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1. BASED LOOP SPACE AND STASHEFF POLYTOPE

Let X be a topological space with a base point zy. We consider a based loop
space 0X is given by
QX = {y:[0,1] — X|7(0) =~7(1) = 2o}

For any two based loops «, 8 in 2X, a loop product * can be defined by concatenating
two loops. Explicitly, a loop product * : QX x QX — QX is defined by

a(2t) ifo<t<s

(a*ﬁ)(t):{ﬂ(%_l) if%gtsl.

In general, the associativity of loop product does not hold, i.e., (a*B)*vy # ax(8*7)
in QX, where

a(4t) ifte|

((axB)x7)(t) ={B(4(t- 7)) ifte|

y(2t-1) ifte|

a(2t) ifte|

(s (B+)(t) =184 (t-3)) ifte]

y(4(t-3)) ifte[3,1].

However, (a*f3)*v and a*(8*v) are homotopic in 2X. Indeed, a linear homotopy

can be consctructed by staring Figure 1. Here the mid region is given by the
inequality

L,s

~+
4 4

Using s € [0,1] as a homotopy parameter, we denote such a homotopy at level s

1
<t<—+
2

>~ ®

[e% ,3 Y

§=0« (axf)x*y

o 3 ~ s=l<ax*(B8*7)

FiGure 1. Homotopy

by M(«a,3,7)s. We then see that QX carries a natural continuous map
Ms;: QX xQX x QX x[0,1] — QX

given by
M3(a7ﬁ77; 5) = M(aaﬁvv)s-

Now, we consider the case when four loops are given. Note that the way of
concatenating them is exactly equivalent to the way of inserting suitable parentheses
on four letters a, b, c and d. First, adorn each vertex with a letter of two parentheses
(Figure 2). We then associate a 2-dimensional polytope K4 whose edges are homotopy
between ways of putting two parenthese on four letters. Generally, n loops can be
associated to (n—2) dimensional polytope denoted by K,, (n > 2). Such a polytope
is called a Stasheff polytope or associahedron. Later on, we will discuss an
inductive construction of K.
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Example 1.1. Ky ={x} , K3=[0,1] and K, is a pentagon.

((ab)c)d

(a(be))d (ab)(cd)

a((be)d) a(b(cd))
FIGURE 2. K,

Going back to based loop spaces, let us look at motivating question: What
condition on a topological space Y makes the following statement true?

Y is homotopy equivalent to 2X for some topological space X.

The answer is given by Stasheff.

Theorem 1.2. (Stasheff) A topological space Y is homotopy equivalent to QX for
some topological space X if and only if there exists a family of maps

M,:Y"xK, —Y forn>2

satisfying some relations (Ao -relation) where Y =Y xY x .- xY (n times) and
K, is the associahedron.

We are going to look at how to construct a (n—2) dimensional associahedron K.
Thinking K, labelled by k letters x1, x2, -, x,, with suitable parentheses, we assign
a word xqx9:--z, without parenthese to the (n —2) dimensional cell K,,. Next, a
word consisting of k letters x1,xo, -, x; with one parenthesis is assigned to facets
as follows:

T1T2 (TR T a1 Thors—1) " Tn
where 2<s<n-1and 1<k <n-s-1. Inductively, a word with parentheses can
be assigned to lower dimensional faces by inserting parenthesis with the rule that
the next insertion of parenthesis is within a pair of parentheses or outside a pair of
parentheses.

Example 1.3. Following the above procedure, a word with suitable parentheses
can be assigned to each cell in Ky. (See Figure 7)
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((ab)e)d

a((be)d) a(b(cd))

FIGURE 3. K4
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2. ROOTED RIBBON TREE

Now, we associate to a word with suitable parentheses a stable rooted tree whose
definition is now in order.

Definition 2.1. A tree T is called a rooted tree if one vertex of T' has been
designated the root, in which case the edges have a natural orientation, towards
the root. A rooted tree T is called stable if T' does not contain any vectices of
valence 2.

Definition 2.2. Let T be a stable rooted tree. A vertex with valence 1 is called an
exterior vertex and a vertex with valence > 2 is called an interior vertex. The
set of exterior vertices is denoted by V.,; and the set of interior vertices is denoted
by Vtint-

Similarly, an edge containing exterior vertex is called an exterior edge and an
edge not containing exterior vertex is called an interior edge. Also, the set of
exterior edges is denoted by F.,; and the set of interior edges is denoted by FEj,;.

Finally, an exterior vertex with incoming orientation is called the root and an
exterior vertex with outgoing orientation is called a leaf.

Stable rooted trees are assigned to vertices of K, as follows.

A@A

FIGURE 4. K,

Definition 2.3. A ribbon tree is a pair (T,¢) consisting of

(i) T is a tree.

(ii) i: T — D? is an embedding such that

iTH(OD?) = Vo (T).

A ribbon tree is called stable if T is stable. We denote by [T, ] the isotopy class
of (T,i) and call it the combinatorial type thereof.
Definition 2.4. A rooted ribbon tree is a pair ((7,i),vg) consisting of

(i) (T,%) is a ribbon tree.

(ii) v € Vere (T)
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with the orientation on 7T is given by the rule that

(1) the ordering of exterior vertices starting from vy counterclockwise in D2,
(2) wp is the unique incoming exterior vertex and all others are outgoing
(3) there exists a unique outgoing edges at all interior vertices.

Exercise 2.5. Prove that there exists a unique orientation on a rooted tree satisfying
the rule mentioned above.

We denote by G,,41 the set of ([T,7],v9) where n is the number of letters. Note
that G, .1 is the set of different combinatorial types of rooted ribbon tree.

V2

vy

U3
Vo

Uy
FIGURE 5. Rooted Ribbon Tree
Example 2.6. #(G3) =1 (See Figure 5)
U1

Vo

V2

FIGURE 6. G3

Example 2.7. #(G4) = 3 (See Figure 6)
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Vo Vo Vo

FIGURE 7. G4

Proposition 2.8. For fixed k > 2,
#(Grar) < 00,

In fact, we have
#(V(T)) <2k
#(E(T))<2k-1

and so
#(Gri1) < (2k - 1)k,
Proof. We denote by val(v) the number of edges incident to v € V/(T'). Then, we
have 1
HET) =5 3 val(v)
veV(T)
Since T is a tree, we know that bo(7") =1,b1(T") = 0. The Euler’s formula yields
1=0o(T)-b:(T)

=#(V(T)) - #(E(T))
Ly @ova)).

2 veV (T)

Therefore,

> (2-val(v)) =2

veV (T)
We rewrite

[N}
1l

Yo (2-val(v)+ Y, (2-wval(v))

v€Vert (T) veVint (T)

#Verr(T)) + > (2-val(v))

UEVint(T)

=k+1+ > (2-val(v)).

veVint (T)

By stability, val(v) >3 for any v € Vi (T') and hence
#(‘/;nt(T)) < Z (val(v)—Q):k—l

veVint (T)

Thus, we obtain
#V(T))<k+1+k-1=2k
#(E(T)) <2k -1.
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d

We introduce some notations. For a combinatorial type t:= ([T,i],v0) in Gg41,
we set

CO(t) = V(T), Cipy(V) = Vine(T), Coyy(8) 1= Veur (T),
CH#) = E(T), Ciy(V) = Eini(T), Clpy () = Bear(T).
3. STASHEFF POLYTOPES AND A,,-SPACE

Now we state the axiomatic description of K, (n > 2). Roughly speaking, K, is
a convex polytope with one vertex for each way of inserting parentheses in a word
of n letters in the following way.

Definition 3.1. Denote by I = (4,7 + 1,--+,j) an interval of natural numbers, We
call two such intervals I, J compatible if they satisfy either (1) Jc I, (2) I c J or
(3) IuJ is not an interval.

With this definition, there is one-one correspondence with G,;1 and the way of
bracketing b(I1,---I,) of k letters for the set of compatible intervals {Iy,---, I,}. We
note that if I; and I, are compatible, the bracketing b(I;) and b(l)) are either
nested or disjoint.

We have the following 5 axioms for the construction of K,

(1) The set of vertices of K}, has one to one correspondence with the set of
binary trees in Gyy1.
(2) There exists one to one correspondence between Gy.1 and the set of faces
of Kk.
Then we denote F'(t) by the face corresponding to t.
(3) Each F(t) is an open cell of codimension #(F;,:(t)).
(4)

F(t) = HF(O

OF(0) = U F(1)

<t
(5) Kj, is the cone over 0Kj.

We take the realization of K,, by Gr,.1 and consider the CW-structure induced
from this realization.

1

2} *3
3

Regarding K} as the collection of stable rooted trees, we can construct the full
map o; : Ky x Kj — Ky -1 by iterating tree grafting procedures. Inductively, we
have

4 1
> +5>%
67 7

FI1GURE 8. Grafting

=~ LN =

K, = cone on 0K,
0K, = U(Kn—s—l X Ks)k = U *k(ansfl x KS)'

k,s k,s
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Proposition 3.2. Each facet of K, is of the form 0;(K,-s+1 x K).
Now we go back to the maps
M, K,xY"—Y forn>2

and define m = M. For n =2, m is a map from Y xY to Y since K> is a one point
set. We require (Y, m) to be a H-space which will be defined soon. (1) and (2) are
translated from the composition

vy Syxy By ir(x) = (z9,x)
Y 5 Yyxy 2y ir(x) = (z,20)
Definition 3.3. A space with a multiplication m and a base point satisfying
moir ~id~moig
is called a H-space.
Definition 3.4. We say a multiplication map Ms on X
My: X xX — X
satisfies Ax-relation if it promotes to a family of maps
Mk: . Kk: X Xk — X
for 2 < k < n such that
(i) My is a H-space multiplication
(ii) My’s are compatible in the following sense:
My (z1, ;0% B) = Mi—si1 (21, Tic1, Ms (@i, Tigs-1; ), Tivs, -, Tt B)
where a € G41 and B € Gp_gsi9.
Here, K} is a k-th Stasheff polytope and « *; 8 is the operation corresponding to
the grafting in Stasheff polytope.

For, a € G441 and 8 € Gy_s42, the compatibility condition of M} can be represented
by Figure 11.

Zi+l

FIGURE 9. a

Here is an example when the Figure 11 comes out.
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Example 3.5. Let M be a manifold and L be a submanifold. Consider

w: (D? ,0D*) — (M, L)
with marked points {zg, z1,-, 2 } in 0D?. In this situation, the disc picture can be
decorated by the homotopy class of w in 7o (M, L).
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4. TWO REALIZATIONS OF STASHEFF POLYTOPES K,

Now, we consider the 2nd realization of K,, (resp. W) via a compactification of
the configuration spaces of (0,1) (resp. S*).
We define the configuration space Confy,;(S')

COka+1(Sl) = {(ZO,"‘,Zk;)|Z7; #Zj for ¢ :#.]} c (Sl)k+1 - Aa

where A = {(z0, "+, 2k )|2; = 2 for all i,5}. Note that PSL(2,R) acts on Confg,1(S")
by Mobius transformation. Consider the orbit space of this action

Mk+1(D2) = COIlf]ﬁ.l(Sl)/ ~
where ~ is the orbit equivalence of the action of Aut(D?) =~ PSL(2,R) given by
g- (ZO,"',Zk) = (g(ZO)7Q(Zk))

Now we introduce a compactification of My,1(D?) for k > 2 by considering the
notion of stable curves of genus 0 bordered Riemann surface.

4.1. Moduli space of (bordered) stable curves. Suppose that we have a set
of compact (bordered) surfaces X, equipped with a complex structure j, indexed
by a finite set V. We recall that in 2 dimensional surface a complex structure
j» can be identified with an almost complex structure which is defined to be an
endomorphism of T, such that ﬁ = —id.
We start from a disjoint union
11 s..
veV
To give information about gluing, we consider a set of unordered pairs {xe,y.} =
{Ye, ze} indexed by a finite set E satisfying
(i) zee [[ 20, ve €[] B0 and z # g for all e € E.
veV veV
(i) {Ze,ye} N{Ter,yer} = @, whenever e # ¢’
Next, we define an equivalence relation on H 3, by
veV

x~y<{z,y} ={ze,ye} for some ec F

We then obtain a glued surface

3= L[ DINY RV
veV
A glued point [x.] = [y.] is called a double point (or a node) and the set of all
such points is denoted by Sing(X).

Now, we equip the glued surface ¥ with a complex structure as a (singular)
complex variety. For this, we consider a homeomorphism from a neighborhood of
each double point [x.] = [y.] onto a local model given by xy = 0 in C? near the
origin such that [z.] corresponds to the origin in C?. We can define a complex
structure on a neighborhood of double point by pulling back the standard complex
structure of the graph {z,y) € C*|zy = 0}. We denote by j the glued complex
structure.

Definition 4.1. A nodal Riemann surface (with boundary) is a pair (3,7)
defined as above. We call each component (X,, j,) an irreducible component of

(%,5)-
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From construction, it immediately follows that 3 carries a normalization , :
3, — Y. Every nodal Riemann surface can be represented by its dual graph whose
vertices are decorated by a geometric genus of each irreducible component. Namely,
each irreducible component of a nodal Riemann surface (X, 7) is corresponding to a
vertex of the dual graph decorated by its genus, and each double point is matched
with an edge of the dual graph (See Figure 15).

< (O

FIGURE 10. Nodal Riemann surface

We now equip a nodal Riemann surface with marked points. A nodal Riemann
surface equipped with marked points are called a pre-stable curve.

Definition 4.2. A pre-stable curve is a pair (X,z,2z") consisting of

(i) ¥ =(%,j) is a nodal Riemann surface (with bondary).

(ii) z = {21, -, 2m} c OX (boundary marked points)

(ili) z* = {z],-, %} ¢ Int ¥ (interior marked points)
such that all marked points are disticnt and 2;, 2] € ¥ \ Sing(¥). A point z in a
nodal Riemann surface is called special if z is either a nodal point or a marked
point. We denote by g, the genus of the irreducible component ¥, and

k, := mark(X,) + sing(%,)

where mark(X,) is the number of marked points from (3, Z) and sing(X,) is the
number of nodal points.

Definition 4.3. Suppose that we have two pre-stable maps (2, z,z"*) and (X', 2',2"").
A continuous map ¢ : ¥ — X' is called an isomorphism if it satisfies

(i) ¢ is a homeomorphism.
(ii) ¢ o m, lifts to a biholomorphism onto some irreducible component 3, where
T, 1S a normalization.
(iii) ¢(2i) = 2] and ¢(2]) = 2]’ for each i and j.
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A self-isomorphism ¢ : (X,z,z%) — (X,2,2") is called an automorphism. The
set of automorphism is denoted by Aut(X%,z,z").

Definition 4.4. A pre-stable curve is called stable if #£Aut(3,z,2z") is finite, and
is called unstable otherwise.

The following is a useful numerical criterion of the stability (X, Z).

Proposition 4.5. A prestable curve (X, Z) is stable if and only if &, +2g, > 3 for
all irreducible component 3,,.

We will be especially interested in a pre-stable curve of genus 0 case with a
single boundary component later. To see stability condition, observe the following
examples.

Example 4.6. We consider a unit sphere S? with some marked points.
(1) Aut(S?) ~ PSL(2,C).

(2) dime Aut(S?,{z}) =2.

(3) dimg Aut(S?,{z1,22}) = 1.

(4) Aut(S?%,{z1, 20, 23}) = {id}.

Example 4.7. We consider a unit disk D? with some marked points.
(1) Aut(D?) ~ PSL(2,R).

(2) dimg Aut(D? {z}) = 2.

(3) dimg Aut(D?, {21, 25}) = 1.

(4) Aut(D? {21, 22,23}) = {id}.

(5) dimg Aut(D? {z7}) =1

(6) Aut(D?,{z1},{=1}) = {id}

Here z;’s are boundary marked points and z;’s are interior marked points.
Example 4.8. Let (D? v D? z) be given as follows where z = {21, 20, 23,24 }. We

z
1 23

22 24

FIGURE 11. (D?v D? z)

have Aut(D?v D? {21, 2, 23, 24 }) = {id}.

4.2. Configuration space of S' and MZH. Suppose that we are given a disk
¥ with (k + 1) boundary marked points (See Figure 17). It can be considered as a
nodal Riemann surface of genus 0 with a single boundary component adorned with
marked points. Throughout this lecture, it will be denoted by (X,z) where z is the
set of boundary marked points.

Let Aut(3,z) be the set of automorphisms acting on (X,z), which gives rise
to an equivalence relation on the set of disk with (k+ 1) boundary marked points
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21

20

FIGURE 12. (X,z,z%)

and m interior marked points. We then define the set of all isomorphism classes,
which is denoted by Mg +1- Here, b stands for the boundary, and k + 1 = #z.
Note that M?,, (with one distinguished vertex) can be identified with the set
of all conformal structures Confy(H*) on an upper half plane H. We state basic
topological properties on the moduli space Mz -

Lemma 4.9. (Topological properties of M%)

(i) The moduli space M%_ | of isomorphism classes has exactly k! components.
(ii) The dimension of M?%_ | is given by (k+1) -3 =k - 2.

We call the one with zg,---, 2 cyclically ordered counterclockwise the main
component of M2+1~ We denote by MZH this particular component. Based
on the observation of last time (See Example 13.6), we can expect a numerical
criterion for stability of (X,z).

Proposition 4.10. Let (X,z) be a disk together with (k + 1) boundary marked
points. Then, (X,z) is stable if and only if (k+1) > 3.

For a compactification of M?, |, we need to include degeneration of disks and so
need to consider ¥ which is acheived by glueing disks at boundary points.

Let (3,z) be a prestable curve obtained by glueing disks at boundary point(s)
consisting following data

(i) X is a glued disk as above,
(ii) z is the set of boundary marked points,

Here is a numerical criterion of stability for more general situaion.

Proposition 4.11. Let (X,z) be a prestable curve as above. Then, (X,2z) is
stable if (3,,2,) is stable for each v € V. More specifically, X, is stable if k, =
mark(v) + sing(v) > 3.

For example, M3(D?) is a one point set, and M,(D?) = [0,1]. Each disc is
stable in that it carries at least 3 special points which consists of either marked
points or double points. We denote this union of discs by ¥. The counterclockwise
orientation of each disc induces the orientation of ¥. Also, the ordering of z;
coincides with this orientation.
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FiGURE 13. Bordered Niemann surface with marked points

z9 2

<3

20
25
27
Z6

FIGURE 14. Dual graph

Next, we consider the dual graph associated to My,1(D?). The dual graph has
the following correspondence. (See Figure 9 and Figure 10.)

a disc component <— a vertex
a double point <— an interior edge
a marked point <— an exterior edge(flag)

In this way, we associate each stable curve in ﬂk+1(D2) a ribbon graph. As
before we denote by t the topological type of ribbon graph. When the stable curve
is rooted, we get a rooted ribbon graph.

For each element t € Gg,1, we denoted

M(t) = {2 = (20, 2k)|2i € O, Ty 2y = t} | ~,

where T is the rooted ribbon tree associated to the bordered Riemann surface with
marked points.

First, assume that t is a corolla. The corresponding ¥ has only one disc. We say
7= (20, 21) ~ 2 = (20, 21,) if and only if there exists ¢ € PSL(2,R) such that
2l = ¢(2;). Since PSL(2,R) acts freely on Confy,1(S'), M(t) has smooth manifold
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structure and
dimM((t)=k+1-3=k-2.

For general t € Ggi1, Z = (20, 2K) ~ 2 = (20, 21,) if and only if the following
holds: Let D; be the Ith component in ¥ and m be the number of special points
on D;. Then there exist ¢; € PSL(2,R)(i = 1,2,---,n, n is the number of disc
components) such that ¢, maps (Dy,Z;) to (Dj,2[), where 2] consists of special
points on dD;. Now we have the decomposition

—b

My = U M(t)

teGry1
Now we provide the structure of CW-complex by requiring that
M(t) = U M(®).
>t

For example, whenever t is minimal, M(t) is a closed point.

—b
Theorem 4.12. The M, has a cell decomposition exactly the same combinatorics
of cell structure as that of Stasheff polytope, more specifically K}, (or an associatehedron).

Proof. We just note that each F(t) := M(t) is an open cell of codimension #(E;p:(t))
that satisfies all the 5 axioms given in section 3. In the next section, we will give
further details of the description of this cell structgure in terms of the metric ribbon

——b
trees, which carries a cell decomposition dual to the one present in M, ;. (]
4.3. Metric ribbon trees. Recall that Gy, is the set of rooted ribbon trees. We

define a partial order on Gy,1. That is, for t,t' € Gy,1, t < t' if and only if t’ is
obtained by collapsing a sequence of interior edges of t.

Definition 4.13. A binary tree is a tree with val(v) = 3 for all interior vertices v.

The following lemma follows immediately from definition.
Lemma 4.14.

(i) This defines a partial order on Gj.1.
(ii) A minimal element is a binary tree.
(iii) A maximal element is a corolla which is unique in Gpy1.

We now associate the length £: C} ,(t) — (0, 00)} with the set of interior edges.
Definition 4.15. To each t:= ([T, i],v0), we associate an open cell
Gr(t) = {1+ Clyy(£) — (0,00)} = (0, 00) #(Cine (V) (4.1)
For each t € Gj41, we assign Gr(t) thereto. We form the union

GTk+1 = L[ GT‘(t).
teGri1

We call each element in Gry,q1 a metric ribbon tree.

Note that Gr(t) 2 (0, 1)#(Cgm(")). For example, dimGr(t) = 0 if t is a corolla.
A corolla corresponds to the interior of the cell which has dimension k& — 2 for

—b

Kk = Mk+1 .

To give a C'W structure of Gryy1, we define a grafting operation.

*i 0 K x Kj — K1

As a building block for stable rooted trees in K, we define a corolla.
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Definition 4.16. A stable rooted tree is called a corolla if #(V;,.(T)) = 1.

We define a grafting operation *; of two stable rooted trees T} in K and T3 in
K. Here, a subscript ¢ indicates a position of the second tree where the first tree
is glued. First, we attach the root of 77 to a i-th leaf of T,. After attaching, we
get rid of the vertex with valence 2 to make a stable rooted tree. The constructed
stable rooted tree is the output of grafting operation *;. Combining them all over
i, we have the following

Theorem 4.17. There exists a compactification Gri41 of Gr,1 such that Gri,,
carries a CW structure with the face maps

* 0 Grper X GT;1+1 X GT[2+1 Xoeee X Grlm—l — 6G7ak+2§:1 1+1

forms a (k —2)-cell. Furthermore Gry,; carries a smooth structure with respect to
which it is diffeomorphic to RF2.

In the remaining section, we will give the construction of Gr,,; with n > 2. prove
the theorem.
To describe the cell structure, we need to discuss the gluing map ;) precisely.
Let t=[(T,%,p)] € Grr+1 where p is the root vertex of T. Let k, = val(v) be the
valence of v € C),(T). We define a map
D Gr(t) x H Gri,+1 = Grigy1 ¢

0
vl

Let
(2, (L,)) € Gr(t) x H Gri,+1

veC0
int

where £, € Gr(c, +1) ¢ Grg, 41 and ¢, = (Cy, iy, py)). We replace the vertex v e T
by the tree C,. Namely we identify k, + 1 edges containing v and k, + 1 exterior
edges of ¢, with the output edge of v glued to the output flag of ¢, respecting the
ordering of the edges. We denote by T the resulting ribbon graph with the induced
ribbon structure and the order.

We note that the set of interior edges of 7 consist of the union of interior edges
of T and those of ¢,, v e CL (T). Then we define the value ®¢(¢, (£,)) =;¢' € Gr (%)

by the formula
/ cL (T
gl(e) — (6) ec€ llnt( ) (42)
ly(e) eeCy(Cy).
This defines the glued metric ribbon trees in Gry.
Now consider iteration of the above gluing. Let ¢, € G, 41 and ¢y € Gk, ,+1

where u € CQ,(¢c,) and ky ,, + 1 = val(u). We then have the following commutative
diagram

Gr(t) x TIGr(cy ) x G (cu.0) Py Gr(t) xIGry,  (4.3)
l{)‘xid l
Gr(t) x TIGr(cy0) o Gris1

We will prove Theorem 4.17 by induction over k with k > 2.
When k = 2, G3 contains a unique element which has no interior edge. Therefore
Gr3 is a point. Next assume k& > 2 and suppose the theorem holds. Let ty,1 be
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the corolla and then Gr(tx41) is a point. We first prove that Gri,1 N Gr(tgs+1) is a
topological manifold.

Let t # tgy1 be in Ggy1. Then k, < k for all v € C?nt(t). By the induction
hypothesis, G741 is homeomorphic to R¥v=2. Recalling that Gr(t) is a cell, we
derive that Gr(t) x IIGr(k,) is homeomorphic to R¥~2. Therefore ®; defines a
topological open embedding whose image provides a neighborhood of Gr(t) in
Gri+1. Regard them together with Gr(t) as coordinate charts of Gryg,; which
provides a structure of topological manifold with Gri.1 ~ Gr(tg.1).

We next provide a smooth structure with Grry1 — Gr(tg:+1) again by induction.
The C*° compatibilty of the above charts follows from the commutativity of the
above diagram. Finally we will construct a diffeomorphism Gry,; = R*? later.

— b —
4.4. Duality between the cell structures of M, ,, and Grj,;. We start with
the definition of the dual cell decomposition.

Definition 4.18. Let X be a smooth manifold and X,, a € I being a some
indexing set, be smooth submanifolds such that their closures X, become smooth
submanifolds with corners. We call them smooth cell decomposition of X if they
satisfy the following:

(1) X, are disjoint from one another and [[,.; X, = X

(2) X, is diffeomorphic to RI%, and X, is diffecomorphic to D!?l after smoothing
our their corners.

(3) The boundary D!l is a union of some of the X,” with |b| < |a].

Given such a decomposition, its dual decomposition is defined as follows. The
definition will be inductively given over the dimension of X. Suppose that the dual
decomposition is defined for manifolds of dimension < n. Let a € I and p e X,. We
consider the normal space N, X, and its unit sphere SN, X,. For each X, with
X, 5 X, we consider the intersection SN, XN Tpfb which forms a cell. These cells
define a cell decomposition of SN, X, = Sn-lal=1 - Certainly n - la| -1 <n and so by
the induction hypothesis, we obtain a dual cell decomposition thereof. We add one
more cell of dimension n — |a] to the dual cell decomposition given above. Then we
get a cell decomposition of D" lal which we define to be Y.

Now we explain how these cells are glued to one another. For each given a, be I
with X3 > X,, we construct an embedding Y, c Y;. (We recall dimY, = n - |al.)
We consider the case |a| = |b| + 1. Let ¢ € X}, and choose a unit vector v € SN, X,
that is tangent to X,. For sufficiently small ¢ > 0, we may assume exp(ev) € X,
with respect to a suitably chosen Riemannian metric. Since |a| = [b] + 1, such a
vector is unique (modulo the sign). This way the decomposition of X induces one
on SN, X;. Then the latter induces a decomposition on SN, (SN, X;).

Lemma 4.19. The above defined decomposition of SN, (SN, X3) is can be naturally
identified with that of SN,X,.

Therefore by construction, the cell of the dula decomposition of SN, X} corresponding
to v € SNy X, is isomorphic to Y,. This identification defines the embedding Y, c Y.
By gluing these cells Y,, we have obtain a cell complex Y which carries a smooth
structure for which {Y,} gives a smooth cell decomposition on Y =[] s Ya-

Proposition 4.20. X is diffeomorphic to Y.
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Proof. Tt is enough note that the barycentric subdivision of X also becomes one of
Y. O

Now we compactify Grg41 using the R,-action on Gry.1 — Gr(tg,1) and denote
by?rml the resulting compactification. We denote by Gr(t) the closure of Gr(t)
in Grigq.
Theorem 4.21. Each Gr(t) is a cell and (Grg1, {Gr(t)}) is the dual cell decomposition
— b —
of (M1, {M(D)}).
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5. THE BASED LOOP SPACE IS AN A.,-SPACE

Let X be a connected topological space with zy a base point. We consider the
based loop space Y = QX and identify the base point xy with the constant loop
based at xg.

Proposition 5.1. Y is a H-space.

Proof. We consider the constant loop xy as a base point of Y = QX and let m :
QX x QX — QX be the concatenation defined in Lecture 1. This operation will
be multiplication in Y. Note that m(y,zo) ~ v, and m(zg, ) ~ ~, and this implies
that moip ~id~moiginY. [l

Theorem 5.2. (Y,m) is an Ac-space.

Proof. We will use another related space Z = 0X.
00X ={(r,a)|r>0, a:[0,7r] — X with a(0) =29 = a(r)}

Z has an associative multiplication which is just concatenation without doing any
reparameterization of the domain. That is, the multiplication pu: Z x Z — Z is
defined by

a(t), 0<t<r
B(t-r1), r<t<r+s

pu((r,a), (s, 8)) (1) ={

We have natural maps f:Y — Z and g: Z — Y defined by g(r,a)(u) = a(ru)
and f(7) = (1,7).

Lemma 5.3. There is a homotopic between f o g and idy.
Proof. We define H : [0,1] x Z — Z by
H(t,(r,a))(u)=((1-t)r+t,a((1-t) +tr)u).

H(0, (r, @) (u) = (r;a(u)) = (r,a)(u)
H(L, (r,a)(u) = (1, a(ru)) = (f o g)(r,a)(u)

Hence, H defines a homotopic between them. ([
Now, we apply the following theorem and this finishes the proof.

Theorem 5.4. Let (Y,m) be a H-space and suppose there exists a space Z with
associated multiplication with identity and f:Y — Z and g: Z — Y as in the
lemma above. Then (Y, m) is an A-space.

|
Theorem 5.5. Let Y be a topological space and Z is an associate H-space with
associative multiplication p: Z x Z — Z. Suppose that there is a pair of maps
Y —Z g:Z—Y
such that fog and idz are homotopic. Now, we define a multiplication m : Y xY —
Y by
m(y1,y2) = g(u(f (Y1), f(y2))).

In other word, we define a multiplication m on Y to make the following am
commute. Then, (Y.m) becomes an A..-space.
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Proof. The multiplication of k-elements is denoted by uj. Since we assume p is

associative, this is well-defined irrespective the order of multiplication. Using puy,

we are going to define My(-, A) for A € K, inductively and show that the constructed

wi’s satisfy Aeo-relation.

(1) (M3:Y xY —Y) It will be given by Ms :=m.

(2) (M3:Y3x K3 — Y) First, we construct M3 at the boundary of K3 and extend
it to interior of K3. Recall that

0K3 = (Kg #1 Ka) U (K3 %2 K3)
We define M3(z,y, z; 0k, ) as follows:
M;(z,y,2;{0}) = Ma(M2(z,y),2) in Kz *1 Ko,
Ms(x,y,2;{1}) = Ma(x, Ms(y, 2)) in Ko %o K.
Let h be a homotopy between f o g to idz,
h:[0,1]x Z — Z with h(0) = fog,h(1) =idz.
Now, we observe that Mas(Ms(z,y),2) and Ms(xz, Ma(y, z)) are homotopic.

Moreover, using a homotopy h, an explicit homotopy between them can be
constructed as follows.

Mo (Ma(+,-),) = gopa(f(gopa(fx f)xf))
=gopua((fog)ou(fxf)xf)

h

= g o pa(p2(f x f) < f)

=gous(fxfxf)
Here, the last equality follows from the associativity of p. By the same way,
we obtain

h
M2('7M2('v )) =go M3(f X f x f)
Composing two homotopies, we get an explicit homotopy as we desired.
For t € [0,1] = K3, M3(x,y,2;t) can be assigned as

g o p2(h(2t, p2(f (), f(y))), £(2)) for 0
goua(f(x),h(2=2t, u2(f(y), f(2)))) for 3

and this gives rise to a map M3 : Y3 x K3 — Y. By construction, M, and Ms
satisfy As-relation.

(3) (My : Y* x Ky, — Y) By the previous construction, My(:,-,,-,A) can be
constructed for any A € 0K, using a homotopy h. Let v be a barycenter of
K4. We define

M4('7',',',’U) ::go,u'4(f X f>< f)( f)
Note that at the midpoint m labelled with (abc)d (See Figure 12) My is defined
as
M4('7'a'7'7m) :gouQ(f(gou3(f x f x f)) x f)
We connect the midpoint m and the barycenter v. Using the following
homotopy, we can define M, at every point in the connected line as we did
before.

gous(flgous(fxfxF))xf)%goua(us(fxfxf)xf)
=g(pa(fx fxfxf).
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((ab)c)d

a((be)d)  a(bed)  a(b(cd))
FIGURE 15. a
Similary, we can construct My at each point of lines between a midpoint and

the barycenter. Finally, M4 can be defined all points in K4 be considering a
homotopy between homotopies. We leave construction of My (k > 4) as an

exercise.
O
Exercise 5.6. Finish the proof of Theorem 5.3.
Corollary 5.7. QX is an A-space.
Proof. Apply the theorem to Y = QX and Z =0X. (]

Moral: taking the chain complex of A..-space gives rise to an A..-algebra.
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6. DEFINITION OF A, ALGEBRA

Let R be a commutative ring with unit and A be a graded R-module
A=A
i=0
with K-linear map
my: A% — A
of degree (2 - k). Recall that
deg(z1 ® -+ @ xy) := deg(xq) + -+ + deg(zk).
Let A[k] denote the shifted grading module given by
(A[K])" = AP
for k e Z.
Lemma 6.1. Suppose that we have a graded R-module with K-linear map my, :
A®F — A of degree (2 - k) as above. We define the shifted map m}, : A[1]®F —
A[1] as follows
= s omi((s)%)
where s: A[1] — A. Then, mjhas degree 1 for all k.
Proof. We introduce notations
|z;] := the original degree, |x;|" :=|z;| - 1.
We want to prove
|£C1 ®--Q $k|l = |£E1|, + et |£Uk|l +1.
Since my, has degree (2 - k), we have

k
21 ® - @ap| =1 @ @ak| - 1= ||+ (2-k)
1

k k
= Z(|£L‘k| - 1) +2= Z |£Uk|/ +1.
1 1

O

Definition 6.2. Let A be a graded ring and let m = {my} be the collection of
K-linear maps for integer k > 0. We call (A, m) As-algebra if my’s satisfy

n—-s+1

Z Z (_1)Emk($17“',xi_l,ms($17“‘,l‘i+3_1),xi+s,"',xn) = O
k+s=n+1 s=1

where € = |z1|"+---+|z;-1|". Moreover, (A, m) is called a strict A.-algebra if mg =0
and (A,m) is called a weak A.-algebra or curved A.-algebra if mg # 0.

Definition 6.3. (Unit)

Let (A,m) be an A.-algebra. An element of e € A° = A[1]7! is called a unit of
(A,m) if e satisfies

(1) mg1(zq,- e, x,) =0 for k>2or k=0.

(2) ma(e,z) = (-1)*F"ma(z,e) =z

In this case, (A, m,e) is called a unital A.-algebra.

Example 6.4. Let (4, m) be a strict Ae-algebra. Then, we have
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1) mqomy =0 so that my is a differential.
2) my(ma(x,y)) = ma(my(z),y) £ ma(x,m1(y)) so that m, is a derivation with
respect to ma.

(
(

Remark 6.5. In the curved A.-algebra, m; does not give a differential.

Example 6.6. Consider an A.,-space Y. We apply cohomology functor, with field
coefficients, to M,, : K,, x Y™ - Y and obtain

(M) :H*(Y) > H* (K, xY™)).
Composing this map with the isomorphism
H*(KpxY™) 2 H* (=D (y™) = (H*(Y))®"[2 - n]
where the last isomorphism is from the Kiinneth formula. By taking the adjoint of
the map and shifting the degree of the complex H,(Y") by 1, the map is equivalent
to
(H(Y)[1])®" » H.(Y)[1]
of degree 1 for all n.
We now consider the case k = 2, which induces a product

mo: H(Y)x H(Y)2 H, (Y xY) - H,(Y)

Here we use a field K as coefficient ring. Note that ms is a multiplications. When
Y carries a base point xg €Y, 2o = Y induces a unit

e:Rz H,(xg) — H.(Y)
The following algebraic fact arises from the A -relation for the A -space.

Theorem 6.7. For any A..-space, its homology complex C = H,(Y) carries an
Ao-algebra structure.

We have defined A-algebra. Note that A..-algebra is a kind of generalization
of the following object.

Definition 6.8. A differential graded algebra(DGA) A is a graded vector
space with

(1) d: A— A such that d* =0
(2) There is an associative product A ® A — A that satisfies Leibnitz rule

d(ab) = (da)b+ (1) (db),
where |a| is the degree of a.
If we put
mi(a) = (-1)da
ma(a,b) = (-1)laltD g
myg =0 for all k>3

then (A, {my};2,) becomes an A-algebra.

Now, suppose that an (A, {ms}5,) is given and
my, : A[1]%F — A[1]

is degree 1.
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Definition 6.9. The bar complex BA is defined by

BA =@ BiA,
k=0

where By A = A[1]®*.
Here, we introduce the dual notion of an algebra.

Definition 6.10. (1) A coalgebra over a field K is a vector space C with
K-linear maps A : C — C ® C such that (idc ® A) o A = (A®idg) o A
Equivalently, the following diagram commuts:

A

c A cecC
A lideoA
ceoCc ¥ cececC

Such A is called a coproduct. The condition is called coassociativity
(dual of associativity),

(2) A counit is a R-linear map € : C — R such that (idc ® €) o A = id¢ =
(e®id¢) o A. Equivalently the following diagram commutes:

c =2 CeC
J,A »J,idc@)e
CeC 2¥ KeC-C-CsK

The map € in the second condition is called counit. Counit is the dual notion of
the obvious map K — (' associated to the unit of the algebra.

Then BA is an example of a coalgebra.

Lemma 6.11. The bar complex BA is a coalgebra with respect to the coproduct
A: BA— BA® BA defined by

A1 ®@xy)=>.(21® @) ® (2i11 ® - ®z,) € BA® BA
i=0
for indecomposable element 1 ® - ® x,, extended R-linearly to BA.
Proof. Take the count € : BA — K to be the obvious projection. Then it can be

checked easily that A and e satisfy the conditions in the definition of a subalgebra.
O

Sweedler notation: We write the coproduct A by
A(x) = Y x@D g x(e2) (6.1)

for a general element x € BA. More generally, we denote
AP (x) = ngk;l) o x(F? @ ... x(Fh) (6.2)
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7. MASSEY PRODUCT AND BORROMIAN RING
Why Au.-algebra is important? We give one example.

Example 7.1. Let B be a Borromean ring and L be a trivial link. (See Figure 13
and 14)

FIGURE 16. Borromean Ring

L

FIGURE 17. Trivial Link

We are going to see that S — B and S - L have same cohomology ring structure.
Thus, cohomology ring cannot distinguish B and L. However, A.,-algebra structures
are different.

First, we calculate cohomology groups of S - B and S3-L. Recall the Alexander
duality: For any good compact pair (A4, B) in an oriented manifold X, we have an
isomorphism

H,(X-B,X-A)— H"(A,B).
By applying the Alexander duality to X = S3, A =52 and B = S® - B, we have

H'(S* 8%~ B)~ Hs_(B)
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Then, we obtain

73 fori=3
Hi(S® S*~ B) - 73 fori=2
0 fori=1
0 fori=0

Consider a long exact sequence of a pair (S2,5% - B):
- — HY(S% 8% - B) — HY(S*Z) — H'(S® - B;Z)
— H?*(S* 8% - B) — H*(S%2) — H*(S® - B;7)
— H3(S%,8%-B) — H3(S%2) — H3(S* - B;Z) — -

Inverstigating boundary map, we derive

0 fori=3

, 7Z? fori=2
W' -p)- 5

Z fori=1

Z fori=0

In the same way, we can calculate H*(S® - L;Z).

Next time, we will look at ring structure and A-algebra structure of (S° - B)
and (S®-1L)

We saw that codicology groups of S — B and S® — L are isomorphic, where B is
the Borromean rings and L is the space of unlinked three rings. Now we consider
the ring structure of their codicology rings. In this case, it is easier to look at
intersection pairing of some homology groups which are isomorphic to H'(S® - B)
and H' (S - L). (Here we assume that the coefficient ring is Z.)

First, we consider the codicology ring of S% — B. We denote each circle in B by
Bi, By, and Bs. Then take regular neighborhoods Uy, Us, and Us containing Bi,
By, and Bs, respectively. Let U = Uy uUy uUs, and M = S® - U. Then M is a
manifold with boundary. Note that

H"(M)=Hs_.(M,0M)
by Alexander duality, and the cup product paring
H"(M)® H*(M) — H"**(M)
is equivalent to the intersection pairing
Hs_(M,0M) ® Hs_y(M,0M) — Hs_,_ (M,0M)

That is, the following diagram commutes.

U

H" (M) ® H*(M) — H"™5(M)
1= J=
Hs_(M,0M) ® Hs_y(M,0M) —> Hs_._ (M,0M)
But note that

H'(M) = H'(S®-B)
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by deformation retraction, and
H;(M,0M) = H;(S*,U) = Hy(S*, B)

by excision and deformation retraction.

Therefore, the cup product of H*(S® - B) is equivalent to the intersection pairing
in Ho(S?, B). Note that generators of Ho(S?, B) are Dy, Do, and D3, where D; is
a disc whose boundary is B; with proper orientation.(i = 1,2,3.) However, any two
circles in B are unlinked, and so we can take any two discs to be disjoint. Hence,

[D:]n[D;]=0in H,(S* B) for all 4,

Hence, the corresponding cup product in H*(S® — B) is trivial. Moreover H3(S -
B) 20, and so

H'(S° - B)® H?(S® - B) — H*(S® - B).

is a trivial product. This shows that the ring structure of H*(S% - B) is trivial.

Also, we can show that the ring structure of H*(S% - L) is trivial by the same
way.(All argument will be exactly same except replacing B by L.) So we conclude
that the ring structure of codicology cannot distinguish B and L.

Next, we consider chain level cup product as follows. We regard the circles B;
in B as chains and realize these circles in R®. Here, we consider S® as one point
cementification of R3. Then B;’s can be defined by the following equations.

2

z
By ={(z,y,2)| 2 =0, y2+z=1}
2

By ={(x.y,2)|y=0, 2+ - = 1)

2
By={(r.y.2) =0, 2” + - = 1)

Then D;’s can be defined by the following equations.
2
Dy ={(z,y,2)| =0, y* + ZZ <1}

2
Dy ={(r.,2)l y=0, 2+ 2 <1}

2
D3 = {(z,y,2)| =0, 12+yzgl}

Then we can express the intersection pairs of D;’s.
DinDy={(x,y,2)| z=y=0, |2| <1}
Dan D3 ={(x,y,2)|y=2=0, |z| <1}
D3n Dy ={(z,y,2)| x=2=0, |y <1}
Then D1 n Dy = 0%, and Dy n D3 = 05, where

2
E1={(:v,y72)|zh%sl, 20, y=0} c Dy

2
S2={(@,y.2)| @® + % <1, 920, 220} c Dy
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Here, the equations Dy n D5 = X1, and Dy n D3 = X5 hold in relative sense. That
is, the equations make sense in Cy(S?, B) = C2(S?)/Ca(B). Here, we recall

Definition 7.2. Suppose that «,f and « are homogeneous elements in some
codicology ring C*, and satisfy

auf=df and pu~vy=dg
Then Massey product is defined by choosing cocycles «, 3, v
< 04>5a’Y >= fU’)/— (_1)|a|auga

where |a] is the degree of a
Lemma 7.3. If oo =0=67v =0, then (a, 3,7) = 0.

By equalizing we compute the triple Masse product in homology H»(S?, B)
<B1,By,B3>=D1nY¥s+>1nD;g
Note that
DinYy={(z,y,2)|z=2=0, 0<y<1}
YonDs={(x,y,2)|y=2=0, 0<x <1}

Hence. the triple Masse product is a path connecting two distinct components of
B, and the endpoints of this path lie in B; and Bs. Also, < By, By, B3 > represents
a nonzero element in H;(S3, B) since if we take the boundary homomorphism

0: Hy(S%, B) — Ho(B),
then
9(< By1,B2,B3>) =[(1,0,0)] £[(0,1,0)] # 0 in Ho(B).
This triple product represents the dual of a certain triple product in H*(S® - B),
and the fact that it is nonzero implies that the three circles in B cannot be pulled

apart unlike the space of three circles unlinked L. Therefore, the Masse product
distinguishes B and L.
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8. COALGEBRA AND CODERIVATIONS

Suppose that we are given an A.,-algebra A together with a sequence of R-module
homomorphisms {my} 52, of (shifted) degree 1 where

my, : A[1]%F — A[1]
(Here, myg is assumed to be zero). A bar complex BA of A is defined by

BA = @ BkA
k=0
where
ByA:=R (A is a graded R-module.)

BpA=A[11% = @ A[l]™ @ A[1]™.
my, -, Mg

Note that By A carries a natural degree inherited from A[1]. Namely, the (shifted)
degree of homogenous element in A[1]™ @ ---® A[1]™* is mq + -+ + my.

Definition 8.1. A Hochschild cochain module CH (A, A) of A is the set of all
sequences {py}re, of graded R-module homomorphisms with homomorphism
v BrA — A[1].
That is,
CH(A,A) =[] Hom(B:A, A[1])
k=0
Denote by CH®*(A, A) the set of degree a elements. Then we have
CH(A,A) =[CH"(A,A).
a€Z

Let A be a (graded) R-module with a coproduct A, ie, A: A — A®Ais
a R-module homomorphism of degree 0. A coproduct A: A — A® A is called
coassociative if it makes the following diagram commute: which is exactly the dual
notion of associativity. Then, an R-module A along with coassociative coproduct
A is called a (graded) coalgebra.

Lemma 8.2. A bar complex BA forms a graded coalgebra with respect to A :
BA — BA® BA which is obtained by extending the following formula linearly:

A(x1 ® - ®@xyp) = Z(a:l ® @) QR(Tis1 ® @ Ty)
i=0
=1Q@(r1 @ ®x,) +21 Q2@ @xy) ++ (21 ® @ xy) Q) 1.

Here, two tensor products are involved: a small tensor product ® denotes a tensor
product in A, algebra A and a big tensor product @ denotes a tensor product in
a bar complex BA.

Suppose that we have two graded R-module homomorphisms F, G : BA — BA.
We define a graded tensor product of F' and G as follows:

(FRG)x®y) = (-1)= I (F(x) Q G(y)) (8.1)
and graded Lie bracket

[F,G] = FRG - (-1)FIFGRF. (8.2)
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Definition 8.3. A coderivation D : BA — BA s a graded R-module homomorphism
satisfying
(i) (D®id +id®D) o A = Ao D. In other words, the following diagram is
commutative:
(ii) The ByA-component of D(x) is zero for any x € BA. That is,

D(BA) c @ BiA.
k=1
The set of coderivations from BA to BA is denoted by CoDer(BA, BA).
Similarly as CH(A, A), we have
CoDer(BA, BA) = [ | CoDer,(BA, BA).
ae’

Now, we are going to show

Theorem 8.4. The Hochschild cochain module CH(A, A) of A is isomorphic to
the set CoDer(BA, BA) of coderivations of the bar complex BA.

Proof. In order to construct an isomorphism between them, we need to define some
notations. We denote the projection from BA to By A by

Tk - BA — BkA
and more generally the projection from BA to BrA by
Ty - BA — B]A = @BkA

kel

where T is a subset of {0} UN. Also, we have an obvious inclusion ¢;, from BiA to
BA where
Lk - BkA — BA.
First, we construct ® : CH(A, A) — CoDer(BA, BA). For any ¢ = (o, @1, ) €
CH(A, A), the associated coderivation @ is defined as follows:

P:= Z ks
k=0

each of which is obtained by extension of the following formula:

n—k+1
Pr(x1®-®x,) = Z (—1)Irll el 210 @1 QK (L1, Ty k—1 )BTk B ® Ly
)

Using the Sweedler’s notation, we can write
2(x) = LD (xD @ p(x*2)) @ x()

when
AQ(X) _ ngi’):l) ® X£3:2) ® X§3:3)'

The first component ¢y : R — A[1] is called a coaugmentation, which is
completely determined by ¢g(1) € A[1]. Due to the definition of the associated
coderivation, @y is given by

n+1

(750(1‘1 ® & xn) = Z (—1)'x1|’+“l+|xl*1|ll‘1 ® T ® 300(1) RIL QL.
=1



32 YONG-GEUN OH

It can be easily observed that & is a coderivation from BA to BA. In particular,
® has no BpA = R component in its image. We then set & : CH(A,A) —
CoDer(BA, BA) by
D(p) =7
Conversely, we build up the inverse map ¥ of ® as follows: For D € CoDer(BA, BA),
we define

U : CoDer(BA,BA) - CH(A,A)
by
\P(D) = (@07"'7@/67'”)

where ¢y, = w1 0 D o 1. From construction of ® and W, it immediately follows that
Vo ® =idop(a,a) yielding that ¥ is surjective.

Finally, we will show that W is injective and so W is an isomorphism. We denote
the projection from BA to B;A by

7T]3BA—>B]A

where I is a subset of {0} UN.
Denote n = {1,--,n} and

BnA =@ BiA.
k=1

We will use the following identity.
Lemma 8.5. Let n>1. Then

Nowymp= >, (m@mk)oA

1<l+k<n

Proof. Consider x € BA and write 7, (x).
We first consider the case x =21 ® - ® &y, € By A. 1,y (%) = X.
By definition of A, we have
A(CBl ®® ;L-n) = Z(xl ®® «Te) ®(x5+1 ® - ® «Tn)
=0

In Sheedler’s notation, A(x) =3, Y @ x(3?) | Therefore

A(x) = g(:)(xl ®@x0) R (Tp41 ® - ® )

Ao, (x)

i Ty ® Wn,z(A(X))
=0

where the last equality follows because

e ® Mg (x5 @ xF)) = 1y (x () @ mme (x3) = 0

unless |x§2;1)| =/, |x£2;2)| =n —{. Similar calculation gives rise to the identity for

general elements x € B, A.

If x € Bywn, then the left hand side is obviously vanishes. On the other other hand
in the coproduct expansion A(x) =Y, xgll) ® xﬁw), the length of each summand
cannot match m; @ 7, to produce nontrivial outcome and so the right hand side
also vanishes.

This finishes the proof. O
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It remains to check ¥ is injective. Consider the coordinate expression

\IJ(D) = (wOa "'7w€7'")
ie., ppi=m oD ou.
Suppose that ¥(D) =0. To prove D = 0, it suffices to prove that for all n > 1
T, oD =0.

(We note 0D = my....,,oD because the image of D lies in ByA (We recall myD = 0).
We will use induction on n. When n = 1, it follows from ¥ (D) = 0 since m; o

Dlp,a =y
Now suppose 1 o D =0 for 1 <k <n. We want to prove m,.1 0D = 0.
Clearly A: BA - BA® BA is injective. Since both A and ty,+1 are injective, it
is enough to check
(Aotpi1)om1 D=0

instead of directly showing m,.1.D = 0. But we obtain

AotpompaD= 3 (m@mk)oAoD

1<l+k<n+1
from Lemma 8.5. Substituting A o D = (D®id +id® D) o A hereinto, we derive
(me@Qmi)oAoD (7rg®7r;€)0(D®id+id®D)0A
((m¢ 0 DYQmi + 1@ (i 0 D)) o A
Then by the induction hypothesis 7, o D =0,
(meo D)@mC + W@@(ﬂ'k 0oD)=0

forall 1 < k+¢<n+1, except for (£,k) = (0,n+1) or (n+1,0). Furthermore
mo o D =0 by Definition 8.3. Therefore we obtain

Z (me@mr) o Ao D =((mo Q) Tn+1 + Tret ®W0)((D®id+id®D) o A.

1<l+k<n+1

This leads us to
Ao tpiy 01D = (10 Q) Tnst + Tnat ®7T0)(D®id + id@D) o A.

We now evaluate this against x = 1 ® ---, z,. We write

k-1
Ax)=10x+ ) (210 ®x) Q(xp41 ® - @) +xQ 1.
=1

Therefore we compute
(mo @ Tns1 + Tne1 Q) ﬂo)(D®id + id@D) o A(x)
(0 Q) Tns1 + Tne1 @ 7T0)(D®id(x® 1))

+(m0 @ st + Tne1 @ 70) (idQD(1 Q) x))
(70 @ a1 + Tna1 @ m0) ((D(x) Q1) + (M0 @) Tt + st @ m0) (1Q) D(x))
(101 D) () @1+ 1@ (1 D) (x).
Here we use the degree consideration degid = 0 and hence the graded tensor product
does not pick up any sign in the equality next to the last one. The last term
vanishes unless the length of x is n + 1. For those x with length n + 1, it becomes

Y41 (X) @1 + 1 @ 1yp41(x). But this vanishes by the hypothesis ¥(D) = 0, which
in particular implies 1,41 (x) = 0.
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Combining the above discussion, we have proved (A oty+1) © myi1D = 0 provided
U (D) =0. Therefore VU is injective and we finally establish Theorem 8.4. O

Applying Theorem 8.4 to ¢ = m = (mg,m1,-), we have

Proposition 8.6. (A4,m) is an A..-algebra if and only if m? = 0, where /i : BA —
BA.

Proof. We compute (7 o). Recall that m = 7., My, where

Fin (21 ® - ® 7))
n—k+1

= > (el @ @ mg @ mp(a, o Trake1) ® Tk ® - ® Ty,
i=1

Note that My : B,A — B, _r+1A. By definition,
(Mom)(x1, xn)=(Mom(x; ® Qxy,))

= m(ml(xla "‘733»”) +oeeet mn(xlv"'axn))

Hence, the B1 A = A[1] component of (o M) (x1, -, 2y) is

n—j+1 , ,
>3 (el (v @ @ @i @ my (o, Tiae1) @ Tk ® 0 @ T,)
i+j=n+l [=1

Now, we consider a graded commutator 7 o M — (~1)48™ 7 o i = 2/ o fm.(Note

that degm=1.) We know that a graded commutator of coderivations is again a
coderivation.(The proof is same as the proof of Proposition 12.1.) By the proof
of Theorem 8.4, M oM = 0 if and only if B1A = A[1] component of (i o M) is 0.
Therefore, m o m =0 if and only if A., relation holds. O

It turns out that CH (A, A) carries additional algebraic structures which will be
important in applications.

Proposition 8.7. For any F, G € CoDer(BA, BA), [F,G] € CoDer(BA, BA). The
graded Lie bracket induces a (graded) Lie algebra structure on CoDer(BA, BA) =
CH(AA).
Proposition 8.8. Consider an A-algebra (A,m = {m};°,. Set dq =M : BA -
BA.
(1) For any D € CoDer(BA, BA), d* oD - (-1)IPDod* is a coderivation of degree
|D| + 1.
(2) We denote by ¢ : CoDer(BA, BA) — CoDer(BA, BA) this assignment. That
is,
§(D)=d*oD-(-1)PIDog?
Then 606 =0.

Proof. We will give the proof of a more general version of this theorem in Section
10 and so omit the proof here. O

Therefore the triple (CH (A, A),d,[+,-]) defines a differential graded Lie algebra
(DGLA).
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9. A, HOMOMORPHISMS
Definition 9.1. (A, homomorphism) Let (4, m*) and (C,m®) be An-algebras,
and fi : BxA — C[1] of degree 0 satisfy
Z mg(fll (a17 Y ail)u HREY fin (ak,in+17 Yy ak))

G+ tin=k

: lar| ++ap-1|" A
= Z Z(_l) ! Pt ,fé(ala"'7ap—1am€ (ap7"'7ap+€—l)aap+év'"7a'k')
p+l=k+1p=1

Then we call a collection f = {f;}32, an A, homomorphism. Let (A4, m?) and
(C,m%) be unital. We say f is unital if fi(es) = ep and fy(---,e,-~-) =0 for k > 2.

Definition 9.2. Let CH(A,C) be the set of homomorphisms from BiA to C[1]
of degree 0.(k =1,2,---) Each f ={fr}re, € CH(A,C) can be extended to a unique
subalgebra map BA — BC by

flar®-®a) = > fuler,a,)®@® fi (ak-ie1 ® - ®ay)
i1+ tin=k
Lemma 9.3. f = {fi}2, is an Ae homomorphism if and only if f:BA — BC
is a chain map, i.e, fo mA =mCo f
Definition 9.4. (Composition) Let f ¢ CH(A, B) and g € CH(B,C). Then we
define g o f by

(9o flr(ar,ax)
:Z Z G (fry (a1, any ), frp (k41,75 Q1))

m ky++kg,=k
Proposition 9.5.
(1) go f is an Ae homomorphism if f and g are.
(2) Composition is associative.
(3) We define idy, : ByA — A[1] by id; is the identity on A[1] and idy = 0 for
k> 2. Then id: BA — BA is the identity map.
(4) An Ae homomorphism f: A — C induces a graded algebra homomorphism
f* : H(Aamf) - H(Cvmlc)a
where (A,m?) and (C,m%) are strict Ao-algebras

Proof. (1) We need to show that go J is a chain map. We can check go f = §o f.
Then mgo(go f)=mgogof=gompof=3gofoma=(go f)oma as desired.
The proofs of (2), (3), and (4) are left as exercise. O

Now, recall the definition of a differential graded algebra. Also, recall that we
can regard a differential graded algebra as an A.-algebra. This point of view has
some advantages.

Definition 9.6. Let (A,d4) and (B,d”) be differential graded algebras, and f :

A — B be a chain map respecting the product. Then f is called a quasi-isomorphism

if fo: H(A,d*) — H(B,dP) is an isomorphism

Definition 9.7. A differential graded algebra (A, d") is called quasi-isomorphic
to a differential graded algebra (B,d?) if there exist a differential graded algebra
(C,d“) and f:C — A and g: C — B such that f and g are quasi-isomorphisms.
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Definition 9.8. Let (A4,m?) and (B,m?) be strict A,-algebras. We call an
Ao homomorphism f : (4,m?*) — (B,m?) a quasi-isomorphism if (f;), :
H(A,mi") < H(B,mP) is an isomorphism. f is called an isomorphism if f; is
an isomorphism and there exists an Ao, homomorphism g : (B,m?) — (A, m*)
such that f; o g and g1 o f; are identity maps on B and A, respectively.

Theorem 9.9. Any A., quasi-isomorphism is an isomorphism.

This theorem implies that if we regard a differential graded algebra as an A
algebra, a quasi-isomorphism between differential graded algebras is an isomorphism
between A., algebras.

Now, recall the definition of a differential graded algebra. Also, recall that we
can regard a differential graded algebra as an A..-algebra. This point of view has
some advantages.

Definition 9.10. Let (A,d”) and (B, d?) be differential graded algebras, and f :
A — B be a chain map respecting the product. Then f is called a quasi-isomorphism
if f,:H(A,d*) — H(B,dP) is an isomorphism

Definition 9.11. A differential graded algebra (A4, d*) is called quasi-isomorphic
to a differential graded algebra (B,d?) if there exist a differential graded algebra
(C,d°) and f:C — A and g: C — B such that f and g are quasi-isomorphisms.

Definition 9.12. Let (A,m?) and (B,mP?) be strict An-algebras. We call an
Ao homomorphism f : (4,m?) — (B,mP) a quasi-isomorphism if (f1), :
H(A,mf) < H(B,mP) is an isomorphism. f is called an isomorphism if f; is
an isomorphism and there exists an Ao, homomorphism § : (B,m?) — (A4, m%)
such that fi o g1 and g1 o f; are identity maps on B and A, respectively.

Theorem 9.13. Any A., quasi-isomorphism is an isomorphism.

This theorem implies that if we regard a differential graded algebra as an A,
algebra, a quasi-isomorphism between differential graded algebras is an isomorphism
between A, algebras.
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10. HOCHSCHILD COHOMOLOGY OF A.,-HOMOMORPHISMS

In this section, we consider the notion of (graded) coderivation over f for a given
Ao-homomorphism from (A, m?) to (C,m®).

Definition 10.1. D: BA — BC('is called a graded coderivation over f with values
in BC =, B,C if

(f8D+D&f)oA=AoD

We denote by CoDer(BA, BC; f ) the set of graded coderivation over f with values
in BC.

Note that the Ao operation m : BA — BA is a graded codeclination over id
with degree 1. Also, we do not put any degree restriction on CoDer(BA, BC; f).
That is,

CoDer(BA, BC; f) = é CoDery(BA, BC; f),

=—00

where CoDery(BA, BC; f ) is the set of conservations of degree k over f .
For given ¢ = (1, ¢a, ) € [They Hom(By A, C[1]), we define

q’;i(xlf"uxk)
k—i+1

= 3 (el f e a ) @ i wiei) ® (@i, - 2i(10.1)

=1
for i < k and 0 for i > k. We then set ¢ = X%, ¢;.
Lemma 10.2. Consider [T,-; Hom(By A, C[1]), where Hom(ByA, C[1]) is the set
of graded homomorphisms from B A to C[1].

(1) Then the definition (10.1) defines a coderivation over f if f is an As,-homomorphism.
(2) f induces a natural homomorphism

ﬁ Hom(By A, C[1]) » CoDer(BA, BC; f)
k=1
0.1)

given by (1

Proof. A straightforward calculation proves statement (1). Then the correspondence
¢ ~ ¢ gives the desired isomorphism between [15>, Hom (B A, C[1]) and CoDer(BA, BC, f),
and this homomorphism is grade preserving. The proof of isomorphism property is
similar to that of Theorem 8.4, and we omit. (]

Remark 10.3. We would like to point out that the space [T~ Hom(Br A, C[1])
does not depend on f while CoDer(BA, BC; f) does.

Let (A,d*) and (C,d) be A, algebras with d* = m*, d° = m“. We consider
CoDer(BA, BC, f) for a fixed As, homomorphism f: BA — BC.
Proposition 10.4.

(1) For any D e CoDer(BA, BC, f), d° o D — (-1)/PID o d* is a coderivation of
degree |D| + 1 over f.
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(2) We denote by 6/ : CoDer(BA, BC, f) — CoDer(BA, BC, f) this assignment.
That is,

7 (D)=d® oD - (-1)PIDog”
Then 6/ 0 67 = 0.
Proof.

(1) The degree of d° o D - (-1)PIDod* is |D| + 1 since d* and d° are of degree 1.
Next we compute

Ao (d°oD-(-1)PDod?)
=(Aod“)oD-(-1)P(AoD)od”
= (id®d® + d°®id) o Ao D - (-1)!PI(f&8D + D&f) o A o d*
= (id®d° + d°®id) o (f®D + D&f) o A
- (-1)!PI(f®D + D&) o (id®d* + d*®id) o A
= (f8(d° o D) + (-1)!PID&(dC o f) + (d° o f)&D + (d° o D)&f) 0 A
- (-D)PI(fB(D o d?) + (-1)PI(fod*)BD + DB(f 0 d) + (Do d™)&f) o A
= f8(d“ oD - (-1)P'Dod?) + (d° o D - (-1)PID o d*)& f
as desired. We note that
(ABB) o (C®D) = (-1)/PI€l(A 0 C)&(B o D)
(2) We compute
7 (67(D))
=0/(d° o D - (-1)!PID o d?)
=d% o (d° o D)~ (-1)|D|+1d° 0o Dod* - (-1)P1d® 0 D o d* - (-1)PID 0 ¢* o ¢*
=0
0
By the previous proposition, we can define

Definition 10.5. (Hochschild cohomology of f)
We define Hochschild cohomology of an A.-homomorphism f by

HH(A,C; f) = kers’ /imé*
Also, we note that D e kerd/ if and only if D is a graded chain map of degree
DI
By considering (C,m¢) = (4,m?) and f = id, we give the definition of Hochschild
cohomology of (A, m) as follows.

Definition 10.6. Hochschild cohomology of (A,m) We define the Hochschild
cohomology of an A..-algebra (A, m) by

HH(A,A):= HH(A, A;id).
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11. A.. MODULES

Now we consider a module over an As-algebra. Recall that the usual right
A-module M has the structure map n: M x A — M satisfying

n(n(v,a),b) = n(v,ab)
for v € M, and a,b € A. Here is the definition of a module over an A -algebra.
Note that deg’ = deg -1
Definition 11.1.

(1) Let (A,m) be a strict Ao-algebra and M be a graded R-module, where R is a
commutative ring. Suppose that we have the structure maps n; : M @ A% —
M of degree 1 - k. We say (M, {nx}r) is a right Ae-module over A if

k
Znk—i(ni(v)a17"';ai)7ai+17 "'7ak:)

i=0
k—j+1
+ Z (_1)*77k—j+1(v,a17"',ai—l,mj(aia "'7ai+j—1)aai+j7"',ak) =0,
j=1 =1

where v e M, a; € A and * = deg'v + deg’a; + -+ + deg’a;_1.

(2) Let (A;,m') and (Az,m?) be A.-algebras and M be a graded R-module,
where R is a commutative ring. We say M is an (Aj, As)-bimodule if the
structure maps ny, , : A" ® M ® A" — M of degree 1 - k; — ky satisfy
Z (_1)*1nk1*i7k2*j(a1’ sty Oy —is ni,j(aklfiv vy Ak, U, bla ) bj), bj+1a ) bk2)

0<i<ky
0<j<ks

*
+ 0 (D) 2y jetks (@1, @im, M (@, Qiggo1)s Qingy ey Gy, 0, b1, by )
1<i<k;—j+1
0<j<ky

.
+ > (C1) My ka—ger (@1, @y, 0,01, by, (B e b o1 ) by e, b))
1<i<ka—j+1

0<j<ka

= 0,
where v e M,a; € A1, and b; € As, and

x1 =deg'a + - + deg'akl_i

xg =deg'ar + - +deg’a;_1

x3 =deg'a + - + deg'a;Cl +deg’v +deg'by + - + deg'b;_1,
Remark 11.2. We note that if we consider shifted degree, then the degree of
structure maps is 1. That is, if we regard 7y, : M[1] ® A[1]®* — M[1], then
deg'nr = 1. Moreover, if we shift only the degree of A, that is, we regard 7 :
M ® A[1]®% — M, the degree of 7, in this case is also 1. This is the usual
convention for a right A.-module. In other words, we usually do not shift the
degree of M, but we shift the degree of A. The same holds for the bimodule case.
Example 11.3.

(1) Let (A,d?) be a differential graded algebra(DGA) and (M, d™) a differential
graded(DG) module over A. We recall from the definition of a right DG module
d™ o d™ =0 and

dM(v-a) =d™(v)-a+ (1) - d*(a),
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where v € M, and a € A. Also we know from Definition 8.1 that A is a strict
Aq.-algebra. Now we define the structure maps n; : M ® A®¥ — M by

no(v) = (-1)devgM
m(v,a) = (_l)dEgU(dega+1)v a
N, =0 for k > 2.

Then (M, {ni};2,) is a right Ae-module over A.

(2) Let (A,mg) be a strict Ao-algebra. Then A is a right As-module over A
with the structure map n; = mg,1. Note that if A is not strict, then A is not
necessarily a right A.-module over itself with the obvious structure maps.

(3) Let (A, my) be a As-algebra, which is not necessarily strict. Then A is a
(A, A)-bimodule over A with the structure map ng, k, = My +ky+1-

Example 11.4. Let (M,{n;}) be a right Ac-module over a strict Ao.-algebra
(A,{mg}). Then ng : M — M satisfies ng oo = 0, and thus we can define
H*(M,no). Also, m; defines H*(A,my) since A is strict. We recall the relation

no(m (v, a)) +m(nw),a) £m(v,mi(a)) =0
for v € M, and a € A. Therefore, if mi(a) = 0 and ng(v) = 0, then 7;(v,a)
is ng-cocycle. It is easy to check 71 : M ® A — M induces a homomorphism
H*(M,no)®H*(A,m1) — H*(M,no), and thus graded H* (A, m;)-module structure
on H*(M,ng).

Definition 11.5. Let A be a strict unital A.-algebra with unit e. We call a right
Ao-module M over A unital if for v e M

(1) m(v,e) = (~1)%e"
(2) ng(--,e,-) =0 for k>2

Recall that we constructed an A.-algebra related to a spin Lagrangian submanifold
in a symplectic manifold M. Geometric realization of Ae-bimodule is related
to a relatively spin pair of Lagrangian submanifolds in M. Consider a relatively
spin pair of Lagrangian submanifolds L; and Lo in M intersecting transversally,
and free-Ag noy module generated by intersection points C(L1, Lg). This module
has (C(L1),C(Lz))-bimodule structure. In this case, the structure maps n, k,
essentially counts the “number” of moduli space of holomorphic strips passing
through chains in C(Ly) and C'(Lz). This number is counted with sign determined
by orientation of the moduli space.
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12. HOCHSCHILD COHOMOLOGY AND A,, WHITEHEAD THEOREM

Recall that (A {mg}) is an A oo-algebra if and only if the sum of associated
coderivations d = Yroq My satisfies dod=0. We want to find similar result for a
right As-module M over a strict Ao-algebra A. We need some definitions. We
assume that A.-algebra (A, {ms}) is strict in this lecture.

Definition 12.1. Let R be a commutative ring with 1, and A be a coalgebra over
R with comuliplication A and counit €. A right R-module M is called a right
comodule over A if there exists a linear map p: M — M ® A such that

(1) (ideA)op=(p®id)op

(2) (id®€)op=1id

Example 12.2. Recall that the bar complex BA is a coalgebra with the comultiplication
A and the counit € for an A.-algebra (A, {my}) over a base ring R. Let M be a

usual right R-module. We put BoM := M® BA and define p: BAM — BsM®BA
by p(v®x) =v® A(x). Then B4 M is a right comodule over BA.

Definition 12.3. Let M and N be right comodules over a coalgebra A with
linear maps ppr : M — M ® A and py : N — N ® A determining comodule
structure, respectively. Then a R-linear map ¢ : M — N is called a comodule
homomorphism if (¢ ® id) o pps = pn © P.

Example 12.4. Let M be a usual right R-module, and consider the linear maps
N : M ® ByA — M. Then we extend ny to 7y : BAM — BaM defined by

ﬁk(vvxlv'",l'n)

=N (V, 21,7, Tk) ® Tl @ -+ @ Ty

n—k+1
+ Z (—1)*11 R®Rr1 - QT;_1 ®mk(xi,-~,xi+k_1) QLjtk ® - Ty,
i=1

where v e M, x; € A, and * = deg’v + deg'z1 + --- + deg’xz;_1. Then 7}, is a comodule
homomorphism. Now, we define 77 = Y1~ 7x. Then we have the following proposition.
Proposition 12.5. M is a right A.-module over A if and only if 7707 = 0.

Now, we consider a map between two right A.-modules.

Definition 12.6. Let M and N be right Ae-module over an A.-algebra A. We
denote by CH 4(M, N) the set of sequence of maps pi : M ® ByA — N. We call
{pi}reo € CHa(M,N) of degree’ 0 (degree 0 with respect to the shifted degree) a
prehomomorphism.

Let {px}reg € CHA(M,N) be a prehomomorphism. As before, we extend pj to
a comodule homomorphism gy : M ® BA— N ® BA by

ﬁ(vwxlf"axn)
=pr(V, 1, Tp) ® Tpy1 @ ® Ty,
where v € M and x; € A. Then we define p= Y72 pk-

Definition 12.7. We call {py,}72, an Ac-module homomorphism if 7 o5 = po™
where 7 and 7V are the differential associated to the A.-module structure maps
of M and N, respectively.
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Remark 12.8. We define an A..-module homomorphism only for degree’ 0 elements
in CHs(M,N). However, even if degree’ of {pi}ro, € CHa(M,N) in not 0, we
can extend pi to a comodule homomorphism pr : M ® BA — N ® BA exactly
same way as above and define p = Y77, pr. This gives an isomorphism between
CHA(M,N) and CoMod (M, N), where CoMod (M, N) is the set of comodule
homomorphisms from M to N. The proof of this fact is similar to the one of
Theorem 10.2.

Now, we turn our attention to the interpretation of A..-module homomorphism
in terms of Hochschild differential on CH4 (M, N).

Definition 12.9. Let M and N be right As-module over an A-algebra (A, m)
with structure maps 7™ and 7", respectively. We define § : CHo(M,N) —
CH4(M, N), the Hochschild differential on CH4 (M, N) by

(6p)k(va az, ak)

k
= anjc\ii(m(%ah )y Qi1 Q)
i=0

k
+ DI i (M (a1, 40), Gaer, o ak)
=0
k k-j+1
+Z z (_1)|p‘+1+*pk—j+1(vaal)"'aai—lamj(ai7“'7ai+j—1aai+j7'“?a’k)7
7j=1 =1

where v e M, a; € A and % = deg'v + deg’ay +--- + deg’a;_1.
The following lemma explains why we call § a Hochschild “differential”.

Lemma 12.10. The map ¢ in Definition 24.9 satisfies d o § = 0.

Moreover, the Hochschild differential gives another definition of an A..-module
homomorphism.

Proposition 12.11. Let the degree’ of {py}so, € CHa(M,N) is 0. Then {p;}52,
is an As-module homomorphism if and only if §p = 0.

Now, let {pr}52, € CHaA(M,N) be an As-module homomorphism, that is, dp =
0. We compute for v € M,
0= (8p)o(v) =5 (po(v)) = po(mg" (v)),

and so Y (po(v)) = po (Y (v)). Recall that n}f ond =0 and n} onl¥ = 0. Therefore
po is a chain map between 7}!-complex and 7’ -complex. In other words, py induces
(po)« s H*(M,n}") — H*(N,nd"). This enables us to define the following.

Definition 12.12. An A.-module homomorphism {px} 1o, € CHa(M,N) is called
an A.-quasi-isomorphism if (pg). : H*(M,n)!) — H*(N,n{) is an isomorphism.

Next, we define composition of A.,-module homomorphisms.

Definition 12.13. Let {73};2, € CHA(M,N) and {px}i2g € CHaA(N,P). Then
we define {(po7)i}ie, € CHA(M,P) by

(p OT)k(vaah”'aak)

k
= Zpk—i(Ti(vvala "'7ai)7a‘i+17“')a’k)
i=0
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Proposition 12.14.

(1) The composition is associative.
(2) 6(por)=dpor+(-1)Flpobr

Corollary 12.15. CH4(M,N) is a differential graded algebra with composition
as product.

More generally, the set of A-modules over an A -algebra A forms a differential
graded category. The objects in this category are A.-modules, and a morphism
between two objects M and N is given by an element CH4(M,N). The product
in CH4(M,N) is composition. Also, the proposition implies that composition of
As-module homomorphisms is again an A.-module homomorphism.

Definition 12.16. Let {py};2, and {7 }72, in CH4 (M, N) be As-module homomorphisms.
We say p is homotopic to 7 if there exists T'e CH 4 (M, N) such that p—7 = 6(T).

Proposition 12.17.

(1) Homotopy is an equivalence relation.

(2) If p is homotopic to 7, then po 1) is homotopic to 7 o1 and 1 o p is homotopic
to ¢ o7, where {pi}, {7}, and {¢;.} are in CH4(M,N).

The following is the As-analog to the Whitehead theorem whose proof we
postpone until later in section 22, 23.

Theorem 12.18. If {p,} € CHA(M,N) is an A-quasi-isomorphism, then there
exists an Ao module homomorphism {1} € CH 4 (N, M) such that pot is homotopic
to id and v o p is homotopic to d.

We briefly discuss the strategy of the proof of the theorem.

(1) By the assumption, (pg). : H*(M,n}!) — H*(N,n}’) is an isomorphism.
Using this, we construct a chain map g : N — M such that pg o 9y is
homotopic to id and g o pg is homotopic to ¢d. Here, we need to use that
the base ring is a field and each graded piece is finite dimensional.

(2) We construct ¥y, inductively so that pot) is homotopic to id up to k+1, assuming
the existence of A homotopy.

(3) To get ¥y+1, we write the corresponding Ag,q relation p o —id = §(T") and
solve the equation. In general, the equation is written in the way 6(-) = (+).
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13. DEFINITION OF SYMPLECTIC MANIFOLDS

For motivation, we will look at basic objects of study in symplectic geometry.
Let L be an oriented manifold and T™* L be its cotangent bundle, which is called a
quantization of L.

Definition 13.1. A symplectic manifold is a manifold M with a nondegenerate
and closed 2-form w.

n
Example 13.2. On R?", a two form wy := dg; A dp; can be an example of

J=1
symplectic form where (q1,--*,¢n,P1, - Pn) is a coordinate of R?".

Example 13.3. Let L be an oriented n-dimensional manifold and 7 : T*L — L a
cotangent bundle. More generally, any T L carries a canonical symplectic form wy
given by

n

wo = Z dqj A dp]

j=1
in a local canonical coordiate (q1,*,qn,D1,,Pn). We explain what a canonical
coordinate is in this situation. Let (U,¢) be a chart on the base L where ¢
has coordinate functions (x1,-,2,). Then, T*L|y can be given a coordinate as
follows: {dz1|y, -, dz,|u} is a local basis for T*L|y. Thus, for any T* L |y, it can

be expressed of the form
n

aly = ijdxﬂu

J=1
in a unique way. Then, a canonical coordinate on T* L |y is defined as

qj=xjom

o (2
pj . v 81‘]'

associated to (x1,-,2,) on U. Thus, we obatin a local canonical symplectic form
wo-

Proposition 13.4. A canonical symplectic form wy on U does not depend on the
choice of coordinate. Indeed, wy is globally defined.

We can prove it by direct calcaluation. Alternatively, we give a coordinate-free
description of wy.

Definition 13.5. A Lioville one-form © on 7™ L is defined by

Oa(£) = a(dn(£))
where a € T*L amd £ e T(T*L).

Then, one can check that w, = —-dO.

In this example, we note that wg is not only closed, but exact. Yet, this is
actually a special case.

Definition 13.6. A symplectic manifold (M,w) is called exact if w is an exact two
form, i.e., w = da for some one-form a.

Here are some examples where a symplectic form is closed, but not exact.
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Example 13.7. One simple example is a sphere S? or any 2-dimensional surface ¥
with an area form. Also, every complex projective space CPY has the Fubini-Study
form, which is symplectic. More generally, any complex algebraic manifold carries
a symplectic form, which is the pullback of the Fubini-Study on CPY form via
M - ((CPN,wps).

Example 13.8. Gompf proved that any finitely presented group can be realized
as a fundamental group m; of some symplectic 4-manifold.

Theorem 13.9 (Darboux Theorem). Let (M,w) be a 2n-dimensional symplectic
manifold. Then, for any z € M, there exists a coordinate chart (U, ¢) around x
such that w = ¢*wp, where wy is the canonical symplectic form on R?" = T*R™.
(wo = X527 dg; A dp;, where (q1,*, Gn,P1, -, Pn) iS a coordinate of R™.

We have some consequences of the definition and the above theorem.

(1) A symplectic manifold is even dimensional.
(2) There is no local invariant for a symplectic manifold.

The following is an easy consequence of the definition of symplectic form.

Proposition 13.10. Prove that any exact Lagrangian submanifold cannot be
closed, i.e., either it must be noncompact or has a boundary.

Proof. Suppose to the contrary that M is closed. Then the top exterior power w™
is closed but not exact because if we assume w is exact and M carries no boundary
and is compact, then Stoke’s theorem implies

/ w" =0
M

On the other hand, nondegeneracy of w implies w™ is nowhere vanishing i.e., it
defines a volume form, and hence [,,w™ >0 if M is compact and is equipped with
the orientation induced by the volume form w™, which gives rise to a contradiction.
This finishes the proof. U

On the other hand, if M is closed, [w]™ = [w™] # 0 in H?"(M,R) implies [w] # 0
in H2(M,R).
Corollary 13.11. A compact manifold without boundary cannot be a symplectic

manifold if its 2-nd De Rham cohomology group is trivial. In particular S*" has a
symplectic structure if and only if n = 1.
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14. LAGRANGIAN SUBMANIFOLDS AND HAMILTONIAN FLOWS

Definition 14.1. Let (M,w) be a symplectic manifold. L c¢ M is a Lagrangian
submanifold if dimL = n and w|g = i*w = 0, where dimM =2n and ¢ : L — M is
the inclusion.

Example 14.2. Consider (T*N,wy), where wp = —d© and © is a Liouville 1-form.
Then oy, the zero section in T* N, is Lagrangian.

Another important example is the following.

Proposition 14.3. Let S c¢ N be a submanifold. Then the conormal bundle v*§ =
{aeT*N|alr,,s =0} is a Lagrangian submanifold of 7* N, where 7 : T*N — N
is the projection.

Proof. Let a ev*S and £ € T, (v*S). Note that dr(€) € Tr(a)S. Therefore,
0a(§) = a(dr(£)) = 0,

and this proves the proposition. O

Remark 14.4. (1) Locally any Lagrangian submanifold can be written as a conormal
bundle in some coordinate.

(2) Any curve in a symplectic surface is Lagrangian.

(3) Let f: N — R be smooth. Then df is a 1-form. Then Graph(df) is Lagrangian
in T"N. Note that i3,,,0© = df. This property holds for every 1-form.

Proposition 14.5. (Funtorial property of Liouville 1-form) For any 1-form 8 on
N, denote the associate section map by : N — T*N. Then 80O = 5. Conversely,
this property completely determines ©.

Proposition 14.6. Let 8 be a 1-form on N. Then j is closed if and only if
Graph(p) is Lagrangian in T* N.

According to Morse theory we have that if f: N — R is a Morse function, then
#(Crit(f)) =2 Xio b (N), where by, is the kth Betti number of N. Note that the
number of critical points of f is equal to the number of intersection points of zero
section in T*N and Graph(df).

Definition 14.7. Let (M,w) be a symplectic manifold and h : M — R be smooth.
A Hamiltonian vector field associated to h, denoted by X, is determined by
Xp-w = dh. When the Hamiltonian H is time dependent, we denote its Hamiltonian
vector field by

XH :XH(t,J)) 2:XHt(.13)

The associate ordinary differential equation & = Xp(¢,2) is called a Hamiltonian
equation.

Example 14.8. Consider R?>" with standard symplectic form. Then the Hamiltonian
equation associate to H is the following system ODE.

_0H _0H
“op P g,
Definition 14.9. A diffeomorphism ¢ : (M,w) — (M,w) is called symplectic if
¢*w = w. We denote the set of symplectic diffeomorphisms of (M, w) by Symp(M,w).

q
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Proposition 14.10. X}, ,the Hamiltonian vector field associated to h, is symplectic
in that Lx,w =0.
Proof. We recall Cartan’s magic formula.
LxQ=d(X-Q)+ X-Q
Noting that w is closed and d? = 0, the proposition is proved. (]
Corollary 14.11. The flow q[)g(h of X} is a symplectic diffeomorphism.

Proposition 14.12. Let ¢’ be the flow for a vector field X. Then {¢'} is symplectic
if and only if ¢° is symplectic and X -w is closed.

Proof. Consider
d . ivs x
(0w = (6) £xe,
and apply Cartan’s formula. |

Definition 14.13. A vector field X is called symplectic(locally Hamiltonian) if
X-w is closed. If X-w is exact, we call X Hamiltonian.

Definition 14.14. We call ¢ € Symp(M,wy a Hamiltonian diffeomorhphism if it
can be connected to id € Symp(M,w) by a time dependent Hamiltonian flow. That
is, ¢ = ¢}, for some time dependent H : [0,1] x M — R.

Proposition 14.15. We denote by Ham/(M,w) the set of Hamiltonian homeomorphisms.
Then Ham(M,w) is a subgroup of Symp(M,w).

Proof. 1t is clear that id € Ham(M,w). Now let ¢,1 € Ham(M,w). We need to
show that ¢ o1 € Ham(M,w). Let ¢ = ¢}, and 1) = ¢k for some time dependent
Hamiltonian H, K. We need the following lemma.

Lemma 14.16. Define L = L(t,x) by

L(t,x) = H(t,x) + K(t,(¢57) " (2))
Then L generates the flow ¢ — ¢ty o ¢k
Proof. (lemma) Note that for a flow ¢!,

Xi(@) = (67 @)
is the generating vector field. We compute
9 (6 0 01 @)
= X, (¢ 0 0k (2)) + Aoy (X, (9 ) (2))
= X1, (8 © 95 ) (1)) + (Ao X i, (A7) ™) (0 © 9 ) (x))

= (Xn, + (1) Xk, ) (¢ © ) (7))
Therefore, Y (t,z) = (Xu, +(¢%)« Xk, ) (x) is the vector field generating ¢ = ¢k 0k
We need another lemma.
Lemma 14.17.
(1) Xg+h, = Xg + Xh.
(2) If ¢ € Symp(M,w), then ¢* X}, = Xpo4.
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Using this lemma, we conclude that X, + (¢%)« Xk, = Xp,1K,0(4t,)1-
Hence, L(t,z) = H(t,z)+K (t, (%)~ (x)) is the associate Hamiltonian generating
Py © D O
This implies that ¢ o9 € Ham(M,w). Similarly, we can prove that if ¢ €
Ham(M,w), then ¢! € Ham(M,w) with associate Hamiltonian
H(t,x) =-H(t, ¢y (v))
O

Now consider Symp(M,w). It is easy to see that Symp(M,w) is C'-closed in
Dif f(M) since the characterization ¢*w = w depends on the first derivative. We
also have the following C° symplectic rigidity.

Theorem 14.18. (Eliashberg )
Suppose that (M,w) is a compact symplectic manifold. Then Symp(M,w) is
CPclosed in Dif f(M).
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15. COMPATIBLE ALMOST COMPLEX STRUCTURES
We start with the general definition of almost complex structrues.

Definition 15.1. J is called an almost complex structure on a manifold M if
J:TM — TM is a bundle map such that J? = —id.

Theorem 15.2. Any symplectic manifold (M,w) carries an almost complex structure
J such that

(1) (J-positivity) w(X,JX) >0 and the equality holds if and only if X =0.

(2) (J-Hermitian) w(JX,JY)=w(X,Y)

That is, gs(,+) =w(:, J-) becomes a Riemannian metric. g is positive definite and
symmetric.

(In the literature J-positivity is also called w-tameness.) Gromov proved that
the set of such compatible J is a contractible infinite dimensional manifold.

Remark 15.3. In general the (M, g, J) is called an almost Hermitian manifold if
g(J+ ) = g(+,-) and an almost Kéhler manifold if the two form g(J-,-), called the
fundamental two form, is closed in addition. In this sense, a symplectic manifold
(M,w) with a compatible almost complex structure canonically defines an almost
Kéhler structure by considering the associated Riemannian metric g = w(-, J-).

We note that a complex manifold has a natural almost complex structure induced
from holomorphic coordinate charts. In this case, we call the almost complex
structure integrable. However, not every almost complex structure comes from
holomorphic coordinate charts. The obstruction for the integrability is the Nijenhuis
tensor

N(X,Y)=[JX,JY]-J[JX,Y]-J[X,JY]-[X,Y]

Theorem 15.4. (Newlander-Nirenberg)
An almost complex structure J is integrable if and only if Ny = 0.

Theorem 15.5. Any almost complex structure on a 2-dimensional surface is integrable.

Proof. Let (M,J) be a 2 dimensional almost complex manifold. We need to prove
that Ny = 0. Let p e M and X be a nonzero vector field such that X, # 0. We
compute

Ny(X,JX)=-[JX,X]-J[JX,JX]+J[X,X]-[X,JX]=0
since the bracket is skew symmetric. Note that X, and (JX), = J, X, are basis of
Tp,M, and Ny is a tensor. Since p is arbitrary, and thus this proves the theorem. U

Definition 15.6. Let (M, J;) and (Ma, J2) be almost complex manifolds. A map
¢ : M7 — M is called almost complex if

Joodp=dpoJ;

A natural question is
“Does there exist such a map if (M, J;) and (Ma, J2) are given?”

To answer this question we examine a kind of symmetry of the equation Jyod¢ =
d¢ o J1, which is equivalent to Jy o d¢ o J; = —d¢. In general,

dd) = a(Jl,Jz)(ZS + 5(J1,J2)¢7
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where

1
0,700 = §(d¢— JyodpoJi)

= 1
ENATE §(d¢+ JyodgoJi)

Therefore, Jy o d¢ = d¢ o Jy if and only if 5(J1)J2)¢ = 0. Then we consider the
assignment ¢ 5( J1,J.)®, and count the number of equations. Then we have
2mo inputs and 2mqms outputs, where my and mo are dimension of My and Mo,
respectively. So, when my = 1, Js od¢ = d¢ o J; becomes a well-posed system in
that the numbers of equations and unknowns match.

Also, we can regard the equation Js o d¢p = d¢ o J; as generalization of classical
Cauchy-Riemann equation to an almost complex manifold. More precisely, let (2, 5)
be a Riemann surface and z = x+iy be its local complex coordinate. Consider a map
¢:(X,j) — (M, J) such that Jodg¢ = d¢oj, where (M, J) is a complex manifold.
Then 9y;j,7y¢ = 0 holds if and only if 22 = 0 for i = 1,--,n, where (w1, w,) is a
complex coordinate for (M, J).

Moreover, 5(]-, 7)¢ =0 is an elliptic equation.

Definition 15.7. A map ¢: (3,5) — (M, J) is called J-holomorphic if 5(]»’J)¢ =0.

Gromov exploited the deformation theory of the set of J-holomorphic maps
w:(X,7) — (M, J,w). We have the following local existence theorem.

Theorem 15.8. (Nijenhuis-Woolf)

Let (M,J) be an almost complex manifold and v € T, M. Then there exists a
J-holomorphic map w : D?(8§) — M such that w(0) = z and Im(dw)y is contained
in span(v, Jv), where D?(6) is a disc in C with radius §.

We can regard the assignment w ~ 0w as a section of a bundle over C* (3, M).
More precisely, let
Hom (T, M, Tyy(yM) = Hom' (T, M, T,y M) & Hom" (T, M, T, () M)

be the decompositon of Hom (7% M, T,y M) with complex linear and anticomplex
linear parts. Then

dyw(z) e Hom" (T, M, Tyy(syM) = Hom” (T, M,w* TM|,) = ALY (w* T M),
where A(Jo’l)(w*TM) is w*T M-valued (0,1)-forms. Let E — C*(X, M) be the

vector bundle such that the fiber over w is Ago’l)(w*TM ). Then, the assignment
w — Jyw is a section of this vector bundle.
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16. DEFINITION OF PSEUDOHOLOMORPHIC CURVES

There are two kinds of Lagrangian submanifolds: one is nondisplaceable and the
other is dispaceable by a Hamiltonian diffeomorphism.

Example 16.1. The zero section of a contagent bundle of a compact manifold is
an example of nondisplaceable Lagrangian submanifold.

Theorem 16.2. (Floer, Hofer) Let N be a compact manifold and oy the zero
section of a cotangent bundle T*N. Then, we have a lower bound of intersection
as follows:

#(on n¢(on)) > ranky H*(N;Z)
for any Hamiltonian diffeomorphism ¢. In particular, the zero section and its
Hamiltonian perturbation ¢(oy) always intersects.

Such a Lagrangian submanifold is called nondisplaceable.

Definition 16.3. A symplectic manifold (M,w) is called exact if w = da for some
1-form «. A Lagrangian submanifold L of (M, d«) is called exact if oy, is exact.

More generally, the same kind intersection result holds for any compact exact
Lagrangian submanifold in exact symplectic manifold. We observe that a cotangent
bundle T* N with a standard symplectic structure wgy = —d© where O is a Lioville
one-form. The following proposition shows that ¢(ox) in T*N is exact for a
Hamiltonian diffeomorphism ¢.

Proposition 16.4. A Lagrangian submanifold ¢(oy) in T* N is exact.

Proof. For the zero section oy, we know ©|,, = 0 so that oy is exact. Let H =
H(t,z) be a Hamiltonian function generating ¢ (i.e., ¢ = ¢%,). Then, we are given a
Hamiltonian isotopy ¢% (on) from oyn to ¢(on). By examining the derivative i;©
on N where i; = (b’}{ 0oy, We prove exactness. [l

Example 16.5. A compact Lagrangian submanifold in C" = T*R" is an example
of displaceable Lagrangian submanifold. The following proposition asserts that any
translation on C" is a Hamiltonian isotopy.

Proposition 16.6. Consider a translation « — z + tv for v e C*. This is a
Hamiltonian flow generated by H(t,x) = wo(v, ).

Proof. Let
v= Z”aqa +Zukp
k=1

Setting tywo = dH (¢ denotes the interior product)7 we will find a suitable expression
of a Hamiltonian H. The left hand side becomes

Lo = by (Z dg; A dpi)

i=1

n
= Z (v),4dpj = Vi pdar,) -
jik=1

The right hand side becomes
r O0H

=3y

n 3H
qu-f-z
J=
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Comparing them, we get
oOH OH

~— =Ujq, — = Vinp-
aq] 7,9 apz ,p

Thus, a Hamtilonian H can be chosen

n
H =73 (vigpj —vjpq5) = wo(v,z)
i

Wherex:(Q1v"'aqnvpla"'7pn)' U
Any compact Lagrangian submanifold (indeed any compact submanifold) can

be displaced away from itself by a translation. Such a Lagrangian submanifold is
called displaceable.

Now, we move into Gromov’s pseudoholomorphic curves. Our main task is to
construct as many surfaces ¥ ¢ (M,w) with positive symplectic density (w|s > 0)
compared to a chosen area form dA on X.

Definition 16.7. Let (M,w) be a symplectic manifold. Let ¥ be a 2-dimensional
surface with an area form dA in M. A 2-dimensional surface (3,dA) c (M,w) is
called nonnegative if w|y; = fdA for f > 0.

Example 16.8. Let (M, g,J) be a Kiahler manifold where g is a Hermitian metric.
By definition, it satisfies
(i) J is integrable
(ii) @ :=g(J+,-) is closed.
Then, any holomorphic curve is nonnegative for ®.
Let (M, w) be a symplectic manifold with w-compatible almost complex structure

J. Then, (M,w,J) is called an almost K&hler manifold without integrability
condition.

Definition 16.9. A smooth map u : (%,7) — (M, J) is called J-holomorphic
(or (4, J)-holomorphic) if

Jodu=duoyj
This condition is equivalent to 5(]-7 7w =0 where

du+Joduoyj

5 .
Definition 16.10. Fix a metric g determined by J on M and w, and fix a Kahler
metric h on . For a smooth map u : ¥ — M, we define a harmonic energy

density by
e(u)(2) = |du(z)”
as the norm square of the linear map
du(z) : (Tzzvh’z) - (Tu(z)Mv gu(z))
Here, the norm |- | is defined by
du(=)? = ldu(z)(en) ., + ldu(z)(e2),
for an orthonormal bases {e1,es} of T,%. We set

E(u) := %fz|du|2dA

which is called a harmornic energy of u. (This is W2-norm of u).

5(1,J>“ =
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A straightforward computation gives the following proposition.

Proposition 16.11. For a smooth map u: ¥ — M,
(i) du =0;u+ dsu is an orthogonal decomposition in the sense that

|du(2) = [85u(2)* +[5u(2)?
1 _
(i) §(|8JU|2 —05u?)dA = u*w.
Corollary 16.12. Suppose that a smooth map u: % — M is (4, J)-holomorphic.
(i.e., 9yu =0). Then,
1
ww= §|du|2dA.

In particular, we have u*w > 0. Also, a harmonic energy becomes a topological

invariant as follows:
E(u) = f uw.
p)

Remark 16.13. Here are two reasons why 2 dimensional domain ¥ is interesting
in the definition of harmonic energy.

(i) When dim¥ = 2, E(u) is invariant under conformal transformation. Let
w: D? —s M be a smooth map and ¢ : D’ — D be a holomorphic map on
the disc. Then

f \dul2dAp = f d(uwo $)[PdAp
D D’

For dialation Rs(z):=0z: D?(1) — D?(§) as an example, we have

[ JduPda= [ ja(ue Ry)Pda.
D2(1) D2(6)

This happens only when ¥ is 2 dimensional.
(ii) Recall that if k - % > 0, there is a compact embedding

WEP(R") o COR™),
which is called a Sobolev embedding. In the point of view, our energy
function is a borderline case because a domain X is 2-dimensional and a

harmonic energy is defined as a W12 type norm. In general, W12(%, M)
is not continuous but very close.

Remark 16.14. For J-holomorphic map u, we know

1
ff|du|2dA:/u*w
2 Jxy =

which provides automatic W12 bounds for v if we fix a homology class [u] €
Hy(M,Z). In other word, the moduli space of a map u: ¥ — M satisfying

(1) 5J’LL =0

(ii) For Ae Hy(M,Z), [u] = A.
satisfies an energy bound

E(u) <d6(A)

where §(A) is a constant independent to w. The moduli space is denoted by
M(Z, M, J, A).

Let M(X, M, J, A) be the moduli space of isomorphism class modulo a reparametrization
group. Natually, the following questions arise
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(i) Is M(2, M, J, A) compact in C*°-topology?
(i) Does M(X, M, J, A) (or its compactification M (X, M, J, A)) have a manifold
structure?

In general, the answers of above questions are no. For (i), it is essential to obtain a
bound for derivative du. Once such a bound is achieved, the Ascoli-Arzela theorem
can be applied. To see why the compactness fails, we need to study what makes
|dui|co — oo for a given sequence u; with E(u;) < C. This is related to the Gromov’s
compactness theorem. Roughly speaking, M (3, M, J, A) can be nicely compactifed
by including nodal singular curves. Next time, we are goint to look at detailed

description of the compactifed moduli space
ADD: For (ii),?
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17. GENUS 0 BORDERED STABLE MAPS

Let (M,w,J) be an almost Kéhler manifold. For a (j,.J)-holomorphic map
u:Y — M (ie., 9 syu=0), we have

1
Ewy:f/ﬁmPDA:fumh
2Jx b
(The same holds for the case when 9% # @).

Corollary 17.1. Let u : ¥ - M be a J-holomorphic map. If 0¥ = @&, then the
only J-holomorphic map v with [u] =0 in H2(M) is a constant map.

Proof. Since [u] = 0, there exists a map U : C'— M such that OU = u. By Stokes’

formula, we have
fu*w:[ w:f w
b u(T) oU
:fdw:O
U

1 2
§L|du|(]’J):0

Thus, du = 0 almost everywhere. By continuity, du is identically zero so that u has
to be constant. O

Then,

We look at the case with boundary.

Definition 17.2. A submanifold R in (M, J) is called totally real if it satisfies
(i) TRnJ-TR={0}
(ii) dimR = 1 dim M.

For any totally real submanifold R, it is a fact that

Ou =0,
u(0X)c R
is an elliptic boundary value problem. Moreover, all apriori estimates hold as long

as u is of Holder classes C* for € > 0.
Any Lagrangian submanifold L in (M, w) is totally real for any compatible almost

complex structure. Hence
Ou =0,
u(0¥) c L

is a nonlinear elliptic boundary value problem for any J. In addition to that, taking
a Lagrangian boundary, we achieve following identities.

Lemma 17.3. Suppose that L is a Lagrangian submanifold of M. For w : (3,0%) —
(M, L) and w': (¥',0%") — (M, L), we have

Aw*w=/2’(w')*w

if [w] =[w'] in Ho(M, L).
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Proof. For simplicity, we additionally assume that w is homotopic to w’ relative to
L. We may take

W:[0,1]xX — M
such that Wls.g = w, Wlso1 = w’ and W([0,1] x 9%) ¢ L. Let C :=[0,1] x . By
Stokes’ formula, we have

O:fW* d

[ W (a)

:f W”w-rf W*w
{0,1}x2 [0,1]x0%

_ nNx ’

—fz(w) w waw.

Here, f[o 1]x0% W*w = 0 because of the Lagrangian boundary condition. This
completes the proof. O

Corollary 17.4. Suppose that w: (X,0%) — (M, L) satisfies

5]111 =0

w(0%) c L.
Then, w must be constant if [w] =0 in Hy(M, L).
Remark 17.5. Totally real condition is open, but Lagrangian condition is closed.
Corollary 17.6. For a J-holomorphic map w : (£,0%) — (M, L) with [w] =
in Hy(M, L), we have

E(u) <6(5)

where §(8) is a constant which is independent to w.

We set up some notations as follows:

(T 8) < w: (D? 0D?*) — (M, L) satisfying
(J35) =) (w.=) - dyw =0,w(0%) c L,[w] = B in 7o (M, L)

— we M (J;8) and w satisfies stability condition.
Mk+1(<];ﬁ): (’LU,Z) : . . . .
z = (20, -, 2z,) where z; are all distinct and in 0%

Definition 17.7. A genus 0 stable map from a pre-stable curve ¥ with (k+1)
marked points on 9% is a pair ((X,z),w) satisfying following conditions:

(i) (X,2z) is a genus 0 pre-stable curve with (k + 1) marked points on 9X.

(ii) w : ¥ — M is a component-wise smooth map whose restriction to each

irreducible component is a J-holomorphic map.
(iii) (Stability Condition) #Aut((3,2z),w) < oo.

When ¥ = D?, we recall that Aut(D?) = PSL(2,R) which acts on My, (J, )
by
¢* ((Z,2),w) = ((B,6(2)),wo ™)
where ¢ : ¥ — ¥ is biholomorphic and ¢(z) = {¢(21), -, ¢(zx)} c OX.
Definition 17.8. ((2,2z),w) ~ ((3,2'),w") if there is ¢ € Aut(X) such that

¢+ ((3,2),w) = ((Z,2),w").
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Definition 17.9. We call ¢ € Aut(X) an automorphism of ((X,z),w) if ¢(z) =z
and wo ¢! =w. We call ((2,z),w) stable if #Aut((2,z),w) is finite.

Example 17.10. (i) If wis not constant, then ((X,z), w) is always stable whether
the domain curve is stable or not. By unique continuation of holomorphic
property, there cannot be any continuous nontrivial family ¢; such that wo¢; =
w.

(ii) If w is constant, the domain curve has to be stable.

(iii) A stable map whose domain looks like Figure 18 should obey
(a) ws and wy must not be constant.
(b) w; and wy may be constant.

0 22
21

z3

FIGURE 18. Stable map

Remark 17.11. A stable curve is a stable map with its target being a point.
The moduli space of smooth stable maps for (J, 8) is denoted by
M1 (J58) = My (J58)] ~ .

So, My41(J;3) is the set of isomorphism classes of stable maps. We denote by
[(%,2),w] the isomorphism class of ((%,z),w).

Definition 17.12. An evaluation map ev; : My, 1(J; 3) — L is given by
evi ([(2,2),w]) = w(z).

By definition of action, it is obvious that an evaluation map ev; is well-defined.
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18. LAGRANGIAN SUBMANIFOLDS AND FILTERED Ao STRUCTURE

We recall the notion of stable map.

Definition 18.1. A genus 0 stable map from ¥ to a symplectic manifold M (The
genus of ¥ is 0, and the number of boundary component is 1.) is a pair ((%, 2),w)
such that

(1) (%,Z2) is a genus 0 prestable curve with Z c 9X. (Recall that ¥ is a connected
union of discs and spheres with ordinary double point at worst as singularities:
See figure 19)

(2) Each irreducible component of (3, w) is stable. (Note that the restriction to
an irreducible component could be a constant map.)

FIGURE 19. A stable map from a bordered Riemann surface with
k + 1 marked points

We recall that each irreducible component of ¥ is a sphere or disc, and the
restriction of stable map to each irreducible component satisfies the following:

Oyju=0 foru:8? — M

5J’w20
f :(D?,0D?) — (M, L
{w(aDQ)CL or w ( ) ) ( ) )7

where L is a Lagrangian submanifold of M.

Let Aut(X) be an automorphism group of a prestable curve X. ¢ € Aut(X) acts
on ((,2),w) by
o VRS -1
(b' ((E,Z),U}) = ((Zv(b(zi))vwo (b )
We define an equivalence relation on the set of stable maps ¥ — M by
((Z,2),w) ~ (%, 2),w)
if and only if there exists ¢ € Aut(3) such that
- ((2,2),w) = ((%,2),w).

Also, we call ¢ € Aut(X) an automorphism of ((%,z),w) if

¢ ' ((E,Z),U)) = ((272)711))

We denote the set of automorphisms of ((%,Z),w) by Aut((%,Z),w), and the
cardinality of Aut((X,2),w) is finite due to the stability condition.
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Definition 18.2. Let 3 € mo (M, L). We denote by My, 1(L, 3) the set of equivalence
classes of ((%, (20, 2k)), w) with homotopy class 3. We also define the evaluation
maps ev; : My41(L, ) — L by

evi([((2, (20, 21)), w)]) = w(z).
We note that the evaluation maps are well defined.

Theorem 18.3. When L is spin, My1(L, 3) can be oriented in a way that
90k+1(B) = 0gy+1(B1) #0k,41(B2),
where k = ]ﬂl + kQ, and ﬂ = 61 +52 € WQ(M,L).
This theorem implies that we can orient each moduli space My, 1(L,3) so

that the orientation of the boundary of each moduli space is compatible with the
orientation induced by the gluing map.

Theorem 18.4.
dimMyp1 (L, B)
=p(B) +dimL - dimPSL(2,R) +k+1
=u(B)+dimL+k -2,
where p(53) is the Maslov index of 8 € mo (M, L).

Now, we construct an A..-algebra associated to a Lagrangian submanifold L in
a symplectic manifold M. First, we need a graded module over a specific ring.

Definition 18.5. (Novikov ring) Let R be a commutative ring with identity.
Then the Novikov ring AZ is

nov

nov

AR = D a;T*a; € R, lim \; = 00},
i=0 e
We also consider
Agnm) ={Y a;T"a; € R, lim \; = 00, \; > 0}.
i=0 e

Here, R could be Zy,Q, R, C, or Q[e]. For the A -algebra associated to a Lagrangian
submanifold, we usually use

AL {Z aiTA'ie%kti € R, lim \; = 00, \; > 0}.

0,nov
=0

For AY) e set deg e = 2, and deg T = 0.

0,no0v’

By definition, A® s filtered by Rso which defines a non-Archimedean topology

nov

induced by the valuation v: A" — R such that

nov
(220 a;TN) = min{\;}
v(y1 +y2) 2 min{v(y1), v(y2)}
Note that the strict inequality holds only when the “initial” terms of y; and yo are
cancelled out. This valuation defines a norm e™ : AZ ~— R, and so induces a
topology on AZ .
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Next, we consider a graded module over Ag[rfc]w. We take a countably generated

chain complex C(L,Q) whose cohomology group is isomorphic to the singular
cohomology group of L over Q. Here, we regard C(L,Q) as a cochain complex: A
chain P € C(L,Q) of dimP has cohomological degree. That is, degP = codimP.

We denote by deg’ the shifted degree. That is, deg’ P = degP — 1. Then we denote

C(L,Q)@Ag[igv by C(L, Ao nov). Here, the grading is given as follows:
deg(PedT?) = deg(P) +2d

Moreover, we can give C'(L, A nov) a topology as follows. Define val : C(L, Ag nov) —>
Ryo by

val(Y. e; BT e™) = min{\;},

and then e % defines a norm and thus topology on C(L,Ag n0,). Also, we define
the filtration on C(L, Ag nov) and C’(L,Ao,mv)@k as follows:

FACO(L, Ao nov) = {x € C(L, Ao nov)lval(z) > A}
FA(C(LvAO,nov)@)k) = U FAlC(LaAO,nov) @ ® FA"'C'(L,AO’”OU)

A1+ A=A

For the operations my : C'(L,A(mm,)@’C — C(L,Aonov) , we first define my g
for each given 8 € mo(M, L).

mye,g(Pry, Py) = [Mys1(L, B)evs x (Pr x -+ x Py), evo],

where ev+ = (evy, -, evg).(See figure 20) We define mg o = 0 and my o = (-1)"0,
where 0 is the classical boundary operator. Then define

n(B)
mk(Pl’.”’Pk) = Z mkvﬁ(Plf"aPk)Tw(ﬁ)e 2
Bema(M,L)

Here, we remark that for the right hand side to make sense or lie in C(L, Ao nov),
we need to show that the right hand side satisfies the following Novikov finiteness
condition: For each A > 0, there are only finite number of § such that 0 <w(8) < A.
This fact is a consequence of Gromov compactness theorem.

P,

Py

By

FIGURE 20. my, (P, -, Pr)
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We check the operations my has degree 1 for all £ in the shifted complex
C(L,Ao,nov)[1]. Note that

k
dim(Mps1 (L, B)evs x (Py x -+ x P)) = p(B) + dimL + k +2 - " (n - dimP;),

i=1
and
k
deg(my g(Pr,-, Py)) = Z degP; — k + 2 — u(B).
i=1
Hence,
k
deg'(my,g(Pr,-+ Pp)) = ) deg P +1 - p(B),
i=1
and
(8 k
deg'(mk,g(Pl,-««,Pk)T‘*’(B)e 2 )= Zdeg'P,» +1,

i=1

which implies that my is of degree 1.
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19. CONSTRUCTION OF A, STRUCTURE

Recall that we define an A -algebra associated to a Lagrangian submanifold L
in a symplectic manifold M in last lecture. It remains to show that the operations
my : C(L, A07nov)®k —> C(L, Ao,nov) satisfy the A -relation. For this purpose, we
need to describe the boundary of each moduli space My.1(L,8). This is the reason
why we consider the gluing map.

Consider evaluation maps evg : Myy1(L, B1) — L and ev; : My (L, B2) — L
and evg x ev;. Let A ¢ L x L be the diagonal. Here, we assume that evy x ev; is
transverse to A. We denote

My +1(L, B1) %3 Miye1(L, B2) = (evg x ev;) T (A).

(See Figure 21)

Zitk; I

Zi+k-1

FIGURE 21. My, 11(L,B1) x; Myy41(L, B2)

Theorem 19.1.

k2

OMiaa(L,B)= U U U Mea(L,B1) xi Myy1(L, B2)

ki+ko=k =0 51+52=0

Corollary 19.2. Let Py, -, P, € C(L). Then

O[Mps1(L, B)evs x (P x -+ x Py, evg]

k
= [OMs1(L, B)evs x (Pr %+ x Py),evo] + J[Mps1 (L, B) x (Py x -+ x OP; x -+ x Py), ev,]

i=1
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Now, we consider the operation d = ¥32, . We note that

(dod)kp
_ Z Z Z(_l)degPl +-+degP;_1+i-1

B1+P2=L k1+ko=k+1 1
My ,B1 (Pla "'7mk2,52(Pi7"'aPi+k2—1)a 7Pk)
=my omp,s(Pr,, Pr)

i Z(_l)degPl+»-.+degPi,1+i—1mk’B(Pl’ e ml,O(Pi)7 - Pk)
1
+ Z Z(_l)degP1+~~+degP¢,1+i—1mkl’ﬁl (P17 My By (Piﬂ Y Pi+k2—1)7 Yy Pk)
i

= (=1)"O[Mys1 (L, B)evs x (P1 x -+ x Py), evo]
+ Z(_1)n+degP1+-v-+d€gPi—1+i—1[ﬂk+1(L75) x (Pl X eee X a_PZ X eee X Pk); 61)0]

+ 3 (~1)deoPrrordegPiatizl (torms described in Figure 21)
=0

Hence, we have the following proposition.

Proposition 19.3. (C(L;Ag,nov), M) is an As-algebra.

Moreover, (C(L; Ag nov ), my) defines a curved, gapped, and filtered A.-algebra.

Here, we explain the words curved, gapped, and filtered.

(1)

Curved
An A..-algebra is curved if mg is nonzero. We recall that

mo,p(1) = [ml(L;ﬁ)aevo]

for f+0 and mg = 0.
Filtered
‘Filtered’ means the Ac-algebra (C(L; Ag nov), Mk ) has the following filtration.

FAMC(L; Ao nov)) = {x € C(L; Mg now) v () 2 A},

where v is the valuation.
Gapped
Note that my, = my o + m},where

.(8)
my, = Z mk,BT“’(ﬁ)eyw .
B#0,Bem2(M,L)

Proposition 19.4. Let (M,w,J) be a compact almost Kahler manifold, and
L c¢ M be a Lagrangian submanifold. Then there exists a positive constant
A = A(M,w,J) such that w(w) > A for any nonconstant J-holomorphic disc
w:(D?,0D%) — (M, L).

This proposition implies that the power of T in mj, has some gap from 0
for 8 # 0. This is what ‘gapped’ means. Precise definition will be given later.
Also, we have the following corollary.

Corollary 19.5. v(myg) > A(M,w,J) for all 5+#0 and k = 0.
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Example 19.6. Let M = CP!, and let L ¢ M be a circle. We denote by D, and
D_ discs with boundary in L such that Area(D,) < Area(D-). Also, let 8. = [D.]
and w(fBy) = A.. Then mo(M, L) is a free abelian group with basis 8.. (See Figure
22.)

FIGURE 22. A circle L in M = CP!

We regard p € L be a 0-chain. Then my o(p) = -dp = 0. Also, note that
dimMy1(L,3.) =k +1
since the Maslov index of 8, u(8:) = 2. In this case,
My (L, B) = My(L, )
because (. is primitive. Hence,
[Mi(L, Bs),evo] = [L],
where [L] € H1(M,Z) is the fundamental class of L. Therefore, mg g, (1) = [L].
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20. EXAMPLE: ON S2

We continute the example of last time. Let M := S? be a symplectic manifold
with a symplectic form w satisfying | yw=4m. Let L be a round circle on M, which
is a Lagrangian submanifold of M. Then, M is separated into two pieces D., D_
of surfaces with boundary L. (See Figure 23)

FIGURE 23. A circle L in M = 5?2

Note that {D,, D_} generate a relative homotopy class group mo(M.L) ~ Z x Z.
Let

By :=[D4], B-:=[D-] in m(M,L)
and
A:=Area (D,), B:=Area (D.).
Here, without loss of generality, A < B will be assumed.
We recall the definition of my:

mp= Y m T
Bema(M,L)

where my, g is given by
mis(Pry P) = [Mygy (B)ev, xpx (P x Py),evo)
for smooth singular simplices Py, -+, P, on L.
In order to see what my is in this example, we collect facts
(i) A Maslov index pp(D*) =2
(ii) The Riemann mapping theorem asserts that there exists a holomorphic disc
u: D — M such that u(D) = D, and [u] = ;. The same result holds for
D_.
(iii) We have (virtual) dimension formulas:

dim(My; (8)) =pr(B)+dim L +k-2.

——main . k .
dim([My,1 (B)ev, ¥pr (Prx - x Pp)]=pr(B)+dimL+k-2-) (n-dimP;),
i=1
(iv) If pr(B) <0, then M(L,B) = @. If pur(B8) =0, then every holomorphic disc
representing a relative homotopy class 3 is constant.
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Now, we start calculation for mg. Since pr(8:) = 2, dimL = 1, from the
dimension formula, it follows

main

dim(m,ﬁl (ﬂi)) =k+1.
When k =0, we get

——main

moﬁi(l) = [Ml (ﬂ:{:)7eV0]
where 1 is a unit of base ring R. As we observed last time,

——main

[My(B.)evo] = £[L].
Therefore, we get
mo,p, (1) = [L]T4e! - [L]TPe!
= [L]eN(T* -TP).
We observe that
mo(1) iff A=B iff m}=0.

Remark 20.1. If L bisects the area of S? (i.e., A = B), the Floer cohomology is

defined:

HF*(S% L) = S0

m mq
In fact,
HF*(58% L)~ H*(L) ® Ao nov-

Exercise 20.2. Prove the above remark.

Let us move on to mq, which is given by
my= 3 ml,gTW(ﬁ)eﬂ(ﬁ)/Q
Bems(M,L)
where )
m1g(P) =M (B)ev, X1 P, evo):
When P is represented by a point ¢ on L (i.e., P =[q]), the dimension is

——main

dim [My  (B)ev, x1 [q], evo] = pr(B) - 1.

Thus, m1.5([¢]) # 0 only when pr(5) = 2 in mo(M,L). Furthermore, 8 = f, is
the only case where it can be realized by a holomorphic disk with Maslov index
2. Therefore, it suffices to consider mq o([¢]) and m1 g, ([¢]) in order to calculate
m1([q]). Therefore, we deduce

ma([q]) =mao([q]) + /;)mm([q])gpww)en(m/z

= (D)™™ o({g)) + 3 ma ([T OO
B+0

=my,p, ([Q])Tw('&r)e + ml,ﬁ,([q])Tw(’B’)e
= [L]e(T*-T")
Similarly, we calculate m([L]). The dimension is

——main

dim[My  (B)ev, %1 [L], evo] = pr.(B).
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so that mq g([L]) =0 as long as § # 0 in mo(M, L). Thus, we have

mi([L]) =mio([L]) + [;me([L])Tw(meu(m/z

= (D) EA([L]) + Y ma s (L) TP et
B#0

= ma g, ([LD)T“ e+ my 5 ([L)T e
= 0.

Now, we compute mso. As we’ve seen in the calculation of my, it is easy to check
that all mg g(P1, P2) vanish except ms g, ([p],[¢]) where p, ¢ are distinct points on
L. We see that

—main

ma,p, ([P],[a]) = M3 (Be)ev. xr2 ([P] % [4]), evo]
has dimension 1. We consider a holomorphic disk w : D*> — M such that [w(D)] =
B+. If p and ¢ are given in Figure 24 where p = w(21),q = w(22), then the image
of zyp can be taken in I,. Similarly, in this time, we consider a holomorphic disk
A q=w(z2) p=w(z1)

20
- 5

w
Z2

L
FIGURE 24. w representing S,

w : D* — M such that [w(D)] = B_. If p and q are given in Figure 25 where
p=w(z2),q =w(z1), then the image of zy can be taken in I_. Hence, we obtain

I
“1 q=w(z1) p=w(z)

22

FIGURE 25. w representing -

ma,g, ([p), [q]) = L.T"e"
ma,5_([p], [q]) = I-T"e"

and
ma([p),[q]) = (LT + I.T")e'.
Especially, if A = B, then

ma([p], [q]) = [L]e'T>".



68 YONG-GEUN OH

Remark 20.3. In this example, we observe that
mo(1) = [LI(TA -TP)e'.

Note that mo(1) is a multiple of fundamental class [L]. If such a special case

happens, then we have
2

my =0.
Note that e = [L] is the unit of A-algebra. i.e.,
ma(e.x) =x
ma(z.e) = (~1)de8 @)+,
and then one can see that the right hand side of the following equation vanishes
mi(2) = ma(mo(1),x) + (=1) ¢ Oma(,mo(1)).

We achieve that m? = 0.

Definition 20.4. An A.-algebra (A, m) is called unobstructed if mo(1) =0. An
Ac-algebra (A, m) is called weakly unobstructed if mg(1) is a multiple of the
unit.
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21. GAPPED FILTERED A, STRUCTURE

Let R be a ring (for example, R = Q or C). We set up some notations as follows:
0< A1 <A< > 00
. i 2,
O D

0< AL <Ay <er o> 00
= ZbiTAi : 9
i bi € R[e,e™"]

and
0< A1 <Ay < > 00
R . TN
Ao,nov._{;bm hen }

Let C be a graded filtered R-module. Its a bar complex By C' is defined as
ByC:=R
BC = C[1]®* for k> 1.
We consider a family of maps m = {my }x>0 where
my : ByC — C[1]
satisfying
(i) mp(FM O™ @@ FAxC™r) ¢ prittAxgmit-+mi=k+2 " (Tp the shifted degree,
my, has degree 1).
(i) mo(1) € FN C[1] for some ' >0 and mg (1) = 0.
We observe that Ag noy has the unique maximal ideal
Ay oy = {a € Ao nov 1 v(a) > 0}
with
Aonov/As nov = R.
Similary, we define
C = F¥00 300
which carries naturally induced
my : BrC — C[1].
for k > 1 with mg = 0. Hence, (C,m) defineds a classical A-algebra over R.

Proposition 21.1. We have a natural embedding C — C as a level 0 part and
C =~ 6 ® )\O,nov~

We call the topology on Agnov and C' induced by v on Agnev and the level
l:C - Ry a T-adic topology.

Recalling formal parameters of Agnov, it contains two pieces of information:
A e Ry and p € 2Z. Let G € Ry x 2Z be an (additive) submonoid with unit (0,0).
For 8 € G, we will denote its component by 3 = (A(8), u(8)) € Rsq x 27Z.

Definition 21.2. A submonoind G in R,g x 2Z is called a Novikov monoid if it
satisfies

(i) AM(G) is discrete,

(ii) G n{{0} x2Z} = {(0,0)},

(iii) Gn{{\} x 2Z} is finite for all .
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In the case of (M, L), we first introduce
G(L,J)o = {(w(B), u(B)) : B e ma(M, L), M;(L,B) + &}

which may not be a monoid. Then, we consider the monoid G(L) generated by
G(L,J)o.

Definition 21.3. Let G be a Novikov submonoid of Ry x 2Z. We say
my - Bk — C[l]
G-gapped if my has a decomposition

mi = 3 TXO O 2,
BeG

where

ME,g* Bké — 6[1]

Remark 21.4. Let C be a filtered complex with T-adic topology, which is complete.
In general, C'® C' may not be complete and so we define

Bi,C = C[1]&--8C[1].

and then BC is defined as the completion of ® B,C. Next time(??), we will clarify
this.

Definition 21.5. A structure of a filtered A..-algebra on a filtered Ag nov-module
C is a sequence of {my}r=01,-

my, : BpC — C[1] and mg(1) € F*°C[1]
of degree 1 such that
dod=0
where 0 := Y1, M. Here, My is the coderivation induced by my:

n
Mg @ @ xy) = Zixl ®+®Xi1 ®ME(Ti, " Tisk-1) ® Tisk ® - ® Ty
i=1

Let (C1,m1) and (C3,ms2) be filtered Aq.-algebras.

Definition 21.6. A sequence of maps fj : BxCy —> Cs[1] of degree 0 with

(1) fe(F*ByCr) c FACo[1]
(2) fo(1) € F*Cy[1] for some A >0
is called a filtered Ao, homomorphism if its associated coalgebra map f :BCy —

B(5 satisfies focﬂ = JQ Of.

Remark 21.7. We do not assume that fo(1) =, but (2) implies that fy(1) = 0.

Any such map induces a coalgebra map f : BC, — BC,, which is continuous. In
particular,

F(1) = fo(1) + fo(1) ® fo(1) + fo(1) ® fo(1) @ fo(1) + -
is well defined.
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Definition 21.8. We say an A, homomorphism {f; : ByCi1 — Cs[1]}72, is
G-gapped for a given submonoid G c Ry x 2Z if fj, has decomposition

fe=> fx ﬁTA(ﬁ)6@
BeG 7

fOI‘ fk”g : Bk-él[l] —> 62[1]

Example 21.9. Consider Ao-algebras C; = C'(L;, Ag nov) associated to Lagrangian
submanifold L; in a symplectic manifold M.(i = 1,2). If an A homomorphism
fr : BCy —> Cq[1] ia G-gapped, then each f 5: C(L1)®* — C(L3) is a K-linear
map, where K is the base field.
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22. Ax-MODULES AND Ax-HOMOMORPHISMS

Let (A, m) be a strict A-algebra. Let M be a (right) As-module over A-algebra
A along with a sequence of structure maps n = {n; };2, each of which

ne:M® BrA=Me A[1]®F — M
is of (shifted) degree 1 and obeys
k
0= me-i(mi(v, a1, a;), air1, - ax)
i=0

k k-j+1

+ Z z; 1)*77k7j+1(11,a1, "'aaiflamj(aiv"'7ai+j71)7ai+j7 "',ak)
j=1 =

for any v € M and a; € A[1]. Here, » = deg’v + deg’a; + -+ deg’a;_1. We recall
that a sequence of structure maps {n}po, can be extended to a sequence of
BA-comodule homomorphisms {7, }72, where

M:M® BA— M ® BA
can be obtained by extending linealy from

ﬁk(v,a17...7an) = nk(v7a17...’ak) ® Q1 - Qay
n—k+1
+ Z (—1)*1; 1 ® - ®a_1® mk(aia’”,ai+k—1) ® Ak @ ® ap,

for ve M and a; € A[1]. Again, = deg'v + deg'a; + - + deg’a;_1. Letting

= Z Mk s
k=0

we’ve seen that 7707 =0 if and only if M is a (right) As-module with respect to 7.
Let 1 = {14 }32, be a prehomomorphism between two A.-modules (M, ™) and
(N,nN). That is, ¥ = {1} e, is a sequence of R-module homomorphisms

Y M®ByA=MeoA[1]®F — N

such that the degree of each vy is always 0. Similar to a sequence of structure
maps, we can extend 9 = {13 }32, into a sequence 9 = {1y}, where

Yr:M®BA— N®BA
is obtained from
Ok (v, a1, an) = Ve(v, a1, a) ® Aps ® -+ ® ay,
for ve M and a; € A. Letting

{/)\:: Z 'IZkv
k=0
we’ve seen that 77 o b=1vo on M ® BA if and only if ¢ is an A.-module

homomorphism from M to N over A. Equivalently, v is a coboundary in Hochschild
complex, i.e., §(¢)) = 0 where

§() =N o th = (~1)*E W gt
is defined under the identification
CHA(M,N)~CoModga(M,N).
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To prove the Whitehead theorem for A.,-module homomorphisms, we’ve introduced
notions of Ax-module homomorphism and A g-homotopy.

Definition 22.1. Let (M,n™) and (NV,n")be two Ae-modules over A.-algebra
A. An Ax-module homomorphism 1 = {1/} }2  from M to N over A is a finite
sequence of R-module homomorphisms

Y Me®ByA=MoA[1]®F — N
of the degree 0 and satisfying
ﬁéVK ° JSK = '(ZSK ° ﬁ%{
where

K K K
k=2 :[[MeBA— [[ Me®BA
k=0 k=0 k=0

= K K K
Ve =Y. U [[ M ® BA— [ N ® By A.
k=0 k=0 k=0

It is equivalent to say that

5(1) -0.

MK, M®BirA

We note any A.-module homomorphism induces an A g-module homomorphism
for any K > 0. We inverstigate some basic property of Ax-module homomorphism.
For mq,mo € N satisfying my < ms, we set

™2 M ® BpA
M ® By, oy = i O D
[Tl M ® BrA

~ ﬁ M ® B, A.

k:ml
Note we can restrict any module homomorphisms on M ® BA to []j-, M ® BpA
and on M ® By, ....m,

Lemma 22.2. Let (M,n™) and (N,n")be two A.-modules over A.-algebra A.
Let ¢ = {¢x}X, be a Ag-module homomorphism. Then, for any m;,mg € N
satisfying 0 < mo —my < K, 9 induces a module homomorphism. Namely,

mao
iy oz = 9 Dk M ® By ooy —> M ® By oo -
k::ml
satisfies
'(/)ml,"wmz ° 7777117"'77”2 = 7777!17"',7”2 ° ¢m17"'7m2'

Definition 22.3. Let 1! and 92 be Ag-module homomorphisms over A.-algebra
A. An Ag-homotopy T = {T;} is a (finite) sequence of

Tp:M®B,A=M®A[1]®°F — N
of the degree -1 and satisfying
T = a()
on [Ty M ® By A.
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For induction argument for the Whitehead theorem, we would like to extend
Ag-module homomorphism to Ag,i1-module homomorphisms up to homotopy.
Unfortunately, it turns out that the extension is not always possible. We now
investigate what an obstruction is.

Definition 22.4. Let ¢ = {¢;}2 ) be an Ag-module homomorphism. Setting
Vs =0, we let Yegyq = {zbk}kK:Bl. We define the associated Ag,i-obstruction
Orxc+1 of ¢ as follows:

K+1 oo
OK+1(¢)I H M ® BLA — HN@BkA.
k=0 k=0

is given by

Ok+1(¥) = ﬁiVKH 0 Pek+1 — Y<K+ Oﬁg(+1~
Lemma 22.5. Let ¢ = {t}1, be as above. Let Ox,1(%) be the associated
Ap 1-obstruction. Then,

6K+1(w) =0

M®BLA
on M@ By Afor k< K+1 and Og41(%)) on M ® Bi11 A has values in N c [Tioy N ®
BLA.

The above lemma says that the obstruction 6K+1(1/)) is meaningful on M ®
Bk 1A, which leads to the following definition

Definition 22.6. The associated A ,i-obstruction chain Og (%) is defined
by

M ® Bgi1A— N.
M®Bk+1A

Ok +1(¢) = 6K+1 ()

Equivalently, the obstruction chain can be defined by

Or+1(¥) =0(¥)

MQ®Bk+1A
where ¢ is a Hochschild differential. We now explain why O, is called a chain.
We define a smaller complex

o1 :Hom(M@BK+1A,N) — Hom(M@BK+1A,N)
by
5.(B) = w00 6(B)

M®Bg+1A
In other words, for (v,a1,-,ax+1), its value is given by

51(B)(U,0,1, "'7aK+1) = nO(B(Uvala "',CLK+1)) - (_1)degBB(770(U)va17 "'7aK+1)
K+1
- (‘UdegB Z B(v,a1,-+ ai-1,m1(a;), @iv1, rce1).
i=1
Next time, we will prove that §1(Og+1(1)) = 0 so that it actually defines a
cohomology class on the complex (
Hom(M®BK+1A,N),61).
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23. Ak +1-OBSTRUCTION CLASS 0x11(%))
We recall the Hochschild complex

CHA(M,N) =] Hom(M & B;A,N),
=0

with § : CHA(M,N) — CH4 (M, N) defined by
8(1) =Mo i) - (~1)* o,
which makes sense under the identification
CHA(M,N)~CoModga(M,N).
Remark 23.1. Hereafter, using the above identification, we sometimes write down
3(¥) = 5(9).

For given Ax-module homomorphism 1 = {1, }&,, due to the last lemma of
previous lecture, the Ak ,i-obstruction chain of 1) can be considered as a map

OK+1(¢) M® BK+1A — N.
given by

Ox+1(¥) = 6(¢)

M®Br41 A
We define a smaller complex

01: Hom(M ® Bi11A,N) — Hom(M ® Bg,1A,N)
by
81(B) =m0 §(B)

M®Bx 1 A
In other words, for (v,a1, -, ax+1) € M ® Bii14, its value is given by

51(3)(0701a "'7‘1K+1) = nO(B(Uvalv "'7‘1K+1)) - (—1)degBB(770(”U),al, "'7QK+1)
K+1

- (‘DdegB Z B(’Uaala "'7ai—laml(ai)7ai+1»'”aaK+1)-
i=1

Proposition 23.2. Let ¢ = {¢,}X, be an Ag-module homomorphism. Let
Ok +1(%) be the associated Ag,1-obstruction class of ¥. Then,
(i) 01(Ok+1(20)) =0 and so defines a cohomology class on the complex

(Hom(M ® BK+1A,M),51)

(ii) If [Ok+1(1)] = 0 as a d;-cohomology class, then there exists an A 1-module
homomorphism ¥<x 41 = {z/Jk}kK: 61 extending the given Ax-homomorphism .
(iii) If ¢’ is Ax-homotopic to ), then [Ox+1(¥)] = [Ok+1(¥")] as a d;-cohomology

class.
Proof. We start with (i). By definition and a lemma from previous lecture, we have

01(Ok41(¥)) = 6(Ox41(¥))

M®Bg. 1 A
Note that
OK+1(¢) =0
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on M ® By A unless k= K + 1. For (v,a1,,akx+1) € M ® Bgy1 A, we have
6K+1(¢)(Uva17 wnagi1) = O (¥) (v, a1, ak41) = 0() (v, a1, aresn).
Therefore we derive
01(Ok+1(¥))(v, a1, ax+1) = 66(¢) (v, a1, -+ ax+1) = 0.

which establishes 01 (Og+1(20)) = 0.
For (ii), we consider the Aj-module homomorphism

K oo
Ve : [[ M ® BrA— [ N ® By A.
k=0 k=0

given by JSK = Zf:o Jk. By the given hypothesis, we have 11 €
Hom(M ® Bg41 A, N) such that 61 (¥g41) + Og41(¥0) =0, ie., {¢o,..., VK, VK1)
defines an A ,1-module homomoz\phis’r\n.

Finally to prove (iii), suppose ¢’ — ¢ = §(T"). We compute

Or+1(¥") = Ok (¥) = Oga(¥' 1)
= 5(¢'—¢)|M®BS}<HA-

By the property of Og.1(¢' =), we have
5(y" - w)|M®BSK+1A =0(y' - w)|M®BK+1A

and its image lies in N.
On the other hand, by the hypothesis, we have ¢’ -1 = §(T) on M ® B<x A and
s0 0(T") =0 thereon and has its values in N. This implies

o(T) = Ok+1(T).
Then we obtain
Ok 1 () =01 () = 6" =) yyo e, 4 = O =V o a O =)oy, a°
For the first term, we have

(¢’ - ql’)|M®BSKA =5(¢" - {/;)|M®BSKA = 6(6(T))|M®BSKA =0

where we use the fact that ¢’ — ¢ = ¢’ — ¢ for the first equality and § respects the
length filtration for the second equality. Therefore, we obtain

Oks1(¥) = Or1 (V) =8 =) 054 = 01(Oka (1))
In particular [Og11(¥")] = [Ok+1(¥)]. O

Proposition 23.3. Let p: M - N be an As-quasi-isomorphism and 9 : N - M
an Ax-module homomorphism such that ¥ o p 2 id in Ax-homotopy. Then 1) can
be extended to an A 1-module homomorphism t<g .1 such that <x10p 2 id in
A ;1-homotopy.

Proof. We start with the following lemmata
Lemma 23.4. If ¢' and v are Ag-homotopic, then v, = ¢} in H*.
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By definition, there exists an Ag-homomorphism 7" such that
¢ = =5(T) -
But this equation on the right is nothing but
3(T)(v) = 7o T(v) = (~1)*F T o7(v) =1 0 Ty (v) + Ty o mo(v)

for all v € M. This finishes the proof since Ty provides a homotopy map between
1o and ;). O

We go back to the proof of the proposition. By hypothesis,

[Ok+1(¥op)] = [Ok+1(id)] =0

where the first follows from Proposition 23.2 (3) and the second is obvious since id
is an As-module homomorphism.

We also have
Lemma 23.5.

[Ok+1(¢op)] = [Oks1(¥) o (pooidp,,,a)]

Proof. By definition, we have
Ok+1(¥op) = Og11(¥) o (po 0 idpy,,a) = 01((¢ 0 p)) = 61(¥) © (po © idpy,, 4)-

We evaluate this for (v,aq,,ax+1) and derive

51((7/) o P))(U7al7 "'7GK+1)
=n0((Yop)r+1(v,ar, axs1) = (=1)nr+1((Y o p)o(v),ar, - axs1)

+ Z (_1)*771((,(/) o p)j(v7al7"'aaj)7a/j+l; "'aaK+1)-
1<j<K

On the other hand,

(Ok+1(¥) o (pooidpy,,a)(v,a1,+,a5), aji1,, aKcen)
= Oga(¥)(pooidpy,, a(v,ar, - a;), 0541, K1)
= Ora(¥)(po(v),a1, -, ax+1)
= 01 (¥)(po(v), a1, ax+1)
= 770(¢K+1(po(11)7 Ay, CLK+1) - (—1)77K+1(¢0(PO(U),6117 ) aK+1)

Subtracting the second from the first, we derive

01 ((op))(v a1, axs1) = (Ox+1(¥) o (pooidpy,, a)(v,a1,,a;), 541, Qr+1)
no(o((prc+1(v, a1, ar41)))

+ Z (_1)*771((¢ ° ,D)j('l},al,"',llj)7aj+1, "',CLK+1)
1<j<K

01 (Y<x 0 p).
This finishes the proof. O

We note that
[Or+1(¥) o (po 0 idpy,,4)] = (p)+[Or+1(¥)].

Since p is Aco-quasi-isomorphism (and so Ag-quasi-isomorphism),

[Ok1(1) 0 (po o idp,,, 4)] = 0 if and only if [Ox41(1)] = 0.
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But we know [Og+1(9)o(pooidp,.,4)] = [Ox+1(¥op)] =0and hence [Ok.1(¢)] =
0.

Therefore we can pick JKH and hx 1 so that they extend ¥ and Y op respectively
to Ag1-homomorphisms. The first property implies

81(0p)+ Ok (Fope) =0
01 (h<k+1) + Ok+1(hex) = 0.
But recall that O 1 (1) depends only on 9.k by definition. Since, by construction,
both A<k 1 and _ _
Yop=1bri1o(po®@id)+Pk ©p)
are A y1-homomorphisms that extend v o p and hence their Ok 1 coincide.
This implies _
0=01(Yr+10p0 ®id+ P o p—hercyir)

Since pg ® id induces an isomorphism in (H*(-,01)), we can find a d;-cycle gxi1 €
Hom(N ® Bg 1A, M) such that

[gr+1 0 po ®id] = [Prcs1 0 po ®id + Yere © p— hegern]-
Finally, we define _
Vi1 = VK41 — JK+1-

Exercise 23.6. Prove 1k, satisfies the requirements:

(1) t<k+1 extends 9,

(2) (lZJ o P)gK+1 extends v o p,
(3) Y<k+10p2idin Ag,1-homotopy.

In conclusion, we have shown that if p is an A, quasi-isomorphism, then there
exists an As-homomorphism 1 such that 1 o p 2 id. In particular, ¢ itself is
an Ag.-quasi-isomorphism. Finally to show 1 is also homotopy left-inverse, we
construct the As-homomorphism ¢ for ¢ by the same construction used for 1 so
that ¢ o1 2id. Then we obtain the chain of homotopy equivalence

pEporhopp.
Therefore, we derive po 1) 2 ¢ o1 2 id which finishes the proof of the theorem,
finally.
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24. CANONICAL MODEL(UNFILTERED CASE): STATEMENT

Recall that we defined Au.-algebra associated to a Lagrangian submanifold L
in a symplectic manifold M in Lecture 19 and 20. But this A-algebra is defined
on chain level, which makes computation hard. So we need to reduce a given
Aoo-algebra to carry out computation. This is why we introduce the notion of a
canonical model of A.-algebra. Let (A,m) be an A-algebra. We assume the base
ring R is a field.

Definition 24.1.
(1) An unfiltered Ac-algebra with my =0 is called a canonical model.
(2) A gapped filtered Ac-algebra is called a canonical model if mq ¢ = 0.

Then we can reduce an A.-algebra to a canonical model.

Theorem 24.2.

(1) Any unfiltered Ao.-algebra (A4, m) is homotopy equivalent to a canonical model.
(2) Any gapped filtered Ae-algebra is homotopy equivalent to a canonical model.
Moreover, the homotopy equivalence can be taken as a gapped A..-homomorphism.

We will prove this theorem through several lectures. From now on, we focus on
the strict case, that is mg = 0, which implies m; omy = 0.

First, we note that we can pick a subspace H’ which satisfies assumptions of
the following lemma since R is a field. Then we consider the associated idempotent
IT: A* — A? such that i(H*) = Image(IT) and IToII = II. In other words, II is the
compostion of the projection p: A* - i(H*) and the inclusion i(H*) < A’
Lemma 24.3. Fix an embedding i : H® - A’ that satisfies

(1) i(H") c kerm; and
(2) the composition H® - kerm; n A* - H*(A,m;) induces an isomorphism.
Then there exist a sequence of maps G*: A* > A~ such that
(1) T —id=my o G* + G omy,
(2) GZ ° G£+1 =0
Proof. We denote Z* = kerm{ n A* and B* = Im{™' n A’. We recall the basic exact
sequences
0> B> 7" > H'(A,my) -0
0_)ZA€_>A€_>BZ+1_)0
where the left maps are inclusion maps and the second map on the top is the
quotient 7 and the second map on the bottom is the map induced by m;. Then we
have the natural splitting
Z¢=i(H" @ B*
such that the restriction of the quotient map 7 to i(H*) induces an isomorphism
i(H") =~ H*(A,my) given above. We then take a splitting map of the second exact
sequence so that
AZ — ZZ ® BZJrl,I
and so we have the decomposition

A'=i(H"Y® B'® B!,
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Then we define G*: A - A*! by

-1 B@
Gl(a) < 1M (a) ae
(a) {0 aci(HY) @ B,

Here, we note that m; induces an isomorphism B*" = Bf. Therefore, mj!(a) is
well defined. Then it follows G’ o G**! = 0 by construction. On the other hand, we
compute

my o G¥(a) + G omy(a)
If a € B, we obtain (m; o G*)(a) + (G*** om1)(a) = my o (-mi*(a)) = —a. On the
other hand, we have TI(a) = 0. Therefore (2) holds for this case. If a € i(H"), then
a-T(a) = 0. On the other hand we also obtain m; o G*(a) + G**' o my(a) = 0.
Finally when a € B/, we obtain a —II(a) = a, while

my o G'(a) + G omy(a) =0+ G (my(a)) = -a

because m; restricts to an isomorphism B — B! by construction and then
G inverts back by definition. This finishes the proof. O

Theorem 24.4. Let ¢: H — A be the inclusion. Then

(1) There exists an A, structure on H such that m =pom;oi
(2) The inclusion i extends to an Ae-homomorphism f = {fz}72, such that fi =¢.

Now, we overview the construction of A, structure on H. We consider planar
rooted trees T with k + 1 vertices, vy the root vertex, and an embedding i: T — d?
so that i71(9D?) = CY,,(T), where C,,(T) is the set of vertices with valence 1.
We assume T is stable. We denote by Gg.1 the set of stable planar rooted trees
with C2_,(T) = k + 1. For each I' € G41, we construct mr : By H — H[1] of degree

1 and fr: By H — A[1] of degree 0. Define
my = Y. mr:ByH — H[1]

FeGrq1

fr="3% fr:BeH — A[1]
TeGr1

Then we show that (H, m) defines an A.-algebra and f = {fe}2, is an As-homomorphism.

Now we explain the definition of mpr and fr. First we define
mfl =pomyoi
fi=i
We have to define mf! separately since there does not exist a stable planar rooted
tree Xvith two exterior vertices. Let k > 2. For given I' € ( Gr+1, we associate another
tree I' by inserting a vertex to each interior edge. Then I' has three kinds of vertices,

leaves(exterior vertices), “old” interior vertices, and “new” interior vertices. We
assign maps to each vertex.

(1) To every leaf vertex, assign the inclusion i.

(2) To every “old” interior vertices, assign my if the valence is [ + 1.

(3) To every “new” interior vertices, assign G.

(4) To the root vertex, assign p for mp and G for fr.

Then, as we move down the tree down to the root vertex, we reads off maps when
passing through vertices.
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Example 24.5. Let I' be given as the left picture of Figure 26. The right picture
of Figure 26 is I

mr(a1, -, ae) = (poma)((Gomz)(ar,az),G(me((Goms)(as,as,as),a6)))
fr(ai, -+ a6) = (G oma)((G omz)(a1,az),G(ma((Goms)(as,as,as),a6)))

Vo

FIGURE 26. T' and T
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25. CANONICAL MODEL(UNFILTERED CASE): PROOF

We have defined my : ByH — HJ[1] of degree 1 and fr : ByH — A[1] of degree
0 for a given I' € Gg,1 in the previous lecture. We need to express mr and fr in
another way. Suppose that I' € G, is given. Let vy be the root vertex of I' and
v1 the vertex closest to vg. Cut I' at vg. Then I' is decomposed into stable rooted
trees T ... T and an interval toward vy in counterclockwise order. (See Figure
27.)For k > 2, we have

mr =Y pomi(fra) ® - ® fra)
1#1

fr=Y Gom(fra) ® - ® fro),

I#1
by definition. In other words,

mr(x) = Y (pomi)(fron (%) @ @ (fron (%))

1#1

Jr(x) = Z(G Oml)(fru)(xf(ll)) & ® (fl"(l)(xz(zl))))7

l#1
where x € By H (k> 2) and

Ax = xM e ex{

FIGURE 27. Decomposition of T’

Then we consider the associated graded coderivation M : BH — BH and the
associated coalgebra map f: BH — BA. We note that I' € Gy, is determined by
the subtrees I ... TM if we fix the counterclockwise order. From this observation,
we have

Lemma 25.1.
fe=Y.Gomyof
1#1
mg = Zpoml (o) f
1#1

on B H for k> 2.
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Proposition 25.2. fo m =mo f
Before proving the proposition, we discuss the result of the proposition.
Corollary 25.3. m om! = 0.

Proof. First, we note that f; =1 is the inclusion. Hence, using number filtration,
we can easily prove that f is injective. However,

fomHoﬁlH:mofomH
0

as a map BH — BA. Hence, m omf = O

This corollary implies that (H,m™) is an As-algebra and f = {f,}32, is an
A-homomorphism. Moreover, we know that m#’ = 0. In other words, (H,m') is
a canonical model. Also, f; =4 induces an isomorphism between mi-cohomology of
A and mi-cohomology of H by construction. Therefore, f = {f}%2, is a homotopy
equivalence due to the following Whitehead type theorem.

Theorem 25.4. A weak homotopy equivalence of A.-algebras is a homotopy
equivalence.

This proves the first part of Theorem 27.2. It remains to prove Proposition 28.2.

Proof. (Proposition 28.2) First, note that fomt =mof if and only if fom =mof.
We prove by induction over k by proving

fom =mo f

on B H. Let us denote this equation by (*)<.

Suppose that k& = 1. Note that mH|BlH=H[1] =mil =pomyoi, and f|BlH=H[1] =
f1 =4 and so by construction of H, both sides of (x); is 0.

Now we assume (*)<j, holds. We want to prove (*)<js1, and so we evaluate mo f
on Bp.1H.

(mo f) (a1, Tps1)

= (fesr (1, 21)) + (g o f)(@1, 0 Txe1)

1#1
Therefore, on By,  H
mOf
=m1(fre1) + Y (my o f)
l#1
=my (Y, Gomyo f)+ Y (mio f)
1#1 1#1

:Z(mloGomlof+mlof)
1#1
=Y (-Gomyomyof+iopomyo f)
1#1

For the first term, note that

Y(-miomy) =) mom

11 l#1
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by the Ao relation m o m = 0. Hence, the first term equals
Y (Gomy oo f).
1#1
Since M does not increase the length and m; is removed in the sum, nontrivial
contribution f(z1,, x)) does not involve fgy1(x1, -, 2x). That is, the sum involves
only f<x. Hence, by induction hypothesis,
Mo f=fom mod H[1]=BH,
which implies that
Z(GomlomOf) = Z(GomIOfomH)
1#1 l#1
on By,1H. For the second term,

> (iopomyo f)

1#1
=ioy (pomyo f)
1#1
:iOmkHJrl
=h omkH+1
on By H by Lemma 28.1. Therefore,
mo f
:(Z(Goml°f+f1))°ffLH+f1 omk + 1%
I#1
=(fo+ fa+-)om + fromk+ 17
=fom!

on By H by Lemma 28.1, which finishes the proof. O
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26. CANONICAL MODEL:FILTERED CASE

In the previous lecture, we proved that there exists a canonical model which
is homotopy equivalent to a given unfiltered strict A..-algebra. Now we consider
the filtered case. Let (C,m) be a G-gapped filtered Ao-algebra. Here, G is a
submonoid of Ryg x Z. We write 8 € G as 8 = (A(8),u(8)). Recall that we assume
A71(0) = {(0,0)} and Novikov finiteness condition, that is, A™1([0,c]) is a finite set
for any ¢ > 0. Also, C' = C ® A\ noy and

(B)
mp = Z mk,gTA(’B)eHT,
BeG

where my, g : ByC — C[1] and mo,0 = 0. Due to Novikov finiteness condition, we
can enumerate A(3) for € G and denote them by A(;y.

0= )\(0) < )\(1) < )\(2) <eee

Now we explain the construction of a canonical model for the filtered case. As we
—
did for the unfiltered case, we fix an embedding i : H* - C" such that i( H*) c kerm,
) —
and the composition H* - kerm;nC - HE(C,W) induces an isomorphism. Then
—
we identify i(H*) with H* and fix a projection p: C — H*. Define Il = iop:
=14 =14 . .
C — C'. We write the operations

oo
my, = Y my T
i=0

where my; : ByH ® R[e,e™'] — H[1] ® R[e,e™!]. Here,

n(B)

Mei= ), Mege ?
As=A()
Definition 26.1. A decorated rooted tree is a quintuple (7,4, vg, Viad,n) such
that

(1) (T,i,v0) is a rooted tree, not necessarily stable.
(2) Viaa ={vertices of valence 1}~ C?,.
(3) n:C2 (T) — {0,1,2,-} is a function such that (v) > 0 if the valence of v is

1 or 2.
We denote by G, the set of decorated rooted trees (T, i, vo, Viad, 1) With #(C2,,(T)) =
k.

We remark that we regard V;,q4 as a subset of C9 ,
G711, we define energy of I' by

E(F) = Z An(v)
veC? (T)

(T). For given T = (T, i,v0, Viad,n) €

Remark 26.2. Gj,, is the dual graph of stable maps of open Riemann surface
with genus 0 and Lagrangian boundary condition. This is the reason why we assign
a positive number to v with valence 1 or 2. The restriction of a stable map to
an irreducible component of prestable curve with 1 or 2 special points should be
nonconstant, and thus has positive energy.
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Definition 26.3. Let I' and I' be elements of Gj,,. We say I'" > T if either
E(T)> E(T) or E(I") = E(T') and ¥’ > k.

The construction of mp and fr now is in order.

step 1. The case that C? ,(T) =0.

m
Such T consists of two exterior vertices and an edge joining them. Therefore,

there is a unique element I'g € G}, .(See Figure 28.) We define
mr, = M|
and
fro  H[1]® R[e,e*] — C[1] ® R[e,e ']
to be the inclusion <.

step 2. The case that CP ,(T) = 1.

For any k =0, 1,2, -, there is a unique element with C°,,(T) = k+1 and C9 ,(T) =

1 in Gj,,. Let I'yy1 be a decorated rooted tree with one interior vertex v in
Gy ,,-(See Figure 28.) We define

mr,,, =Pomy ) : BrH ® Rle, e’l] — H[1] ® RJe, 671]
STy = Gomy ) : BH ® Rle, e_l] — C[1] ® R]e, e_l].

v
v
Vo Vo Vo
Ty n(v) >0 n(v) >0 n(v) >0

FIGURE 28. T'g and 'y

step 3. General case

Suppose that I' € G, is given. Let vy be the root vertex of I' and vy the vertex
closest to vg. Cut I' at vg. Then I' is decomposed into decorated rooted trees
M ... 7™ and an interval toward vy in counterclockwise order. (See Figure 29.)
Then we define

My =P omy (v, ° (frar ® - ® frw)
fr=Gomy o (fro ® @ fray)
Finally, m}! : B,H — H[1] and fy : B,H — C[1] are defined by
mg = Z T mr

FEG;+1

fe= >, TE® fr.

TGy,
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FI1GURE 29. Decomposition of T’

Theorem 26.4. (BH ® Ao nov, m) defines a filtered Aeo-algebra and f = {fi}532,
is a gapped filtered A.,-quasi-isomorphism.

This proves the second part of Theorem 27.2 combining with the following
Whitehead type theorem for the filtered case.

Theorem 26.5. Any gapped weak A. homotopy equivalence between gapped
filtered A.-algebras is a homotopy equivalence.
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27. BOUNDING COCHAINS AND POTENTIAL FUNCTION

Let (C,m) be a unital filtered gapped As-algebra. Let e be the unit. We look
at first two A relations.

ml(mo(l)) = 0
ma(mo(1),z) + (=) my (2, mo(1)) + my (ma(z)) =0

If mo(1) = Ae for some A € Ag pop, then we easily find that mq omy = 0. In other
words, we can define mj-cohomology in the case that my(1) is a constant multiple
of the unit. This is why we want to deform the operations my by some cochain in
C so that we can define cohomology using these new operations. Hence, we need
to pick out some specific class of cochains.

First we introduce notation. Recall that BC has the filtration.

Definition 27.1. For b e FABC with X > 0, we define
e =1+b+b@b+b®b®b+--

Note that this is an infinite sum and the condition A > 0 guarantees that e’ is
well-defined.

Definition 27.2. A cochain b e FAC[1]° with A > 0 is called a bounding cochain
if m(e’) = 0.
Lemma 27.3. For any be FAC[1]° with A > 0, the map ®° : BC' — BC' defined
by

<I>b(x1 Q- ®xy) =®r, 9’ @10’ @@’ @xp @’
is a coalgebra homomorphism.
Proof. Using A(e) = eb ® e, it is easy to check that Ao ®° = (d° ® ®*) o A. O

Definition 27.4. Let (C, {my};2,) be a gapped filtered A -algebra and b e F*C[1]°
with A > 0. We define new operations {m?}5, by

mi (21 ® - ®x) = (mod) (2, ®-®x1),
where the operation m : BC' — C[1] is defined m|p, c[1] = 7.
Note that m$(1) = m(e?).
Theorem 27.5. (C,{m%}% ) defines a new A -algebra.

Proposition 27.6. Consider the new Ae-algebra (C,{m’}52,) in the previous
theorem. Then b is a bounding cochain if and only if mf(1) = 0.

Proof. We compute

= > ¥ @mi(b®F) @ b®H
ko,k1,k>0
=e"m(e’)e’
Therefore, M(e?) = 0 if and only m(e®) = 0. Also, we note that m§(1) = m(e®).
This finishes the proof. O
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This proposition implies that if we deform the operations my using a bounding
cochain, then we can define cohomology since m% o m% = 0. However, we can still
define cohomology in the case that mg(l) is not 0, but a constant multiple of unit.

Now we want to pick out that kind of cochains.

Definition 27.7. Let (C,{my};2,) be a unital gapped filtered A-algebra and
be FAC[1]° with A > 0. We call b a weak bounding cochain if

m(e?) = cee,

+

Omov- € is the formal

(0) (0)
for some c € Aomovv where Ao’nm}

parameter of Ag,.,. We denote by Mweak(C) the set of all weak bounding
cochains.

is the degree 0 part of A

Since mf(1) = m(e®), m}om$ = 0. Therefore, the deformed operation m?% defines
cohomology when b is a weak bounding cochain.

Definition 27.8. We say two weak bounding cochains b and b’ are gauge equivalent
if there exists ¢ € C[1]7! such that b’ —b = m(e’ce’ ). We denote by Myear(C) the
set of gauge equivalence classes of weak bounding cochains.

Theorem 27.9. Let b,b' € Myeqr(C). Then H*(C,mb) is isomorphic to H*(C, m?
if b is gauge equivalent to b'.

Definition 27.10. We define a function PO : Mweak(C) — A(()()?wv
m(e”) = PO(b)ee

We call this function a potential function.

by the equation

Theorem 27.11.

(1) If b is gauge equivalent to ', then PO(b) = PO(b"). Hence PO descends to
Mweak(c)-
(2) H*(C,mb) # 0 if and only if the differential d(PO(b)) = 0.
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