt =T "y € Aly,y']. (24)
By an easy computation we have
TOM ()t () = TN () (g ) (25)

for u,u’ € P. Therefore (19) defines an elements z; € Aly,y~!] in a way indepen-
dent of u € P.

We next introduce a family of valuations v% on Ay, y~!] parametrized by u € P.

Let F € Aly,y~']. Then for each u € Int P there exists F* ; € A for
i1, ...,0, € Z" such that

T yeneyin €EZ™

Here only finitely many of F} ; are nonzero. So the right hand side is actually a
finite sum.

Definition 5.6.
o (F) = inffop (F3 ;) | iy, # 0},

if F'# 0 and 0%(0) = +o0.
oY defines a valuation on Afy,y~

1,
We denote the completion of Aly,y~!] with respect to v% by A*{(y,y~ ).

By definition we have
07 (2;) = () > 0
for u € P. The following lemma is its immediate consequence.

Lemma 5.7. The right hand side of (20) converges with respect to o¥ for any
ucpbP.

We remark that according to the general theory described in section 3, the
potential function O associated to a Lagrangian submanifold L(u) is a A4 val-
ued function on /(/l\weak(L(u);Ao). By Theorem 5.2 (1), we have the inclusion
HY(L(u);Ao) C /T/l\weak(L(u);Ao). Since z1,...,z, € Ay forms a coordinate
of HY(L(u);Ag) with respect to the basis e;, we may regard PO restricted to
HY(L(u); Ag) as a function on (x1,...,7,) € AJ = HL(L(u); Ao).

Then by Theorem 5.2 2) we have

PO(wr,...,w0) = PO, .. al)
if z; — a2} € 2/ —1Z for each 4. In other words, we may regard PO as a function
of yi* = e¥. Note x; € Ay implies that y* —1 € A;. We next extend the domain

of PO by using Theorem 5.2 2).
We put A; = £;(0). Then it is easy to see from definition that

zj =Tyt oy, (26)
Lemma 5.8. Let (91,...,9,) € (A\ {0})™. We assume
(UT(Ul)v'“vnT(Un)) S (27)

We put 3; = Tn7"" ... 97" . Then

N
31_|_...+3m+ZT”’”‘Pk(31,...,5m) €Al
k=1
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converges as N — oo with respect to the valuation vr.

Proof. (27) implies vp(3;) = ¢;(u) > 0. The lemma then follows easily from

limg . o0 pr = 00 in the statement of Theorem 5.2 (20). O
We define
AP) = {(1,...,0n) € (AN{0}" [ (0x(91),...,07(v,)) € P} (28)

By Lemma 5.8 we may regard PO as a function
PO A(P) — A

We remark that 2((P) is not a manifold. So we can not define differentiation of O
in the sense of usual calculus. Instead we will define it as follows. We remark that
zj and Py(z1,...,%n) are Laurent monomials of y1,...,y, with Ay coefficient. So
we can differentiate it by y; in an obvious way. Moreover

yia—yiPk.(zl, ey Zm)
is again a monomial of 21, . . ., z,, with Ag coefficient. Therefore fory = (n1,...,0,) €
A(P) the limit

N
. 021 Ozm, or OP;,
J\}gnoo (Uza%(n) +oet Uzaiyl(n) + ;T Di Em (315 3m)
converges. (Here we put 3; = T%n}"" ...p,"".) We write its limit as
IPO
hi . — ().
Yi

Thus we have defined OPO

i A(P) — AL

Y By; (P) +

We now have the following;:
Theorem 5.9. For u € Int P the following two conditions are equivalent.
(1) There exists b € H*(L(u); Ag) such that
HF((L(u),b), (L(a),b); Ag) = H(T™; Ag).
(2) There exists vy = (91,...,0,) € A(P) such that

opO
0, () =0 (29)

fori=1,...,n and that
(o7(91),...,07(hn)) = u.

Definition 5.10. We say that L(u) is a strongly balanced if the Condition 1) (=
Condition 2)) in Theorem 5.9 is satisfied.

Proof. 2) = 1): Let y be as in 2). We put y* = T %yp,. Then or(yf) = 0.
Therefore there exist yjly € C and y}', € Ay such that y}' = y¥'y +yi',. We put
;0 = log(y}y) and

i+ = log(1+ (yi) "'yity)).
Note (y;fo)*ly;f 4 € Ay. Therefore we can define the right hand side by the Taylor
expansion of log(1 + z).
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We put z; = ;0 + z;+ and b =) .~ x;e;. Then using Theorem 5.5 it is easy
to see that 1) is satisfied.

1) = 2): Let b= > x;e; be as in 1). We put y; = T%e%. It is easy to see that
v = (91,...,,) satisfies Ui%(n) =0. O

Remark 5.11. It is easy to see that y? = y;, where 0 € R" is the origin. Note that
the moment polytope P is well-defined only up to parallel translation. Namely we
can replace it by P + u for any u € R", then P + u corresponds to the same toric
manifold as P.

Thus the choice y? = y; is quite ad-hoc, and we may take any y? in place of y; in
our story. In fact the ring Aly,y~!] can be canonically identified with the Laurent
polynomial rings over y¥* (i =1,...,n) using y?* € Afy,y~'].

On the other hand, the valuation v% and the completion A¥((y,y 1)) is canoni-
cally associated to the Lagrangian submanifold L(u).

The variables y}* also is defined in a way independent of the choice of the origin
of the affine space in which P is embedded.

In some reference such as [Aurl, HV] ‘renormalization’ is discussed. It seems that
this process depends on the choice of the origin in the affine space R™. Namely it
is related to the homothetic transformation y; — Cy; where C' — oo.

As we mentioned above the choice of 0 is not intrinsic. More canonical way seems
to be as follows. We consider each of ug such that HF((L(ug),b), (L(ug),b); A) # 0
for some b. We then replace P by P — ug, so this orbit L(ug) becomes L(0). We
now use y; — Cy; to ‘renormalize’.

Thus there exists a ‘renormalization’ for each such ug. This process of ‘renor-
malization’ seems to be related to the study of leading term equation, which we
discuss in section 8.

6. EXAMPLES 1

Example 6.1. We first consider the case of CP™. We use (16) and Theorem 5.2
2), 3) to obtain

PO=z+ - tzmtn=y+ -ty + Ty ya)"

Therefore the equation (29) becomes

The solutions are
= =y = TV exp(2nv/=1k/(n + 1))

where £k = 0,1,...,n. The valuation of y; are 1/(n + 1). Thus uy = (1/(n +
1),...,1/(n+ 1)) is the unique strongly balanced fiber.

Example 6.2. We next consider X (), one point blow up of CP? as in Example
4.3. Using the discussion in Example 4.3 and Theorem 5.2 2), 3) we obtain

PO =y1 + 42+ T(yry2) ' +T g5
The equation (29) becomes
L=Ty Py =0, 1-Ty 'y =T, =0,
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By eliminating yo = Ty; ? we obtain
yi + T3 — T = 0. (30)
We put u; = v (y1).
(Case 1) u; < .
We take vr of (30) and obtain 4u; = o+ 1. Namely v = (o +1)/4. u1 <

then implies « > 1/3.
Conversely if @ > 1/3 and u; = (o + 1)/4 we put y; = Ty then (30) becomes

y4 + T(Socfl)/4y3 —1=0.

Since (3ac — 1)/4 > 0, this equation has 4 simple roots y which are congruent to
+1,4++/—1 modulo A, respectively.
(Case 2) uj; > a.

We take v of (30) and have 3u; + a = @+ 1. Namely u; = 1/3. u; < « then
implies o < 1/3.

Conversely if o < 1/3 and u; = 1/3 we put y; = T"/3y then (30) becomes

T3yt 3 —1=0.

This equation has 3 simple roots y which are congruent to 1,e27V=1/3 gdmv/=1/3
modulo Ay, respectively.
(Case 3) u; = a.

We put y; = T%y. Then vr(y) = 0 and we have

YA (14y) =T =0, (31)

(Case 3-1) a =1/3.

In this case there exists exactly 4 roots y € C of (31).
(Case 3-2) a # 1/3.

By (31) a < 1/3. Then vr(1 +y) =1 —3a. We put y = 7173w — 1. Then
or(w) = 0. Then (31) becomes

(1—=T'"3w)3w+1=0.

There is one root of this equation with w = —1 modulo A;. Three other roots
do not satisfy vy(w) = 0. Thus there exists one solution in this case such that
u; = or(y) = 0.

In sum we have the following.

If « < 1/3 there exists one solution with u; = vr(y;) = « and three solutions
with u; = 1/3. Note uz = vr(y2) = 1—2u;. Therefore L(a,1—2a) and L(1/3,1/3)
are the strongly balanced fibers.

If @ > 1/3 we have 4 solutions with u; = (o + 1)/4, ug = (1 — &)/2. Namely
there is exactly one strong balanced fiber L((av 4 1)/4, (1 — @)/2).

In this section we discuss the Fano case only, where we can explicitly calculate
PBO. The non-Fano case will be discussed in section 10.

In the case of Example 6.1 and 6.2, McDuff [Mc] proved that all the 7™ orbits
where Floer cohomology vanish for all choices of b, are displaceable by Hamiltonian
diffeomorphism.

However there is an example of toric surface and its T2 orbit, such that one can
not displace it from itself by the method of [Mc] but all the known versions of Floer
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cohomology over A vanish for this 72 orbit. (See [Mc] Lemma 4.4.) We do not
know whether they are displaceable or not.

7. OPEN-CLOSED GROMOV-WITTEN THEORY AND OPERATORS q

In this section, we discuss the operator q introduced in [FOOO1] section 3.8. Let
(X,w) be a symplectic manifold and L its Lagrangian submanifold as in section 3.
Let hq, ..., hy be differential forms on L and g1, ..., g, differential forms on X. Let
B8 € Ho(X, L; Z). We define

qf,k,ﬁ(gla - e h17 FE) hk)
L * (32)
= Jiovol ((evi,...,evy,evy, ... evy) (g1 X -+ X ge X hy X -+ X hy).
We also put
qo;1;0(h) = (=1)"dh.

We remark that gy X --- X gg X hy X --- X hy, is a differential form on X¢ x L* and

main

its pull back is a differential form on M}’ ,(8). The map evq is integration along

fiber by the map evq : M1 (8) — L. More precisely we use a continuous family
of perturbations in the same way as we defined my in section 3.
We then put
qf,k — Z T(ﬁﬂw)/2ﬂ'qz’k’ﬁ.
BeH(X,L;Z)

It defines a map
Aok © Eo(QX)[2] @ Ag) @ Br(QUL)[1] @ Ag) — QL)[1] @ Ag.

This operator has the following properties. We omit the suffix ¢,k in q¢; and
write q in the formula below. We use the convention (6) introduced at the end of
subsection 2.1.

Theorem 7.1. (1) Let x € Br(QUL)[1]®@Ag), y € Ee(UX)[2] ® Ag). Suppose
y is a linear combination of the elements of the form y; ® -+ ® yp where
each of y; are closed forms. We then have the following:

0= (-D*ayZhx¥' @a(y2? x5 @ x3?) (33)

C1,C2

where * = deg’ x5! + deg' x3i! deg y2% 4 deg yZ'.
(2) Ify =1¢€ Ey(QX)[2] ® Ag) = Ag then

qO’k(l,X) = mk(x). (34)

(3) Let e = PD([L]) be the Poincaré dual to the fundamental class of L. Let
x; € B(QL)[1]®Ag) and we put x = x; ®e®@%2 € B(Q(L)[1]®Ag). Then

q(y;x) =0 (35a)
except the following case:

q(Le@a) = (1) q(lizwe) =z, (35b)
where x € Q(L)[1] @ Ao = B1(Q(L)[1] @ Ag).
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(4) There exists a discrete submonoid G ={\; |i=0,1,2,...} such that

o0
Ai
dek = ZT qe,k,i
i=1

where qg i+ Eo(Q(X)[2]) ® Bp(Q(L)[1]) — Q(L)[1].
(5) Leti: L — X be the inclusion and y € Q(X) @ Ag. Then

oy, 1) =i*(y) mod QL) @ Ay.

Remark 7.2. Formula (33) above implies that the operator ¢ (after modifying the
sign appropriately) define a homomorphism F.A[2] — HH*(L; A) to the Hochschild
cohomology of de Rham cohomology ring of L. See [FOOQO1] Section 7.4.

This is de Rham version of [FOOO1] Theorem 3.8.32. Namely item 1) is [FOOO1]
(3.8.33), Item 2) is [FOOO1] Theorem 3.8.32 (3). Item 3) is [FOOO1] (3.8.34.2).
Item 4) follows immediately from definition. Item 5) follows from [FOOO1] (3.8.34).

Let b € Q"(X)®@ A, and b € Q°¥(L) ® A,. Suppose db = 0. We put
b = (b,b) and define

my 1 Br(QUL)[1] @ Ag) — Q(L)[1] ® Ag
by

m}c’(xl,...,xk)

=3 % S @ul®hib bbby b o b) OO

£=0 mp=0 mp=0 mo my "

It is easy to see that {mP | k =0,1,2,...} defines a unital and gapped filtered An,
structure. e
We define Mgef weak (L) as the set of all b = (b, ) such that

mb (1) = ce. (37)
Here e = 1 € Q°(L).
If b € Mger,weak (L) then we have
mP om? = 0.

Definition 7.3. For b € M\def,Weak(L), we define Floer cohomology with bulk de-

formation by

Ker mP

Im mb
HF((L,b),(L,b); A) is defined by taking QnoA.
We define the potential function PO : Metweak (L) — Ay by the equation
PLOe = mP(1). (39)
We also put PO°(b) = PO(b,b).

If HF((L,b),(L,b);A) # 0 then L is non-displaceable. This is [FOOO4] Propo-
sition 3.15 which is proved in [FOOO4] section 8.

HFE((L,b), (L,b); Ag) = (38)
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8. FLOER COHOMOLOGY WITH BULK DEFORMATION IN THE TORIC CASE

Now we apply the construction explained in the last section to the case of toric
manifolds. In this section we use cycles (submanifolds) rather than differential
forms to represent the (co)homology classes of ambient manifold X, by a reason we
will mention in Remark 8.3.

Let Dy, ..., Dy, be the irreducible components of toric divisors. Let J = {j1,...,jx} C
{1,...,m}. If Dy = Dj, N---N Dy, is non-empty, it is a (real) codimension 2k
submanifold of X. We include the case J = 0. In that case D; = X. We denote
by A the free abelian group generated by D;. We put cohomology degree on it.
Namley deg D; = 2k if codimension of D is 2k. We define A(Ag) = A ® Ay.

There is an obvious homomorphism

A— H*(X;7) (40)

which is surjective but not injective. We write the generator of A as p;, (i =
0,...,B), where py = X and p; = D; for i = 1,...,m are degree 2 classes. For
I = (i1,...,i¢) €{1,..., B} we put

1
Pr =P, ® @D, [Pl=5 D P, @ 8Dy, € EAR)
toeG,

Here Gy is the symmetric group of order #!.
Let u € Int P, 3 € Hy(X,L(u);Z) and I € {1,...,B}*. We define:

M (8.D1) = MESE(B) (oot oty Xt DI (41)
+

Note ev;” are evaluation maps at interior marked points. We then still have evalu-
ation maps at boundary marked points:

ev = (evo,...,evy) : MPH(8,p;) — LA+ (42)
We use it to define an operator
qe.k;3 * E@A[Q] [029] BkH(L(u); (C)[l] — H(L(u); (C)[l}

as follows. We remark that there is a transitive and free action of 7™ on L(u). We
put a T™ invariant metric on L(u). Harmonic forms with respect to this metric are
nothing but the 7™ invariant differential forms. We identify the cohomology group
H(L(u);C) with the set of the T™ invariant forms on L(u) from now on.

Let hq,...,h; € H(L(u);C). The pull-back

(evy,...,evi)*(hy X -+ X hg)
is a differential form on M3, p;). We use integration along fiber of the eval-
uation map evy : g‘_ﬁil‘fe(ﬂ, p;) — L and define:
deks([Prliha X -+ X hi) = evor(evi, ... evg)*(hy X -+ X hy). (43)

We can perform all the constructions in a T™ equivariant way. So the right hand
side is a T™ equivariant differential form, which we identify with an element of
cohomology group.

Remark 8.1. To define integration along the fiber, we need the map evy : /\/lkmjllne (B,p;) —
L to be a submersion. We also need the moduli space to be transversal after taking
an appropriate perturbation.

We can do so by using multisection in the same way as section 5 as follows.

main

We remark that the fiber product moduli space Mj; +M(ﬂ,pI) has a Kuranishi
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structure. The group T™ acts on it. Moreover the T™ action is free. (This is
because evg is T™ equivariant and the T™ action on L(u) is free.) Thus by the same
argument as we explained during the proof of Theorem 5.2, we can take multisection
s which is T" equivariant and transversal to 0. Then evy : k‘?fif?z(@ p;)? — L(u)
automatically becomes a submersion if M;“j‘lng (8,p;)? is nonempty.

We can also choose our perturbation so that it is invariant under the permutation
of the interior marked points so descents to Ep.A[2]. Therefore the right hand side

of (43) depends only on [p;] rather than on p;.

We now define
de + ErA(Ao)[2] @ BrH (L(u); Ao)[1] — H(L(u); Ao)[1]

by
qf,k — Z T(wmﬁ)/Qﬂ-qZ,k;ﬁ-
BEH2(X;L(u);Z)

In case we consider elements of EyA(Ag)[2] which contain pg, the Poincaré dual to
[X], we define g, as follows:

q0(Po;il) = e,  qu2(Pg; b1, he) = (1) ldesht Dy, A py. (44)

In all the other cases, q¢j is zero if the first factor EypA(Ag)[2] contains py.

Then our g, satisfies the conclusion of Theorem 7.1.

For b = (b,b) € A(A}) x H°(L(u); A}), we define mP by (36). It defines a
unital gapped filtered A, structure on H(L(u); Ao).

Now we define

M\def,weak(L(u); A+) C A(AJr) X HOdd<L(u); A+)

as the set of all b = (b,b) € A(A}) x H(L(u);A;) such that mP(1)
mod Aje. In other words it is the set of (b,b) such that

Il
o

Z Z qer(66F) =0 mod A ce. (45)
=0 k=0

We define the potential function LO : M\def’Weak(L(u); Ay) — Ay by

> ank(b56%) = PO(b; b)e. (46)

£=0 k=0

Using a similar trick as the one used in section 5 we can extend the story to the
cohomology groups with Ag coefficient. Namely we obtain a Maurer-Cartan scheme

Maetamear (L(w); Ag) € A(Ag) x H**(L(u); Ao)
and Floer cohomology parametrized thereover. We also have a potential function
PO © Mt weak (L(0); Ag) — A
Most of the stories in section 5 can be generalized to the current situation.

Theorem 8.2. (1) A(Ao)x HY(L(u); Ag) is contained in M\def’weak(H(L; Ag); Ag).
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(2) Letb=> z;x; € H*(L(u);Ag) and b € A(Ay). Then we have
N
PO(b,0) =21+ -+ 2m + YT Piu(b;21,. .., 2m). (47)
k=1
Here N € Z>q or N = oo. The numbers py are all positive and real.
In case N = oo, the sequence of numbers py goes to 0o as k goes to co.
Pr(6;21,...,2m) are monomials of z1,...,zm of degree > 2 with Ag coeffi-
cient. (Here degree means that of monomials of z;.) We remark that z; is
defined from y* = e by (19).
(3) Let b= x;x; € H(L(u); Ag) and b € A(Ay).

POb,b) =c121 4+ + tmzm + Po(b;21, ..., 2m)

N
48
JrZT”’“Pk(b;zl,...,zm). (48)

k=1
Py(b;21,...,2m) is a formal power series of z1,z2,...,2m with Ay coeffi-

cient such that each term has degree > 2. The numbers ¢; are defined as
followsf. Let b = ijpj. We put w; = w; mod Ay and w; € C. Then
¢; =e% € C\ {0}. Other notations are the same as in (47).

(4) The monomials Py, and the numbers py are independent of u and depends
only on X and b.

Item 1) is [FOOO4] Proposition 3.1. (In [FOOO4] Proposition 3.1 it is assumed
that b € A(Ay). It holds also for b € A(Ag). See [FOOO4] section 11.)

Item 2) is [FOOO4] Theorem 3.4.

Item 3) follows from [FOOO4] sections 8 and 11. (Formulas (9.3), (11.1) etc.)

Item 4) follows from [FOOO4] Lemma 6.8.

The proof of Theorem 8.2 is similar to that of Theorem 5.2. We here mention
only a few points. Let I = (iy,...,i¢) € {1,...,B}. Weput p; =p,;, ® - @ p,,.

We have
¢

dim M0 (3p,) =0 — 2+ p(8) — 3 (degp; — 2). (49)
i=1
Here dim is the virtual dimension that is the dimension in the sense of Kuranishi
structure. As we explained in Remark 8.1 the perturbed moduli space Mf‘gin (B;pp)®
is empty if (49) < n.

Remark 8.3. This is the reason why we use cycles p, rather than differential forms
on X to represent cohomology classes of X. This point is crucial to prove item 1)
in Theorem 8.2.

In the case (49) = n we define
e(B; 1) = deglevy : rf,‘?i“(ﬁ; p;)°’ — L(u)] € Q. (50)

Here and hereafter ?}?i“(ﬂ;pl)s denotes the perturbation of the moduli space
f?i“(ﬂ; p;).- Namely it is the zero set of the multisection s. This zero set has a
triangulation and each simplex of maximal degree comes with a weight € Q. Thus
it has a virtual fundamental cycle. See [FOOO1] Section Al.
The number (50) is well-defined. Namely it is independent of the perturbation

s as far as it is T™ equivariant. It is also independent of u. ([FOOO4] Lemma 6.8.)
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The potential function is calculated by using ¢(3; I) as follows. Let £ = ¢4, . ..

Zgo- We put
I0)=(@,...,1,....,B,...,B) e {1,..., BY== s,
—— ——
@1 ZB

and

— —

c(B;4) = c(B; 1(L)).

Let b = E?:o w;Pp;-
We define 0;(5) € Z by

0;(B) = (0B, e}),
and put
(y*) 27 = (y1)1F - (y2)9nf = 7= (OFyDiF Ly Bul,

Now we have

PO(b,b) = wy + > DD

BEH2(X,L(u);Z) £1=0 =0
T(80w)/2m

Gl lp!
For the proof of (51) see [FOOO4] section 9.

o8 Dwy' - wif (y™)7".

23

,EBE

(47) follows from (51) and ¢(f;;(0,...,0)) = 1. This follows from [CO]. (See

[FOOO4] section 7.)

Theorem 5.5 is generalized to our situation without change. Namely we have

the following theorem. Hereafter we put PO°(b) = PO(b, b).

Theorem 8.4. Letb= > x;e; € H(L(u);Ag) and b € A(Ag). Then the following

three conditions are equivalent.

(1) For each of i =1,...,n we have:

opO°|
61‘2‘ =0
(2)
HF((L(U), (b7 b))a (L(u)a (b> b))v AO) = H(Tn7 AO)
(3)

HF((L(w), (b,0)), (L(w), (b,5)); A) # 0.

The proof is the same as the proof of Theorem 5.5 except some technical points,

which we omit and refer [FOOO4].

The discussion in section 5 on the domain of the function BO as a function of

y; is also generalized.
We put:

AP) = {(91,..,90) € A" | (07:(01),- .., 01(nn)) € Int P}.

We remark that by Theorem 8.2 ‘I?Db may be regarded as a function of yq, ...

(52)

» Yn-
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o v V4
Lemma 8.5. Let (91,...,1,) € A(P). We put 3; = TYiy"" ...n,7". Then

N
31t am+ Po(b530,. o 3m) + Y TP Pe(bs31, . ,3m) € Ay
k=1
converges as N — oo with respect to the valutaion vr.
In case b € A(Ay) where the term Py(b;31,...,3m) is absent, we may relax the
assumption to (91,...,9,) € A(P).

Thus we may regard O° as a function either : A(P) — Ay or : A(P) — Aq.
We can define
o IPO°
" Oy

in the same way as section 5. It defines either a function : Ql(%) — Ay or: A(P) —
Ap. Theorem 5.9 can be generalized as follows:

Theorem 8.6. Foru € Int P, b € A(A), the following two conditions are equiv-
alent.

(1) There exists b € H*(L(u); Ag) such that
(2) There ezists vy = (91,...,9,) € A(P) such that
OpO°
i dyi
fori=1,...,n and that
(or(91),...,07(hn)) = .
This is [FOOO4] Theorem 3.12.

(n) =0 (53)

9. LEADING TERM EQUATION

Theorem 8.6 provides a means of determining the Floer cohomology in terms of
the potential function. The main obstacle to directly apply the theorem in practice
is that we do not know how to calculate the extra terms Py (b; 21, - , z,) unless X
is Fano and b has degree 2. (There has been some computation carried out in this
direction for the nef case. See e.g. [CLal.)

Fortunately to determine all the 7™ orbits L(u) for which some Floer cohomology
with bulk does not vanish, we do not need to calculate those terms. We will explain
it in this section.

In this and the next sections we fix b and u and consider PO° as a function of
variables y}'. In this section we write g, instead of y}*. We remark that v¥(g,) =0
and

zj = Tfj(u)gil)-ﬂl .. yllj“’

Definition 9.1. We denote the sum of linear terms z;’s in PO by

m
‘,}308 =21+t Cenzm = ZTej(u)cqui)jvl . _ng,n
j=1
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and call it the leading order potential function. Here c¢; is defined as in Theorem
8.2 3).

Note this function appears frequently in the literature (see [Gil, HV, Iril]), is
denoted as W, and is called the (Landau-Ginzburg) superpotential.

Remark 9.2. Note in our situation of toric manifold, superpotential in physics
literature is basically the same as our potential function. However in other situation
they may be different. For example in the case of Calabi-Yau 3 fold X and its special
Lagrangian submanifold L, our potential function is identically 0. (In other words,
if b is a weak bounding chain then it is a bounding chain automatically.) On the
other hand, the physisists’ superpotential coincides with the invariant introduced
in [Fu4].

We remark that the leading order potential function ‘.]308 is explicitly read off
from the moment polytope P and u. The leading term equation we will define
below depends only on leading order potential function and so is also explicitly
calculable.

We renumber the values £;(u) according to its order. Namely we take j(I,7) €
{1,...,m} forl=1,..., Ko, r=1,...,a(l") with the following conditions.

Conditions 9.3. (1) {j(l,r)|I=1,....Ko,r=1,....a()} = {1,....m}.
(2) a(l) +--- +a(Ko) = m.
(3) Ej(u)(u) = j(l,T/)(u) for 1 < r, 7’ < a(l)
(4) éj(l)r)(u) < Ej(l/,/)(u) ifl <.

We put
Sp =L, (a). (54)
This is independent of r. Set

7_)'1’7‘ = ﬁj(l,r) = (vj(l,r)ﬁl, Ce 7Uj(l,r),n) ez (55)

It is an element of the dual vector space of A(Q) = Q", which we denote by A(Q)*.
Here A(R) = A(Q) ® R is the R vector space associated to the affine space which
contains the moment polytope P. Let Af is a vector subspace of A(Q)* generated
by {Oy, | <l,r=1,...,a(l")}. We denote by K < Kj the smallest integer such
that A% = A(Q)*. We have a filtration

0CAf CAy C-- C AL =(Q)". (56)

We put
d(l) = dim Aj- — dim A} ,. (57)

We have
d(l)+~-~+d(K) :n:dimA(Q)*. (58)

Note A = Z™ C A(Q) = Q". So Z" C A(Q)* is determined canonically. (We
remark that Z" C A(Q)* is generated by 0;, j =1,...,m.) Let {ef |i=1,...,n}
be the standard basis of Z" C A(Q)*. We take ef  for [=1,..., K, s=1,...,d(l)
satisfying the following conditions.

Conditions 9.4. (1) {ef [V <1, s=1,...,d(I')} is a Q basis of Aj-.
(2) @, is contained in the Z module generated by {e}, . [I' <[, s=1,...,d(l')}.
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We define by ,.; € Q by
m
* *
el/,s = E bl’75§jej
=1

and put

m m

_ 7bl/’s.7]-

Uos = [7," =exp [ D bu.sjz;
i=1 =1

(Note 7; = e®:.) Since by ;; may not be an integer, 7, , may not be contained in
the Laurent polynomial ring Ag[y,7 "] of the variables 7; (j = 1,...,m). But it is
contained in the finite extention of it. Let Ag[y.«,y5!] be the Laurent polynimial
ring of the variables g, ,, I =1,..., K, s =1,...,d(l).

By Condition 9.4 2),

Si77Y%i ()1 —Vi(lr),n
Zj(l’r‘)_Tl yn

is contained in Ao[7, 7~ 1]. Moreover it is contained in the Laurent polynomial ring
of the variables 7, ., I' =1,...,1, s =1,...,d(l').
We define ¢; .11 s € Z by

zian =TT TI w0 (59)

V<ls<d(l")

E § Clr;l! sel’

U<l s<d(l’)

In other words

We put
a(l)

( ) thlr)zj(lr ZCJZT)H H c““'. (60)

U<l s<d(l')
The numbers ¢;; .y € {c € AO | b1 (c) = 0} are defined in Definition 9.1.
We remark (‘BDS) is a Laurent polynomial of variables 7, ., I' < I, s =
. ,

1,...,d(l") with coefficient in complex number.

Definition 9.5. The leading term equation is a system of n equations of n variables
Y1 s with complex number coefficient. We define it by

7 aCﬁDS)l 0 1 d(1
yl’sTl,si s=1,...,d(1),
7 8(‘4398)2 1 d(2
yz,sTM*O s=1,...,d(2),

61
7 8@08)1 0 1 d(l "
yl’sTl,s_ s=1,...,d(l),
7 8(21308)K 0 1 d(K
Z/K,STK,S— s=1,...,d(K).
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Note the first equation in (61) contains g; ; s = 1,...,d(1), the second equation
in (61) contains 7; ;, s =1,...,d(1) and 7 ; s = 1,...,d(2) etc.

Ifb— b € A2(A}) @ @), 45 A¥(Ao) then (apog)l - (apgg’)l. So the leading
term equation is the same for such b and b’.

One of the main results of [FOOO4] is as follows.

Theorem 9.6. Let u € Int P and b € A(Ag). Then the following two conditions
are equivalent.

(1) The leading term equation (61) has a solution g, ; € C\ {0}.
(2) There exists b € HY(L(u); Ag) and b’ € A(Ag) with b — b € A*(Ay) such
that
HF((L(II), (bu b))7 (L(u)7 (b7 b))a AO) = H(Tna AO)
This is [FOOO4] Theorem 4.7 and Proposition 11.3. We omit the proof and refer
[FOOO04].
Definition 9.7. We say that L(u) is strongly bulk balanced if there exists b € A(Ag)
and b € H'(L(u);Ag) such that
HE((L(a), (b,b)), (L(u), (b,0)); Ao) = H(T™; Ao).
See [FOOO4] Definition 3.13 for a related definition.

Theorem 9.6 gives a way to locate strongly bulk balanced L(u) in terms of the
leading term equation.

10. EXAMPLES 2
Example 10.1. We consider Hirzebruch surface F,, n > 2. We take its Kahler
form so that the moment polytope is
P ={(u1,u2) | 0 <wuy,us, ug +nus <n, us <1—a},
0 < a < 1. The leading order potential function is
POo =y +y2 + Ty yy "+ T 5

We put
O (ur, u2) = uq, lo(u1,uz) = ug,

l3(ug,u2) = n —up — nug, ly(ur,ug) =1 — a — ug.

We put Sy (ur,uz) = inf{l;(u1,u2) | j = 1,2,3,4}.
Suppose the first of the leading term equation (61) has a nonzero solution. Then
it is easy to see that d(1) > 2. Namely

#7 | S1(ur, ug) = €(ur, ug)} > 2.

This is satisfied on the 5 line seguments [y, ..., [5, where
hiup=uww<1-a)/2, Lbiuy=1—a—u<(l-a)/2,
ls:uy=n—(n+Duz>n—(n+1)(1-a)/2
lyruy=n—1l+a—(n—Nu>n—(n—-1)(1-a)/2,
siuu=1-0a)/2,(1—a)/2<u; <n-—(n—-1)(1-a)/2

Note
U1 = (150)7 U2 = (07 1)7 U3 = (_13 —’I’L), Vg = (0’ _1)
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Let u = (uy,u2) € Is. Then A{(1)is Q- (0,1) and

(PO =72 +75" (62)
(Here b = 0 and so we do not write b in the above notation. We put g; = y})

0,1-0) 4

0,(1-00)/2)

Figure 10.1

We also have
U1 Ifu; < (1+a)n/4
(PO)2 = {71 72" If uy > (1+a)n/4 (63)
iy " Hu=(1+a)n/4

(62) gives the first leading term equation 1 —7y5 2 = 0 whose solutions are Yy = E1.

Then (63) gives the second of the leading term equation which are 1 = 0,
—(£1)7"g;2 =0, 1 — (£1)7"7; 2 = 0, where u; < (14 a)n/4, up > (1 + a)n/4
and u; = (1 + a)n/4, respectively.

The solution 7; # 0 exists only in the case u; = (1 + a)n/4. In that case the
solutions of leading term equations are (1,41) and (—1,4(—1)"/2). Thus L((1 +
a)n/4, (1 — «)/2) is strongly bulk balanced.

We can check that there are no other strongly bulk balanced T2 orbit. (This
follows from Theorem 11.9 also.)

See [FOOO3] Example 8.2 where the same conclusion is proved by basically the
same but a slightly different calculation.

Remark 10.2. For the case of Example 10.1 we can actually prove that L((1 +
a)n/4, (1 — a)/2) is strongly balanced. Namely some Floer cohomology without
bulk deformation is non-zero. This follows from [FOOO3] Theorem 10.4.

Example 10.3. ([FOOO4] section 5, [FOOO3] Example 10.17.) We consider two
points blow up X (a,a’) of CP2. (Example 4.4.) We consider the case o > 1/3,
o/ = (1 — a)/2. The moment polytope is

P:{(ul,u2)|0§u1 Sl, 0§u2§1704, (170[)/2§U1+U2§1}
We consider

u(t) = (t,(1-a)/2), te(l-a)/2,(1+a)/d). (64)
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‘We have
PO =TI 2(g, + 7, ") + T, + Tu¥o) + T2 (g,77,) 7

where

l1-a)2<t<(l+a)/2+t.
Therefore

PBON =T 4T s (PBO)a =7 + 7%

Thus the leading term equation is

1-7,2=0, 1+7,=0.

This has a solution g, = —1 (g, is any number € C\ {0}.)
Theorem 9.6 implies that all of L(u(t)) as in (64) are strongly bulk balanced. In
particular they are non-displaceable.

0,1-o)

0.(1-0)/2) &,

((1=00)/2.0) (1.0)

Figure 10.2

Remark 10.4. In the toric case, for each given b, the number of L(u) with non-
trivial Floer cohomology for a pair (b, b) for some b € H'(L(u); Ag) is finite. (It is
smaller than the Betti number of X by Theorem 11.6.) So to obtain infinitely many
L(u) with nontrivial Floer cohomology we need to include bulk deformations.

In the examples we discussed in this section, we do not need to change the
variables from y; to ;. An example where we need this change of variables is
given in [FOOO3] Example 10.10.

In Example 10.3 we obtain a continuum of non-displaceable Lagrangian torus in
certain two points blow up of CP2. ([FOOO04]). We can also use bulk deformation
to obtain a continuum of Lagrangian tori in S? x S§%. They are not of the type
of T? orbit but is obtained from the T? orbit of singular Hirzebruch surface F(0)
by deforming the singularity, that is of orbifold of As-type. ([FOOO6].) Closely
related construction is in [NNU1, NNU2]
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11. QUANTUM COHOMOLOGY AND JACOBIAN RING

11.1. Jacobian ring over Novikov ring. In this section we discuss the isomor-
phism between the Jacobian ring of ‘BD[’ and the quantum cohomology ring of X
deformed by b. We start with defining Jacobian ring precisely.

Usually Jacobian ring is studied in the case of (Laurent) polynomial or holo-
morphic function germ. Our function PO is neither a Laurent polynomial and
nor a holomorphic function. So we first define a function space in which ‘.]30[’ is
contained.

We consider the Laurent polynomial ring Ay, y~!] of n variables with A coeffi-
cients. We defined a valuation v’ for each u € R" in section 5 Definition 5.6. Let
P be a compact subset of R™. (We use the case when P is a convex polytope only
in this article.)

Definition 11.1. For F € Aly,y~!] we define
oF(F) = inf{o%(F) | u € P}.

This is not a valuation but is a norm. Therefore it defines a metric on Aly,y~!] by
dp(Fy, Fy) = e~ (Fi=F2)  We denote the completion of Afy,y~!] with respect to
dp by AP {y,y~1). Tt is a normed ring.

We define A ((y,y~1)) as the set of all ' € A {{y,y~1)) such that v (F) > 0.

Let P be a moment polytope of our toric manifold X. We take ¢; (j =1,...,m)
as in Condition 4.1 and put

P.={ueR"|{j(u)>e j=1,...,m}
for € > 0.

Definition 11.2. We define a metric dIOD on Aly,y~1] by
o(F1,Fy) = > 2 ¥ min(dp, , (F1, F2), 1).
k=1
Let AT ((y,y~1)) be the completion of Aly,y '] with respect to d1°3'

It is easy to see that an element of AT ((y,y~!)) may be regarded as a function

: A(P) — A and an element of A” ({y, 5y~ 1)) may be regarded as a function : A(P) —
A.

Lemma 11.3. Ifb € A(Ao) then

o b Db o
PO € AT,y "), wi ;ng- e Al (™). (65)
Ifb € A(Ay) then
b
PO A, w Ty € ATy, (66)

We omit the proof, which follows from Theorem 8.2. See [FOOO5] Lemma 2.6.
Now we define
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Definition 11.4.

A (5 Y)

Closg, (yzggyib 1i= 1,...,n)
3 :

Jac(PO®) =

(We may replace AL ({(y,y~1) by AL {{y,y~1) in the above formula in case b €
A(A4).)

Here the denominator is the closure of the ideal generated by y; a?f L=
1,...,n. The closure is taken with respect to the metric d}o). '

11.2. Big quantum cohomology: a quick review. We next review briefly the
well established story of deformed quantum cup product. Let (X, w) be a symplectic
manifold. For a € Hy(X;Z) let M(a)) be the moduli space of stable maps from
genus zero semi-stable curves with ¢ marked points and of homology class «. There
exists an evaluation map

ev: My(a) — X*°
M,(a) has a virtual fundamental cycle and hence defines a class
ev. [My(a)] € H, (X% Q).
(See [FO].) Here * = 2n+2¢1(X)Na+2¢—6. Let @1, ..., Q¢ be cycles such that
> codim Q; = 2n + 2¢1(X) Na + 20 — 6. (67)
We define Gromov-Witten invariant by

GWe(a: Q1,...,Qp) = evi[My(a)]N(Q1 X --- x Q) € Q.
We put GWy(a : Q1,...,Q¢) =0 when (67) is not satisfied.

We now define

GWe(Q1s.-.,Qe) = Y TENIETGW (a: Q... Qo). (68)

The formula (68) extends to a Ag module homomorphism
GW, : H(X;Ao)(g’g — Ap.

Definition 11.5. Let b € H(X; Ag) be given. For each given pair ¢,0 € H(X; Ayp),
we define a product ¢ U* 0 € H(X;Ag) by the following formula

=1
(cU%0,¢)ppy = Z ZGWH—S(C,D, ¢,b,...,b). (69)
=0

Here (-, -)pp, denotes the Poincaré duality pairing. The right hand side converges
ifb € H2(X;A4)®@-0 H*(X; Ag). We can extend it to arbitrary b € H*(X;Ao).
(This is well-known. See for example [FOOOS5] section 2.)

U® defines a graded commutative and associative ring structure on H(X; Ay).
We call U the deformed quantum cup product.
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11.3. The isomorphism ‘Jacobian ring = quantum cohomology’ and its
applications.
Theorem 11.6. There exists a ring isomorphism
(H(X; Ao), U") = Jac($0")

This is [FOOO5] Theorem 1.1 (1). We explain some parts of the proof later in
this section. We first discuss some applications.
Definition 11.7. Let Crit(BO") be the set of all y € 2A(P) such that

opO®
q;yi (n)=0

for i =1,...,n. An element of Crit(BO°) is said to be a critical point of POC.
A critical point y of PO° is said to be non-degenerate if the matrix

82%95 i,j=n
[UinM(U)

Yi0Y;
is invertible, as an n X n matrix with A entries.

The function PO° is said to be a Morse function if all of its critical points are
non-degenerate.

,j=1

We put

M(X;b) = {(u7 b)

ucInt P,be H' (L(u); Ao)/H' (L(0); 21/ —17Z),
HF((L(u), (b,b)), (L(a), (b,b)); Ao) = H(T™; Ao)} '
Theorem 8.6 implies the following.
#IM(X; b) = #Crit(PO°). (70)
Proposition 11.8. There exists a direct product decomposition
Jac(PO®) @p, A= [ Jac(PO°:v), (71)
peCrit(POL)

as a ring.
The factor Jac(PO°; ) in the right hand side is a local ring.
The ring Jac(&BDb; ) is one dimensional if and only if v is non-degenerate.

This is a standard result in the case, for example, when the function (‘BDE’ in
our case) is a polynomial or a holomorphic function. We can prove Proposition
11.8 in a similar way to those cases. It is proved in [FOOOS5] section 5.

Theorem 11.6 and Proposition 11.8 imply that (H(X;A),U") is semi-simple if
and only if PO° is a Morse function.

Theorem 11.6 together with Proposition 11.8 and Formula (70) imply the fol-
lowing:

Theorem 11.9. (1) IfPO° is a Morse function then
rank H(X;Q) = #IMM(X;b).
(2) IfPO° is not a Morse function then
0 < #M(X;b) < rank H(X; Q).
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This is [FOOO5] Theorem 1.3. Some of the earlier partial results is given in
[FOOO3] Theorems 1.9 and 1.12.

Remark 11.10. Theorem 11.9 in particular implies that there exists at least one
non-displaceable T™ orbit. This fact also follows from an earlier result by Entov-
Polterovich [EP2, EP3].

Another application is the following:

Theorem 11.11. ([FOOO5] Theorem 1.4.) Assume b € H?(X;Ag). The set of
eigenvalues of the map x +— c1(X) U o : H(X;A) — H(X;A) coincides with the
set of critical values of PO°, with multiplicities counted.

Remark 11.12. Theorem 11.11 was conjectured by M. Kontsevich. See also
[Aurl].

Proof. The proof uses the following:

Lemma 11.13. Let us consider the situation of Theorem 11.11. Then, by the
isomorphism in Theorem 11.6, the first Chern class c1(X) € H?(X;C) is sent to
the equivalence class of PO° in Jac(PO®).

This is [FOOO5] Proposition 15.1.
Now we consider z — ¢;(X) U® x. We use Thoerem 11.6 and Proposition 11.8
then it is identified to the direct sum of maps

[F] — [POCF], Jac(PO: ) — Jac(PO°: ).

The eigenvalue of this map is PBO°(y). This implies Theorem 11.11. O

11.4. Construction of the homomorphism £s,. In various applications of Tho-
erem 11.6 it is also important to know the way how the isomorphism is defined,
which we describe in this subsection.

Let p, be the basis of A as in section 8. We write an element b € A(Ag) as

B
b= Z w;P;-
i=0

We put w; =evi fori=1,...,m. (Note p;, i = 1,...,m are degree 2 classes.) We
define P, _;(y) by

oo o0

BO(bsy) =Y - > Py jp@)wi’wol - wirwyrilwy . (72)
Jo=0 jB=0

We can show that
Pjo-~-jB (y) € TPo-is Ag«% y_1>>
with

lim Pio...ig = OO.
Jo+tip—oo’ 10 P
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Therefore the right hand side of

B)
B, PO(b;y)

_ , - o
S > il sl wl Tl AL m (73)

Jjo=0 iB=0

oo oo
E E : Jo Ji JiB s
ij]OJB(y)wO ”.mi '”wB Z_lﬂ"'vm
Jjo=0 jB=0

makes sense and is contained in AT ({(y,y~1)) for each b € A(Ao).
We define the map

tsp, : A(Ng) — Aé%<<y,y‘1>>
by
s B
tsp, (p;) = %mD(b;y)

%

(74)

b=bo
Theorem 11.14. There exists a Ay module homomorphism ts, such that the fol-
lowing diagram commutes:

Adg)  —E APy, y)

l l (75)
H(X;Ao) —=— Jac(PO°).
The map &sp is the isomorphism mentioned in Theorem 11.6.

Theorem 11.14 is [FOOO5] Theorem 7.1.
Sketch of the proof. By definition, we have

mwm=ZZAﬁm%m (76)

k=0 ¢=0
Here b = Z?Zl x;e; and y; = e%i. Using 0b/0w; = p,; we have

OPO(b; P X =
%iy) =2 2.2 /L(u) Qe (67 ;6% bF). (77)

k=0 £,=0£,=0
The homomorphism

p; — Z Z Z ‘M;k(belpibbabk) (78)

k=0£1,=0 £2=0

induces a homomorphism
This fact was proved in [FOOO1] Theorem 3.8.62 for arbitrary L C X.

Note that to define (79) by (78) we fix b, b and regard the right hand side of (78)
as an element of H(L(u),Ag). When we define ts;,, we regard b = > | 2€;, as a
(H(L(u), Ag) valued function of x;. So the right hand side of (77) is a function of
yi = e’

In other words we need to study the ‘family version’ of the well-definedness of
(79).
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We consider the boundary operator

a € H(L(u),Ao) — m?’(a) = Z Z qu;k(bé,bklab’”).
k1=0 ka=0 £=0
The well-definedness of (79) means the following Claim 11.15. Let i, (0,0 (Pi) be
the right hand side of (78).

Claim 11.15. If Zio cip; s zero in H(X; Ag), then Zf:o Cilin (b,5)(Pi) lies in
the image of m;”b.

We can prove the same claim when we regard b as a function of ;. By the proof
of Theorem 5.5 (especially by Formula (23)), the image of m%"* (where b is regarded
as a function of ;) is in the Jacobian ideal (the ideal generated by y;OBO°/dy;).

Thus the kernel of A(Ag) — H(X;Ag) is mapped to the Jacobian ideal by Esp.
This implies the theorem. O

Before closing this subsection, we state Theorem 11.17 which is a nonlinear
version of Theorem 11.14.

The potential function with bulk PO° is parametrized by b € A(Ag). Theorem
11.17 says that it depends only on the cohomology class b up to appropriate change

of variables. AY((y,y™!)) denotes the set of elements R of AJ'((y,y~')) such that
TR € AL {(y,y~1)) for some € > 0.

Definition 11.16. We consider n elements y; € AT (y,y~ ') (i =1,...,n).

(1) We say that ¢y = (yi,...,y,) is a coordinate change converging on Int P
(or a coordinate change on Int P) if

yi = c;y; mod yiAi«y, y ) (80)

¢; € C\ {0}.

(2) We say that the coordinate change is strict if ¢; =1 for all i.

(3) We say that the coordinate change converges on P if y. € AP {(y,y=1)
(¢ =1,...,n) in addition. Its strictness is defined in the same way. We also
say that 4’ is a coordinate change on P.

The set of all coordinate changes forms a group. It is regarded as a kind of group
of self automorphisms of the filtered A, algebra associated to L(u). (The domain
of convergence assumed in Definition 11.16 requires that it converges not only by
the norm v% but also by n%’ with any u’. This is the reason we write “a kind of”
in the above sentence.) A closely related group appears in [KS2] and [GPS].

Theorem 11.17. Let b, b’ € A(Ag). We assume that [b] = [b'] € H(X;Ap).
Then there exists a coordinate change y' on Int P, such that

PO°(y') = PO (). (81)

Ifb— b € A(Ay), then y' can be taken to be strict.
If both b,b" € A(Ay), then y' can be taken to be a strict coordinate change on
P.
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This is [FOOO5] Theorem 8.7.

We remark that AZ (y,y~!)) parametrizes the deformation of the potential func-
tion. Then the Jacobian ideal corresponds to the part induced by the coordinate
change. Thus Theorem 11.17 follows from Theorem 11.14 by some ‘integration’
(that is solving appropriate ordinary differential equation.) See [FOOO5] section
8.

11.5. The homomorphism #s, is an isomorphism. The main geometric input
to the proof of Theorem 11.6 is the following;:

Theorem 11.18. The map ¢sy, : (H(X; Ag),Ub) — Jac(PO°) is a ring homomor-
phism.

Theorem 11.18 is [FOOO5] Theorem 9.1.
Note this theorem is a version of a result which holds in greater generality.
Namely there exists a ring homomorphism

QH(X;Ay) — HH(Fuk(X,w)), (82)

where the right hand side is the Hochschild cohomology of the Fukaya category (see
[Ful, FOOOQS] for its definition.) The existence of such homomorphism was first
suggested by [Ko] and conjectured explicitly by [Se3] etc. See [FOOO5] section 31
and the reference therein for some of the related works.

We remark that H H (Fuk(X,w)) parametrizes the deformation of the Lagrangian
Floer theory on X. The Jacobian ring Jac(‘BDb) parametrizes the deformation of
a part of the structures, that is the part described by m}(1). So there is a natural
ring homomorphism HH (Fuk(X,w)) — Jac(PO°) in the toric case. Combining
them we obtain the ring homomorphism in Theorem 11.18.

More precise and down-to-earth proof of Theorem 11.18 is given as follows.

We recall that the map €sy : (H(X;Ag),U?) — Jac(PO°) is induced from the
map

P > ) / Qevrtarrin (0D, 05 A — A,y Y). (83)
k=0 £,=0 £,=0* L(1)

(See (78).) Note b = > x;e; and the right hand side is a function of z;. It then
turns out to be a function of y}' = e”. Moreover by changing the variables to y;
by the formula y; = T“y?, the right hand side becomes a function of y; and is an
element of A{((y,y~1).

We consider the case b = 0 for simplicity.

We consider the moduli space My41,2(8) of J-holomorphic disks with & + 1
boundary and ¢ interior marked points, (See subsection 2.2.) and take a fiber
product

maln

k+1;2(ﬁ)(evj7ev;) x (p x p’)
where p,p’ € A. We denote this fiber product by
M, (85 p, P).
Let M2 be the moduli space of bordered Riemann surface of genus 0 with two

interior and one boundary marked points. This moduli space is a two dimensional
disk. We consider two points [X1], [E2] € M1.2 as in the figure below.
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z z,
1
Figure 11.1
We have a forgetful map
forget : ’,ffl"Q(ﬁ) — M. (84)
Namely we put
forget([Z; 20, . - -, 2k, 21, 29, u]) =[5 205 21, 2.

It induces a map
forget : ML (6, p') — M.
For i = 1,2, we denote by
12 (8P, P E)

the inverse image of {[;]} in M1 (8; p, P').

Let h; € H'(L(u);C) (j = 1,...,k). (Note we identify the cohomology group
with the set of 7™ invariant forms.) We pull back hy X - - Xy, to M};‘fb (G;p,P';20)
by (evy,...,evy) and consider the integration along fiber by evy. We denote it by

Corr(hy X+ X hy; ME205 (8 p, P/ 54)).
main

More precisely we take a 7™ invariant multisection s so that the zero set M (585 p, p's 2:)°
is transversal to zero. Then integration along the fiber is well-defined. This is be-

cause evg on Mg‘j‘an (6; p, P’; 2i)® must become a submersion by the T™ equivari-

ance.

We put
Corr(hy X -+ X hy; M5 (P, '3 54))
= ZT(ﬁm“)/Q“Corr(hl X oo X Mg ?ﬁ?z(ﬂ?p,Pg %))
B
and extend Corr(--- ; kmfisz)(p,p’; ¥)) to

H' (L(u); Ag)®* — Ay
We then can prove the following two formulas:
Corr(b,...,b; MEME, (P, p's 51)) = qu(p U9 p's b). (85)
\W_/
k
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Corr(h, ..., by ML (P, P 2) = D Auk (50" )an (P 0%2). (86)
——

s k1+ko=k

Note the sum over k of the right hand sides of (85) and (86) are
tso(pU?pP’)  and  Eso(p)tso(p’)

respectively. (Note we are studying the case b = 0.)

We finally use cobordism argument to show that the left hand side of (85) coin-
cides with the left hand side of (86) modulo elements in the Jacobian ideal. This
is an outline of the proof of Theorem 11.18. See [FOOOS5] section 9 for detail.

The outline of the rest of the proof of Theorem 11.6 is as follows.

We first prove the surjectivity of €s,. For this purpose we consider the map ob-
tained by reducing the coefficient to C = Ag/A;. Then the quantum cohomology
of the domain becomes ordinary cohomology. We can calculate the C = Ag/A4
reduction of the Jacobian ring using Cho-Oh’s result (namely by studying the lead-
ing order term 2y + - - - + 2,,. See Theorem 8.2.) Then the C-reduction of sy is an
isomorphism by a classical result of Stanley which calculates the cohomology ring
of toric manifold. (See for example [Ful].) It implies that €sp itself is surjective.

We remark that the fact that C-reduction of s, is an isomorphism does not
imply that €s, is isomorphism. In fact we need to eliminate the possibility that
Jac(PO®) has a component such as Ag/(T?). Note that the (quantum) cohomology
H(X;Ap) is a free Ag module. Therefore to prove the injectivity of s, and complete
the proof of Theorem 11.6 it suffices to prove the following inequality.

ranky (Jac(PO°) @4, A) > rankg H(X; Q). (87)

We remark that in many explicit examples we can prove the equality (87) directly
by finding critical points of ‘335357 for example by solving leading term equation.
However the proof of (87) is in general more involved, which we briefly describe
now. We consider the case b = 0, for simplicity.

We prove (87) in two steps. We first use a result of McDuff-Tolman [MT] (which
is based on Seidel’s work [Sel]), to find elements 21, ..., 2, € HQ(X;Ap) with the
following properties.

(1) 2i,...,z, satisfies quantum Stanley-Reisner relation.
(2) There exists PBi(Z1,...,Zm) = E;nzl VjiZi + > ey TP Py (Z1,s .o, Zy)
such that
mi(zi""vz;n):o (88)
and py, — 00, p >0, P, € C[Z1,...,Zy]. (Werecalldl; = (vjq1,...,0j,) €
")

(3) The relations in the above (1),(2) are all the relations among z;. Moreover
z} generates HQ(X; Ao).
Let us explain the above statement briefly. By putting Z; = T/\’L'yf“1 Coeynt™ we
obtain a surjective ring homomorphism

ANZy, ..., Zn] — A[yl,yl_l,...,yn,ygl].

The quantum Stanley-Reisner relations are the generators of the kernel of this
homomorphism. (See [FOOO3] Definition 6.4.) The quantum Stanley-Reisner re-
lation appeared in the Batyrev’s work on quantum cohomology of toric manifold
and is given explicitly by using moment polytope P.
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We put z; = Tyt -y € Jac(PO®). Then (47) implies that it satisfies
the formula

Zvj,izi+ZTp’“8—k(zl,...7zm) =0. (89)
=1 k=1 i
(Note we put y; = e so (89) is %i’: = %if .) We remark that the first term of
the left hand side of (89) is
opO°
O (217 ey Zm)

We also remark that the left hand side of (88) is similar to (89). Namely their
leading order terms coincide.

The element 2| is the invariant of [Sel] associated to the Hamiltonian S* action.
Here S' is the component of 7" which fixes D;. The fact that they satisfy the
quantum Stanley-Reisner relation is proved in [MT] using the relation between
those S! actions and basic properties of Seidel invariant. The property (2) can be
proved using the fact 2z, = [D;] mod A;.

Let (QSR) C Ao{(Zn, ..., Zm)) be the ideal generated by the quantum Stanley-
Reisner relations. Then (1), (2) above imply the existence of homomorphism

AO<<Z17 R Z’m>>
Clos((QSR)U{B;:i=1,...,m})
here Clos means a closure with respect to an appropriate topology. By reduction
to C = Ag/A+ we can show that (90) is an isomorphism. (We use the fact that
QH(X;Ap) is torsion free here.)
Now the proof of (87) goes as follows. For s € A we put

opoO°
83%

— QH(X; Ao). (90)

B =s

We remark B? has the form

+ (1 — 5)&]31

m

oo
B (Zrso s Zm) =D 0jiZi+ Y TP 21, Zm).
j=1 k=1

We define the ring R, by

_— Nol(Z1,. ..\ Zm))
® Clos((QSR)U{P::i=1,...,m})

QAo A.

We have
o = QH(X; A)
since (90) is an isomorphism. On the other hand
R = Jac(PO°) @4, A.

Thus it suffices to show that dimp R is independent of 5. We regard Ugep Spec(fRs)
as a family of affine schemes parametrized by s € A. If we can prove that this family
is flat and proper then the independence of dimp fR; is a standard result of algebraic
geometry.

We prove the properness using the fact that the valuation of the solution of the
equation P = --- =P = 0 can not escape from moment polytope. The flatness
is a consequence of the fact that our scheme is a local complete intersection and
also of standard facts about the regular sequence of Cohen-Macauley ring.
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In general *B; is an infinite series rather than a polynomial. So we first need to
change the coordinate y; so that 37 becomes a polynomial. Such a process is known
in algebraic geometry as a algebraization of singularity. See [FOOO5] section 12.

This is an outline of the proof of (87). See [FOOO5] especially its section 14 for
details. |

Remark 11.19. We regard
U Spec(PO®) (91)

beEH (X ;Ap)

as a H(X;Ag) parametrized ‘family of schemes’ 4

The same argument to show the flatness and properness of the family Usep Spec(Rs)
seems to be applicable to show that the family (91) is also flat and proper.

In the study of K. Saito theory of Laurent polynomials (such as one described in
[Sab]), the properness of the family of the critical point sets is an important issue.
When one works over C the properness is not necessarily satisfied. When we work
over a Novikov ring in place of C, properness of the family of the critical point
sets (that is the geometric points of Spec(PO®)) is always satisfied at least for the
potential function appearing as the mirror of a toric manifold. The authors believe
that this is an important advantage of working with Novikov ring over working with

C.

Remark 11.20. Let us consider the family (91). For the H?(X;Ao) part of b it
is natural to replace the coordinate w; by its exponential to; = e¥i. Then we may
extend the domain {r; | vr(w;) = 0} to r; € A. Note in PO° the leading order
term is D to;2;. So if we extend w; and allow for example v, = T, we have a term
T°z;. We may regard this insertion tv; = T° as changing the moment polytope.
Namely appearance of the term T°z; is equivalent to moving 9; P = {u | ¢;(u) = 0}
to {u | £;(u) = —c}>.

Thus for this extended family the flatness and properness still hold as far as the
corresponding moment polytope is combinatorially equivalent to the original one.

There is some flavor of this kind of arguments in [FOOO5] subsection 14.2.

12. POINCARE DUALITY AND RESIDUE PAIRING

In this section we explain that the isomorphism in Theorem 11.6 can be enhanced
to give an isomorphism between two Frobenius manifold structures.

12.1. Big quantum cohomology and Frobenius manifold.

Definition 12.1. A Frobenius manifold structure on a manifold M is a quintet
((-),V,0,e,®) with the following properties.

(1) (-) is a non-degenerate inner product on the tangent bundle T'M.
(2) V is a connection of T M.

At is proved in [FOOOS5] that each of PO can be transformed to a Laurent polynomial by
change of variables. So we can define its Spec. It is not verified that the whole family can be
regarded to be a scheme. So we put quotation mark.

5In other words the parameter op(t;) corresponds to the Kéhler cone of our toric manifold
X. This is similar to the fact that the valuation of y; corresponds to the parameter u of the
Lagrangian submanifold L(u)
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(3) V is a metric connection. Namely :
XY, Z) =(VxY,Z) + (Y, VxZ).
(4) V is flat and torsion free. Namely :
VxVy =VyVx = Vixy] =0,
VxV - Vy X — [X,Y] = 0.

(5) o defines a ring structure on 7, M which depends smoothly on p and satisfies

(XoY,Z)=(X,YoZ). (92)
An associative algebra with unit which satisfies (92) is called a Frobenius
algebra.
(6) e is a section of TM such that e(p) is the unit of (T,M,o,+) for each p.
Moreover
Ve =0.
(7) @ is a function on M such that
7] o 0 3P
O, — )= 7——F—F—. (93)
8x¢ 6Ij (9I]€ 8x¢6$jazk

Herez; (i = 1,...,dim M) is a local coordinate of M such that V o (%) =
0. We call ® the potential. '

In some case we have a vector field € on M that satisfies the following
E(X,Y) — ([¢,X],Y) — (X, [€,Y]) = di (X, Y),
[, XoY]—[¢,X]oY —Xo[&Y]=dX oY, (94)
[€, €] = dae,
where dy,ds,d3 € Q. We call € the Euler vector field.

Remark 12.2. In various situations where a Frobenius manifold arises the tangent
space T, M appears as either a C vector space or a A vector space. In that case the
inner product (-) is bilinear over C or A. (In this case (-) is required to be complex
symmetric not hermitian.) Moreover ® is a C or A valued function.

We do not try to define what connection, funciton, coordinate etc. mean in case
TM is a A vector space. At the present stage of development, we do not meet
the situation where we need to seriously study it. In the main example of our
consideration, M is a Aq affine space, hence we can easily make sense out of them.

This structure first appeared in K. Saito’s work [Sa] (see the next subsection).
Dubrovin [Dub] discovered this structure in Gromov-Witten theory, which we recall
below.

Let X be a symplectic manifold. We take M = H®(X;Ap) the even degree
cohomology group of X with Ag coefficient. (We may include odd degree part
by regarding X as a supermanifold. Since in the case of our main interest (toric
manifold), there is no cohomology class of odd degree, we do not discuss odd degree
part.)

In subsection 11.2 we associate a deformed quantum cup product U® on H(X; A)
for each b € H®*"(X;Ag). We regard TyM = H(X;A) and put o = U° there. It
is associative.
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Remark 12.3. Note H®"*"(X; Ag) is not an open set of HV*"(X; A). So Ty HV*"(X; Ag) =

H(X;A) does not make sense in a usual sense of manifold. This is regarded only
as a convention here.

We have Poincaré duality pairing
HY(X;A) @p H4(X;A) — A.
The inner product (-) is the Poincaré duality pairing. We remark that then the Levi-
Civita connection, that is the connection which is a torsion free metric connection
of the metric (-), is the standard affine connection of the vector space H"*"(X; Ap).

It is obviously flat.
(92) follows from

= 1
<CU aePDX:;Z Wg+3£0€b b)
(See (69).) and the fact that GWy(Q1,...,Q¢) is independent of the permutation
of Qz

The element e is the unit of the cohomology group that is the Poincaré dual to
the fundamental homology class [X].

The potential ® is defined by

— 1
:ZEGWAB,...,[J) (95)
=0 "
for which the formula (93) can be easily checked. The potential ® in (95) is called

the Gromov-Witten potential.
The Euler vector field € is defined by the vector field:

0 " degpl 0
€= Gt 3 ot Z ( )wzawi, (96)

1=m-+1

where ¢1(X) = Y_i", rip;. Weremark that p,;, 7 =0,..., B are basis of H***"(X; Q)
such that degpy =0, degp; =2 fori=1,...,m and degp; > 2 for i > m.
By using the dimension formula

dime My(a) =n+L—-3+c1(X)Na

of the moduli space My(«) of pseudo-holomorphic sphere with ¢ interior marked
points and of homology class «, we can prove (94), where d; = 2 —n, do = 1,
d3 = 0. Thus we have:

Theorem 12.4. (Dubrovin) ({(-), V,U® ® e) is a structure of Frobenius manifold
on H(X;Ao). (96) is its Euler vector field.

12.2. A fragment of K. Saito theory. Let
F(xy1,...,zp;wo,wr,...,wg): UXxV —C (97)

be a holomorphic function on U x V' C C" x CB*!. Here U and V are small
neighborhoods of origin in C" and CB*1!, respectively.
We assume I is of the form

F(xy,...,xp;wo,w1,...,wp) =wy + F(x1,...,2,;0,w1,...,wp).
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‘We put
FOxy, ..., x) = F(x1,...,20; w0, w1, ..., 03E),
for @ = (wy,...,wp). We assume that Fa(zl, ...,&y) has = 0 as an isolated
critical point. Namely (dF9)(0,...,0) =0, and (dF°)(Z) # 0 for Z € U \ {0}.
Definition 12.5. We define the Jacobian ring Jac(F%) by
o)

= ) %)

Here O(U) is the ring of holomorphic functions on U and the denominator is its

ideal generated by %1;'?7 i=1,...,n.
We define the Kodaira-Spencer map ¥sg : TgV — Jac(F7) by
o\ _OF . 7
tsp (5’107) = a—w(xl,...,a:n,w) € Jac(F"¥). (99)

F is called a universal unfolding of FOif ts5: I5V — Jac(FG) is an isomorphism.

We remark that if F' is a universal unfolding of FO then by shrinking V' if nec-
essary we may assume that £sz is an isomorphism for any « € V. We assume it in
the rest of this subsection.

We remark that Jac(F'™) is a ring. On the other hand T3V do not have a ring
structure a priori. We define

XoY = (tsg) *(ts5(X)ts5(Y)), (100)

for X,Y € TzV. Thus (T;zV,0,+) forms a ring. Note 9/0wy € TzV is sent to
[1] € Jac(F™). Therefore

e(@) = 8/dwy € TgV

is a unit.

Theorem 12.6. (K.Saito-M.Saito) There exists a C valued metric (-) on TV,
its Levi-Civita connection V and a holomorphic function ® : V. — C such that
((-),0,e,V,®) is a Frobenius manifold.

K. Saito [Sa] constructed a Frobenius manifold structure assuming the existence
of a primitive form. We do not explain the notion of primitive form here. (See
[SaTa] for its description in a way closely related to the discussion here.) Exis-
tence of primitive form for a universal unfolding of a germ of isolated singularity
is established in [MSa]. We remark that Theorem 12.6 had been proved before
Gromov-Witten theory started.

The metric (-) is called a residue paring. Since V is flat there exists a local coordi-
nate to,t1,...,tp of V so that Vy s, (0/0t;) = 0. Such a coordinate (to,t1,...,tp)
is called a flat coordinate. (to = wy.)

For some F' associated to an ADE singularity, the primitive form takes a simple
form dxy Adxo Adzs. In such a case we have the following description of the residue
pairing.

We put

Crit(F%) = {y € U | dF"(y) = 0}.
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Let Oy be the ring of germs of holomorphic functions at y € U. We put

Jac(F";p) =

(101)

(%{f’;i - 1n>
The following fact is standard:

Proposition 12.7. We have

Jac(F7) = H Jac(F%;y).
nECrit(F7)

Jac(F%;y) is one dimensional if and only if the critical point v is non-degenerate.

Let @ be a vector such that F'” is a Morse function. Let 1, € Jac(F'”;p) be the
unit. Then Proposition 12.7 implies that {1, | p € Crit(F?)} forms a C basis of
the vector space Jac(F™). If y # y’ we obtain

(Iy,1y) = (1y, 1y o 1) = (1y 0 1y, 1) =0,

from the equation 1, o 1,, = 0 and (92). Namely {1, | y € Crit(F?)} is an
orthogonal basis with respect to the residue pairing.

Lemma 12.8. If the primitive form is dzi A--- Adx, and F is a Morse function

then we have .
62Fﬂ; i=n,j=n -
1,,1,)= [ d .

(1y.1,) (et[axiaxj] (0))

i=1,j=1

This lemma follows from the definition. We remark that in general the primitive
form is not necessarily equal to dxq A -+ A dx.,.

12.3. Residue pairing on Jac(PO®). We now consider the case F(x1,...,x,, ) =
PO (y1,...,yn) where b = S w;p; and e = y;.
We however remark that our situation is different from that of subsection 12.2
in the following two points.
(1) The tangent space T (H(X;Ap)) is a A vector space and is not a C vector
space.
[e]
(2) The ‘open set’ on which PO is defined is the set A(P) which is not a
‘small’ neighborhood of a point.
However, many parts of the story are directly translated to the case PO°. (See
however Remark 12.26.) Note V in subsection 12.2 corresponds to H(X; Ag).
In this subsection we describe a pairing on Jac(PO°) which we expect to be the
version of residue pairing in our situation.

Definition 12.9. Let C' be a Zy graded finitely generated free A module. A
structure of unital Frobenius algebra of dimension n is (-,-) : CF @ C"7F — A,
U:CF®Cf— C*t* 1 e CY, such that:
(1) (-,-) is a graded symmetric bilinear form which induces an isomorphism
x— (y— (z,y)), C¥ — Homy, (C"F A).
(2) U is an associative product on C. 1 is its unit.
(3) (xUy,z) = (z,yUz).
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The cohomology group of an oriented closed manifold becomes a unital Frobenius
algebra in an obvious way.

Definition 12.10. Let (C, (-,-),U, 1) be a unital Frobenius algebra. We take a basis
er, I €3 of C such that eq is the unit. Let gr;j = (er,ez) and let '’ be its inverse
matriz. We define an invariant of C by

Z(C) — Z Z (71)*911‘]19[%]29[309]30
Iy I3, I3€3 Jy,J2,J3€3 (102)
<e11 U e127613><ell Uey,, eJ3>

where * = degey, degey, + n(n72—1) We call Z(C) the trace of unital Frobenius
algebra C.

It is straightforward to check that Z(C) is independent of the choice of the basis.
This invariant is an example of 1-loop partition function and can be described by
the following Feynman diagram.

Figure 12.1

Let us consier u € Int P and b € H'(L(u); Ag) such that the Floer cohomology
HF((L(u), (b,b)), (L(u), (b,b)); A) is isomorphic to H(T™; A).
We have a binary operator mg’b’b on it. The Poincaré duality induces a A valued

non-degenerate inner product (-)pp,,, of it.
We define

2 USb y = (_1)degx(degy-f—l)m;,b,b(%y)7 (103)
(@, Peye = (_l)degm(deg y+1) (z, y>PDL<u>~ (104)
Then (H(L(u); A), (-, )eye, U2®?, PD[L(u)]) becomes a unital Frobenius algebra.

Remark 12.11. We remark that the operation mé’h’b is slightly different from the

operation mg’b which is obtained from the operation q¢ by (36). In fact g may
not satisfy the cyclic symmetry:

<q€;k(y; hla RN} hk)7 h0>cyc

/ / / 105
= (_1)deg ho(deg’ h1+---+deg hk)<q£;k(y; ho, b1, ... , hkfl), hk>cyc~ ( )

main

This is because the way how we perturb the moduli space M}, (3), which we
described in sections 3 and 7, breaks cyclic symmetry.

However we can modify the construction of qr,) to obtain q,;, for which (105) is

satisfied. Using it in place of g, we define mé’b’b, which appears in (103). Then

Definition 12.9 3) is satisfied for U®®.
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This point is quite technical and delicate. So we do not discuss its detail in
this survey and refer readers to [FOOO5] sections 18-19. However it is inevitable
and essential, especially in the non-Fano case. It might be related to the fact that
primitive form may be different from dxi A -+ - A dzx,, in general.

We put
Z(b,b) = Z((H(L(u); A), (-, )eye, U™, PD([L(w)])). (106)

Definition 12.12. Assume that O° is a Morse function. We then define a residue
pairing

(s Jres © (Jac(‘J}D ) ®np A) ® (Jac(‘,BDb) ®p A) = A
by

_ )0 if y #v/,
<1n7ln’>res - {(Z(b,b))_l 1ft) _ t),. (107)

We remark that we use the decomposition (11.8) and 1, is the unit of Jac(&BDb; n).
u = (uy,...,u,) is defined by the valuation of v = (91,...,9,). Namely u; =
or(n;). b€ H'(L(u); Ag) is defined from n; by b=Y"7"_ | rie;, T" e’ = ;.

The name ‘residue pairing’ is justified by the following Theorem 12.13 and
Lemma 12.8.

Theorem 12.13. (1) Assume that vy is a nondegenerate critical point of PO,
Suppose b =" r;e;, T"e* =, as above. Then

o2
Z(b,b) = det lylyj 8;3334 1 (n) mod T*A,. (108)
R P

Here A\ =vp(Z(b,b)) and y = (e™,...,e").
(2) If dime X = 2, then we have

2 O ,b
206,8) et [y 222 . (109)
0y;0y; i
(3) If X is nef and degb = 2, then we have
2 Db
2(6,0) = det iy 22| ). (110)
0y;0y; it

Remark 12.14. We use m,‘c’b in place of m} to define PO by
PO ( Z / b).

PO appears in (109).

Theorem 12.13 is Theorem 2.24 [FOOO5].
Sketch of the proof. We discuss only the case X is nef and b = 0. We will prove
that the algebra (H(L(u);A),UP) is a Clifford algebra, modifying the proof of a

related result by Cho [Cho2]. More precisely we prove the following Proposition
12.15.
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Let €f,..., e, be formal variables and d; € A\ {0} (: = 1,...,n). We consider

relations
e;e;- + e;e; =0, 1]
P (111)
e;e; =d;1l.
We take a free (non-commutative) A algebra generated by €], ..., e} and divide it

=

by the two-sided ideal generated by (111). We denote it by Cliffs (n;d), where we
set d = (dy,...,dy).
Let I = (i1,...,0k), 1 < i3 < -+ < i < n. We write the set of such I'’s by
2{L-n} We put
ef=¢) e ---e e eClffy(n;d).

i1 i2 Tp—1 ik
It is well-known and can be easily checked that {e/ | I € 211"} forms a basis of
Cliffo (n; d) as a A vector space.
Assume moreover that there exists a A valued non-degenerate inner product (-)

on Cliffs (n; d) such that Cliff (n; d) becomes a Frobenius algebra. We say that e/
forms a cyclic Clifford basis if

AN (_1)*(1) J = Icv
, = 112
(e, 5) {O otherwise. (112)

Here I¢ = {1,...,n} \ I and *(I) = #{(¢,j) |i € I,j € I°,j < i}.

Proposition 12.15. Suppose X is nef and degb = 2. We also assume that L(u)
and b € H'(L(u); Ao) satisfy HF((L(u), (b,b)), (L(w), (b,b)); A) = H(T™; A).
Then there exists a basis (€}, ..., e.) of HY(L(u); A) such that the algebra ((H(L(u); A),Us??)

is isomorphic to the Clifford algebra Cliffy (n;d) where (di,...,d,) are the set of
eigenvalues (counted with multiplicity) of the Hessian matriz

ppor ]
Hess, (PO°) = |yiy; ——— ).
U( ) J ayzayj ij:1( )
Moreover (€, ...,e) is a cyclic Clifford basis.

Furthermore

/ ef Ut .. Ublel =1,
L(u)

This is [FOOO5] Theorem 22.2. Once Proposition 12.15 is established we can
prove Theorem 12.13 by a direct calculation. (See [FOOO5] section 23.) O

Sketch of the proof of Proposition 12.15. Note

D"b:oo o(b,...,b).
PO° (D) ;)/L(u)mk< : )

Its first derivative at y is zero since py is a critical point. We calculate its second
derivative 0*PO° /dx;02; = yiy;0*PBO° /dy;dy;. Then we have

PPPO°
ms (e, e;) + my’(e;,e;) = ((yzyj ag?) (U)> 1 (113)

Here 1 € H°(L(u); Q) is the unit and {e;} is the basis of H!(L(u); Q) which we
fixed before. (Note b =" x;e;.)
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We take basis (e],. .., e},) of H(L(u); A) so that the Hessian matrix becomes the
diagonal matrix and fL(u) e U---Ue), = 1. Then (113) implies that (e, ..., e],) sat-
isfies the Clifford relation (111). Using this fact we can prove that ((H(L(u); A), Us?)
is a Clifford algebra. (We do not use the assumption X is nef and b is degree two,
up to this point.)

The proof of (112) is as follow. We use the assumption that X is nef and b is
degree two to show

aU™d —aude P HY TN (114)
k<deg a+dega’
for a,a’ € HF((L(u), (b,0)), (L(u), (b,0)); A) = H(T™; A). Here the second term is
the usual cup product. We use cyclic symmetry to show

/AN _ /o c,b,b 7 _ /o c,bb
<e17eJ>PDL(u) - <eI U € 1>PDL(u) */ ey U €.

L(u)
Using (114) and Clifford relation, we can see that e} U%®? e/, has no H"(L(u); A)
component unless I = J. This implies Proposition 12.15. (]

12.4. Residue pairing is Poincaré duality.

Theorem 12.16. Let X be a compact toric manifold and b € A(Ag). Suppose
PO is a Morse function. Then for each a1, as € H(X;A) we have

(a1,a2)pDx = (E5p01, €56 02) res. (115)

Here the pairing in the right hand side is defined in Definition 12.12 and the map
tsy is the isomorphism in Theorem 11.14. The pairing in the left hand side is the
Poincaré duality.

Theorem 12.16 is [FOOOS5] Theorem 1.1 (2) and is proved in [FOOOS5] sections
17-21. Before explaining an outline of its proof, we mention some of its conse-
quences.

Corollary 12.17. (1) The inner product {-)res, whose definition was given only
m case ‘I?Db is a Morse function (in Definition 12.12), extends to arbitrary
b’s.

(2) The Levi-Civita connection ¥V of this extended (-)yes is flat.

(3) (H(X;Ao), (*)res, V,0,®,1) is a Frobenius manifold.

(4) The Frobenius manifold structure of Item 3) above is equal to one in The-
orem 12.4.

Proof. 1) is an immediate consequence of Theorem 12.16 and the fact that the
Poincaré duality pairing is independent of b and is obviously extended.

The Levi-Civita connection of the Poincaré duality pairing is the canonical affine
connection of H(X;Ag) and hence is flat. 2) follows.

3) then follows from Theorem 12.4.

4) is obvious. O

Remark 12.18. The Frobenius manifold in Corollary 12.17 3) has an Euler vector
field (96) with r; = 1. We also have

E(PO) = PO, (116)
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here PO is a function of b = > w;p,; and y;. The formula (116) is proved in
[FOOO4] Theorem 10.2.

Remark 12.19. Corollary 12.17 first appeared as a conjecture in [Ta], where the
case of CP! was checked. It was further studied in [Bar]. See the papers mentioned
at the end of the introduction for some of the other related works.

The above proof of the coincidense of the two Frobenius manifold structures is
not so satisfactory since the proof of Items 1), 2) uses the isomorphism of Item 4).
It is preferable that we construct Frobenius manifold structure on H(X; Ag) using
the family of functions PO° and without going to the quantum cohomology theory
side, and then prove Item 4) for that Frobenius manifold structure.

Problem 12.20. Develop an analogue of K. Saito theory for our family of A valued
functions PO°.

Define the notion of primitive form for it and prove its existence.

Construct the Frobenius manifold structure on H(X;Ag) using primitive form
and prove that it is isomorphic to one obtained in Theorem 12.4.

Another corollary of Theorem 12.16 is the following. Let Crit(PO°) be the
critical point set of PO°. For y = (91,...,9,) € A(P) we put

i =T"e", b= re; € H' (L(u),Ay). (117)
i=1

Here u = (u1,...,u,) € P and r; € Ag. Note u; = vr(y;). In this way we
may regard Crit(PO°) as a set of pairs (u,b.), ¢ = 1,..., B. Here we put B =
#Crit(PO).

Corollary 12.21. Suppose PO° is a Morse function. Then we have

5
ozgm. (118)

Proof. Let 1x € HY(X;A) be the unit. Then (1x,1x)pp, = 0. By Proposition 11.8
we have 1x = 3, coy(x p) Iy where 1, is the unit of the Jacobian ring Jac(BOy; ).
Corollary 12.21 now follows from (107) and Theorem 12.16. O

12.5. Operator p and the Poincaré dual to ts,. In this and the next subsec-
tions we sketch a proof of Theorem 12.16. We assume BO° is a Morse function in
this and next subsections. Let y € Crit(PO°). It defines u,b by (117). We define

a homomorphism

o P H(X:A0) = HF((L(u), (b,0)); (L(w), (b,1)); Ao). (119)

by
o (@) =D DDk (67Q0%,05). (120)

k=0 £,=0 £5=0
(See (78) and [FOOO1] Theorem 3.8.62.)
Here g3, is a cyclically symmetric version of the operator qgy. (See Remark
12.14.)
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We define
i#,qm,(b,b,u) : HF((L(U), b? b)7 (L(u)7 bv b)7 A) - H(Xa A) (121)
by
<ifm,(b,b,u) (Q)7 P>PDL(U) = <Qa 7:;#r/:,qm,([‘J,b,u) (P)>PDX . (122)

The main part of the proof of Theorem 12.16 is the proof of Theorem 12.22 below.
Let voly,) € H™(X;Q) be the degree n cohomology class such that fL(u) volr, () =
1. Let {e; | I € 2"} be a basis of

H"(L(u);A) = HF((L(u), (b,b)); (L(u), (b,0)); A).
We put g77 = (er,e5)ppy . Let g/ be the inverse matrix of gr.
Theorem 12.22. We have:
<7;#,qm,(b,b,u) (VOIL(U)>77;#,qm,(b,b,u) (VOIL(U))>PDX

n(n—1)
= Z (—1) 2 gIJ<m;7b’b(e[,V01L(u)),m;’b’b(eJ7VO]L(u))>pDL(u>.

This is [FOOO5] Theorem 20.1.

Theorem 12.22 = Theorem 12.16. Let Q, € H(X;A) be an element such that
t56(Qy) = 1y, where 1, is the unit of the factor Jac(BO%;p) of Jac(PO®). Let
b, u corresponds to y by (117).
Then we have
1 ify' =y
# _
ZQm,(b,b,u)(Q‘],) B {0 if v £ v.

Here 1 € H°(L(u);A) is the unit. This is a consequence of the definition of €sp.
Therefore

(@ Tam, (6,6,0) (VOLL(w) ) PDx = 1. (123)

We remark (Qy, Qy) = (Qy U Qy,1) =0 if y # y’. Therefore

1
it om volp) = ——————Q,. 124
i ’(byb’U)( H )) <QU?QU>PDX ! ( )
Theorem 12.22 implies

(i4t.qm, (b,6,u) (VOLL (1) ), 1 qm, (b,b,u) (VOlL(u) ) ) PDx = Z(b, ). (125)
(See [FOOOQO5] subsection 26.2 for sign.) Theorem 12.16 follows from (124) and
(125). O

To prove Theorem 12.22 we need a geometric description of the homomorphism
Q% qm,(b,b,u)- We use the operator p introduced in [FOOO1] section 3.8, for this
purpose. To simplify the notation we consider only the case b = 0. Let C' be a
filtered A, algebra and define an automorphism cyc : BpC[1] — ByC[1] by

’ k— ’
eyc(z) ® - ®@xp) = (_1)deg epx (2] deg Ii)xk QTR ® Tp_1.

It induces a Zy, action on ByC[1]. Let B;”°C[1] be the invariant set of the Zj, action

and BY°C[1] = @kB;yCC[l] the completed direct sum of them. We call B;”C[1]
the cyclic bar complex.
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Theorem 12.23. For a relatively spin Lagrangian submanifold L there exists a
sequence of operators

pr : BYYH(L; Ao)[1] — H(X;Ao)
(k=0,1,2,...) of degree n + 1 with the following properties.

Let p : BY°H(L;Ao)[l] — H(X;Ao) be the operator whose restriction on
BPY°H(L; Ao)[1] is pi. We denote by m§, the cyclically symmetric version of my,
and write m* instead of my,.

(1)
p1 =4 mod A,
Here iy = H*(L; Ag) — H*t"(X; A) is the Gysin homomorphism.
(2)
Y pedt @ me(x¥?) ©x3) = 0 (126)

for x € B¥*H(L; Ao)[1], k > 0. We use the notation (6).
3)
(p1omg)(1) + GW4(L) = 0.
Here the second term is defined by (GW1(L),Q)ppy = GWa(L,Q), where
the right hand side is as in (68).

This is [FOOO1] Theorem 3.8.9. (Here we use cohomology group instead of
appropriate chain complex. The latter is used in [FOOO1] Theorem 3.8.9. We also
omit the statement on the unit in [FOOO1] Theorem 3.8.9.) See also [FOOO5]
section 17-19.

The operator py, is constructed as follows. We consider the moduli space f‘}m (8)
described in section 2.2. Note the number of interior marked point is 1 and the
number of exterior marked points is k. We have an evaluation map

(evi,...,evp,evt) = (ev,ev?): Mgﬁi“(ﬂ) — LF x X.

Let hq,..., hg be differential forms on L. We consider the pull back ev*(hy X - -+ x

ht), which is a differential form on 2“‘1““(5) We use integration along fiber by
the map ev’ to obtain a differential form on X, which we put py g(h1,...,hx).

Namely
pk,ﬁ(hla ey hk) = ev?‘(ev*(hl X e X hk))

This is a map between differential forms. By an algebraic argument it induces a
map between tensor products of the de Rham cohomology groups of L and of X.
Thus obtain the operator

pr= Y TP
BEH2(X,L)

We can prove (126) by studying the stable map compactification of M};"i‘i“ (8). In
case k = 0 the compactification of Mg,1(8) is slightly different from the case of
k > 0. The second term of Item 3) appears by this reason. In our case of toric
manifold and 7™ orbit L, this term drops since L is homologous to 0 in X. So we
do not discuss it here but refer to [FOOO1] subsections 3.8.3 and 7.4.1 for more
detail.
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Now we go back to the case where X is a toric manifold and L = L(u) is a T™
orbit. Let b € H*(L(u);Ag). For P € H(L(u); Ag) we put

M= > e -0baPRbIR--1b.
k1=0 ko=0 k1 ko

Suppose H(L(u); A) = HF((L(u), (0,b)); (L(u), (0,0)); A).
Proposition 12.24. Let P € H(L(u); Ay), Q € H(X;Ay). Then we have:

Z.:,vﬁﬁ,qm.,(O,b.,u)(‘P) = p([Peb]) (127)

Remark 12.25. We remark that [Pe®] is an element of BY°H(L(u);Ag) if b= 0
mod A . So p([Pe’)) is defined in that case. Otherwise we write b = by + b, such
that by € H'(L(u); C) and b, € H*(L(u); A ), and define

pPe) = Y TU T exp(bo N 9B)ps([Pe"]).
B€H;(X,LZ)

We omit the discussion of this point. See [FOOO4] section 9 and [FOOOS5] section
19.

Sketch of the proof. We remark that i4 gm,(0,6,u)(P) is defined by (122). Therefore
it suffices to prove

> (@51 (@Q:7), P)pp, ) = (Q. ([P’ )Py - (128)
k=0

This is [FOOO5] Theorem 19.8. Let us sketch its proof for the case b = 0. In case
b =0, Formula (128) reduced to

(91,0(Q;1), P)pp oy = (@ p1(P))PDx - (129)

We take p and h which are closed forms on X and L(u), representing the cohomology
class Q and P, respectively. Then it is easy to see that the left and the right hand
sides of (129) both become

T(BNw) /27 / (evh)*p Aev*h. (130)
BEH(X,L(u);Z) Mi1(B)

Here (ev,evt) : My.1(8) — L(u) x X is evaluation maps at marked points. (129)
follows. .

Remark 12.26. In fact, we need to perturb M;.1(/3) appropriately so that the
integration in (130) makes sense. It is a nontrivial thing to prove that after pertur-
bation (129) still holds. Actually we need to consider cyclically symmetric version
of the operator g for this purpose. (See [FOOO5] Remark 19.12.) We omit the
discussion about perturbation and refer the reader to [FOOOS5] section 19.
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12.6. Annulus argument. We continue the sketch of the proof of Theorem 12.22.
We assume b = 0 in this subsection for simplicity. We consider the class volz, ).
(It is the Poincaré dual to the point class.) Then the left hand side is

Z T((51+52)m’-’)/2” <p51([VOIL(u)ebLPﬁ2([V01L(u)€b]>pDX . (131)

B1,B2E€Ha (X, L(nu);2),
B=pB1+B2

We show that (131) can be regarded as an appropriate integration of the differential
form voly,(y) x volp(u) on a moduli space of pseudo-holomorphic annuli, as follows.
For simplicity we assume b = 0.

We consider a pair ((X; 21, 22), u) with the following properties.

(1) ¥ is a bordered curve of genus zero such that 9% is a disjoint union of two
circles, which we denote by 013, 023.

(2) The singularity of X is at worst the interior double point.

(3) z; € 0;% for ¢ = 1,2.

(4) u:¥ — X is a pseudo-holomorphic map. u(9%) C L(u).

(5) (%)) = B € Ha(X, L(n); Z).

(6) The set of maps v : ¥ — ¥ which is biholomorphic, v(z;) = z; for i = 1,2,
and v o v = u is finite.

We denote by M i1),0(3) the totality of such ((3;2],23),u). There exists an
evaluation map

ev = (evl,eVQ) : M(l,l);O(ﬂ) — L(U)Q,
which is defined by
ev((X; 21, 22), u) = (u(z1), ul22)).

We consider the set of all (3; 21, z2) which satisfies 1), 2), 3) above and

7) The set of all biholomorphic maps v : ¥ — ¥ with v(z;) = z; for i = 1,2 is
finite.

We denote it by My 1),0. There is a forgetful map
forget : M(1.1),0(8) — M,1)0, (132)

which is obtained by forgetting the map u.

We can show that M 1), is homeomorphic to a disk and so is connected. We
take two points (E(j);zy),zéj)) € M(,1),0 (j = 1,2) which we show in the figure
below.
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%, Z,
Figure 12.2

We denote by M(l,l);o(ﬁ;E(j)) the inverse image of {(E(j);zﬁj),zéj))} by the
map (132).

Lemma 12.27.

Z <p1,ﬁ1(P),p1’g2(P)>pDX :/ eVTVOIL(u) /\eVSVOIL(u).

81,82 € Hy(X,L(u);Z), M1,1);0(B; D)
B=pB1+B2

Geometric origin of this lemma is clear from Figure 12.2. To prove the lemma rig-
orously we need to work out the way to perturb our moduli space My 1y;0(5; »(1)
so that the integration of the right hand side makes sense and the lemma holds.
The detail is given in [FOOOS5] section 20 as the proof of Lemma 20.8.

Lemma 12.28.

n(n—1)
Z (_1) 2 gIJ <m§7070(eh VOIL(U))’ m;7070 (eJ7 VOIL(U))>PDL(14,)

= / eVTVOIL(u) N evgvolL(u).
M@1,1),0(8:53)

Geometric origin of this lemma is also clear from Figure 12.2 and the equality
[{($7LL‘) | re L(u)}] — Z(_l)degez degngIJeI X e
1,7 (133)
€ H,(L(u) x L(u);Z).
The detail is given in [FOOODS5] section 20 as the proof of Lemma 20.11. (The sign

in (133) is proved in [FOOO5] Lemma 26.7.)

Now we can use the fact that My 1),9 is connected to find a cobordism between
M1,1),0(5; »M) and M1.1),0(5; ¥ (). The differential form evivolyw)Aevivoly )
extends to this cobordism. Therefore Lemmas 12.27 and 12.28 imply Theorem 12.22
in case b = b = 0. The general case is similar. |

Remark 12.29. According to E. Getzler, the fact My 1y,0(5; »™M) is cobordant
to M1,1),0(5; »?) is called the Cardy relation.
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Remark 12.30. A similar trick using the annulus is used in [Ab2, BC1] for a
similar but a slightly different purpose.

13. EXAMPLES 3

Example 13.1. We consider the case of CP™ and b = 0. The moment polytope
P is a simplex {(u1,...,un) | 0 <u;, > u; <1} and the potential function is

=D G+ Tn-y)
=1

T —1k
The critical points are n¥) = Taste o k= 0,...,n which are all non-degenerate.

The isomorphism Jac(PO°) @, A = [[1_, Aly ). is induced by
P— Z P(U(k))ln(k).

We put fr = 771 ({(u1,...,un) € P|lu; =0,i=n—k+1,...,n}). We derive

PO (y) = PO (y) + (¥ — Ty,
from Proposition 4.9 [FOOO4] and hence

tso(py) = [T yn] = T7T Z S L (134)
by definition of sg. Using the fact that €s¢ is a ring homomorphism, we have
EEO pz T"+1 Z 62W7\L/§M ln(k). (135)

Note this holds for ¢ = 0 also since fj is a unit and €sq is unital.
The Hessian of PO° is given by
1 2 i,j=n

0
Hessnuc)‘pDO = |T#+ (e“ 44t 4 e*(r1+---+rn)) )
8xi8xj ij=1

with ¢(®) = exp( g ) Therefore

Hessn(m‘BD — Tite” Y [(5” + 1]

i,j=n

i1 isn+1. Therefore

It is easy to see that the determinant of the matrix [6;; + 1]
the residue pairing is given by

27/ —1kn 51{7}6/

<1n(’€) ) 1g(k/)>res =T ntie” ~ n¥l 1+ n (136)
Combining (135) and (136), we obtain
{350 P ,Eso Py ))res = 7T n+1 e ZW\W/:ML l;:vl/e%\/jnl-f(—zﬁgl)k. 137
14 4

It follows that (137) is 0 unless £+ ¢ =n and

(50(Py)s 850 (Pr—r))res = 1 = (Py Pp—g) PDepn -
Thus Theorem 12.16 holds in this case.
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Remark 13.2. There are various works in the case of CP™. See [Ta, Bar, Grol].

Example 13.3. We consider the Hirzebruch surface F»(a). We use the notation
of Example 10.1. In this case the full potential function for b = 0 is calculated in
[Aur2], [FOOO5] section 19 and [FOOOG6] section 5 as follows.

PO =1 +ya+ T2 Ny ? + T (L + T2y (138)
The valuation of the critical points are

(or(n1), 07 (h2)) = (1 - @)/2,(1 4+ a)/2) = u.

It is the same for 4 critical points. Then using the variables 3, = y* we have

POO = TU=2(g, + (1+ Ty, ") + TUT92 (G, + 5755 7). (139)

(See Example 10.1.) (We remark vp(y;) = 0.) The critical point equation is
0 = 1-77°75,% (140)
0 = 1-27°%,'%,° — (1+ 177, ". (141)

This has 4 solution.
The Hessian matrix of (139) is

T(1+f¥)/2(y1 +yl_1@2_2) 2T(1+a)/2@1—1?2—2

T2 (g, + (1+T%) (7, 1)

2T(1+a)/2y71§72
1 92 + 4T(1+°‘)/nylyg2

We can easily calculate the determinants of this matrix at the four solutions of
(140), (141). The determinants are 4T, 4T, —4T, —4T. (See [FOOO5] section 16 for
the detail of the calculation.)

The Hirzebruch suface F(a) is symplectomorphic to S?(1—a) x S?(1—a), where
S2(1 — ) is the sphere S? with total area 1 — . This fact is proved in [FOOOG6]
Proposition 5.1.

The quantum cohomology of S?(1—a) x S%(1 — ) is generated by x,y that cor-
respond to the fundamental class of the factors S?(1—«) and S?(1+«) respectively.
The fundamental relations among them are

2 =171, =T, ay =y
We put
ey = %T_(l_“)/z(T(l_o‘)/Q +a), fi= %T—(1+a)/2(T(1+a)/2 ).

Then e_f_,e_fi,erf_,eqfy are the units of the 4 direct product factors of
QH(S%(1 — a) x S?(1 + ); A). We have
1
e_foe_f.=—
[92(1—a)xs2(1+a) 4T
Hence

1
<€,f,7 e*f*>PDsz(1_a)X52(1+(,) = E

We obtain —1/4T, —1/4T,1/4T from e_fi, e f_,eq f1 in the same way. Thus,
Theorem 12.16 holds in this case also.
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Example 13.4. We take the monotone toric blow up of CP? at one point, whose
moment polytope is {(u1,usz) | 0 > wi,ug,u; + us < 1l,u; < 2/3}. Its unique
monotone fiber is u = (1/3,1/3). We put §; = v}, ¥, = y5. Then the potential
function (for b = 0) is:

PO =Ty + 5o+ (%) U1 ). (142)
The condition for (7;,%,) to be critical gives rise to the equation:
=59, =52 =0, 1-3,55=0. (143)
We put §, = z. Then §; = 1/z and
Al -1=0. (144)

By Theorem 12.13 (3) we have

(7172) " Yo + (§172) " z
Let z; (i = 1,2,3,4) be the 4 solutions of (144). Then the left hand side of (118)

becomes:

o )
Z(0, (71,7,)) = T*det {yﬁ %) " +U @ila) | _qesds2

3
4 — z;

We can directly check that (145)= 0. (See [FOOO5] Example 2.35.) Thus we
checked that Corollary 12.21 holds in this case.

4
T2y A (145)
=1
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