Corrigenda of "Symplectic Topology and Floer Homology"

Yong-Geun Oh

IBS-Center for Geometry and Physics, Pohang, Korea

& Department of Mathematics, POSTECH, Pohang, Korea

1

Hamiltonian Dynamics and Symplectic Geometry

- (i) p. 27, one line below Eq. (2.2.7): Remove the word 'closed'.
- (ii) p.51, 3 lines above (2.4.33): The equation should be changed to

$$X_t^s = \frac{\partial \phi_t^s}{\partial t} \circ (\phi_t^s)^{-1}, \ Y_t^s = \frac{\partial \phi_t^s}{\partial s} \circ (\phi_t^s)^{-1}.$$

(iii) p. 65:

- In (3.2.7); Remove the negative sign on RHS.
- In 2 lines above (3.2.8); insert *v* in front of the equality signs in both formulae.
- In (3.2.8); Insert the negative sign in between the two factors of LHS.

1

- (iv) p. 167 in (6.3.19); Insert $\frac{1}{h}$ in front of the integral sign.
- (v) p. 168 in the first two formulae, do the same as above in p. 167.

Rudiments of Pseudoholomorphic Curves

- (i) p. 189 in (7.3.19): the matrix should be its transpose. As a result, the formula for $\overline{\partial}_J u$ in the last line of the page, it should be also the transpose of the current matrix.
- (ii) p. 201 line 4; Replace the reference quote "(GT77) Theorem 9.20" by "(GT77) p. 67, Problem 4.5".
- (iii) p.213 line -3: Replace 2 p by p 2.
- (iv) p. 326 (10.1.1); Replace 'P' by 'L'.
- (v) p.363 line -3: Replace the second C_{∞} by C_{γ} .

2

Lagrangian Intersection Floer homology

- (i) p. 21; All H^{α} in this page should be replaced by H^{β} . I like to thank Hiro Tanaka for pointing this out.
- (ii) p. 21 line 5; Replace H^{ρ} by H^{s}
- (iii) In the equations below (12.5.24), replace $J^{\rho(\tau)}$ by J^s and H^{ρ} by H^s .
- (iv) p. 21; In this page definition of the chain map $\psi_{(2)}$ is incorrect. More precisely, the statement in the 6 lines above Exercise 12.5.5 is incorrectly claimed. The correct statement and the definition of $\psi_{(2)}$ should go as follows:

For each given z^- and z^+ , we observe that the parameterized moduli space $\mathcal{M}^{\text{para}}(z^-, z^+) \rightarrow [0, 1]$ carries the \mathbb{R} -action induced by τ -translations on the domain $\mathbb{R} \times [0, 1]$ of u. We consider the quotient

$$\mathcal{M}^{\text{para}}(z^-, z^+)/\mathbb{R}.$$

Now we consider the pair (z^-, z^+) satisfying $\mu(z^-) = \mu(z^+)$. Then the dimension of this quotient becomes 0. Under this hypothesis, we can show that for a generic choice of $\{J^s\}_{s \in [0,1]}$, the quotient space becomes a compact zero dimensional manifold. Then we define the matrix element of $\langle \psi_{(2)}(z^-), z^+ \rangle$ by the formula

$$\langle \psi_{(2)}(z^-), z^+ \rangle = \# \left(\mathcal{M}^{\text{para}}(z^-, z^+) / \mathbb{R} \right).$$

- (v) p. 206 in Exercise 17.4.9: Replace the last statement by *Prove that any stable (resp. unstable) manifold of* $p \in Crit\varphi$ *is isotropic (resp. coisotropic).*
- (vi) p. 206 line 2 of the proof of Proposition 17.4.11: replace 'unstable' by 'stable'.
- (vii) p. 207 line -3: Change " by " $\Sigma_L > 2n + 1 > 2$ ".
- (viii) p. 208 line 9 & 10 from the end of the proof of Theorem 17.4.13:
 - (a) Change ' $\Sigma_L = 2(n+1) = \dim L + 1$ ' to " $\Sigma_L = 2(n+1) \ge \dim L + 1$ ".
 - 3

Lagrangian Intersection Floer homology

(b) Then in line 10, change 'Theorem 17.3.9 (2)' by "Theorem 17.3.9 (1) or (2)". I like to thank Yuhan Sun for pointing out the errors mentioned in p. 207 and 208.

4