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Today we’ll see configuration spaces and braids. Before doing this,
let me recall some definitions.

Let X be a topological space (here it means at lea
 locally conne�e,
Hausdorff, second countable etc). Pra�ically it is going to be a CW-
complex. For k ≥ 0, Confk(X) is the set of ordered configurations in
X. The group Σk a�s on the right on Confk(X). The space Bk(X) B
(Confk(X))Σk is the space of unordered configurations in X. La
 week
we have computed configuration spaces of the empty set, of the point,
the interval, etc.

 section  .

Assume we have a continuous fun�ion f : X → Y that is inje�ive.
Then for every k, we have an inje�ive fun�ion f k : Xk → Yk. Then
it is very easy to see that f induces a map Confk(f ) : Confk(X) →
Confk(Y). In addition, it is compatible with the symmetric group
a�ion. That means we also get a map Bk(f ) : Bk(X)→ Bk(Y).

What we have is a�ually two fun�ors

Confk : Topinj −→ TopΣk

and
Bk : Topinj −→ Top

Proposition .. — If f : X→ Y is an open embedding. Then Confk(f )
and Bk(f ) are also open embeddings.

Proposition .. — The map∐
i+j=k

Confi(X) × Confj(Y) ×Σi×Σj
Σk −→ Confk(Xq Y)
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is an homeomorphism. Then

Bi(X) × Bj(Y) −→ Bk(Xq Y)

is an homeomorphism.

Definition .. — Define

B(X) B
∐
k≥0

Bk(X)

Proposition .. — One has

B(Xq Y) = B(X) × B(Y).

Assume B is a basis for X. Consider

Bk = {U ⊂ X|U ' qk
i=1Ui , Ui ∈ B}

Then one can equip a partial order: U ≤ V if and only if U ⊂ V and
π0(U)→ π0(V) is surje�ive.

It can then be extended to

BΣ
k B {(U, σ)|U ∈ Bk , σ : {1, . . . , k} → π0(U)}

Then the partial order is given by (U, σ) ≤ (V, τ) if U ≤ V and τ(i) =
π0(U→ V) ◦ σ(i).

If U ∈ Bk , then

B0
k(U) B {{x1, . . . , xk}|Ui ∩ {x1, . . . , xk} , ∅} '

k∏
i=1

Ui

is a subset of Bk(X).
If (U, σ) ∈ BΣ

k , then one has

Conf0
k(U, σ) ⊂ Confk(X) '

k∏
i=1

Uσ(i).

Proposition .. — The colle�ion of B0
k(U) and the colle�ion of Conf0

k(U, σ)
are basis of Bk(X) and Confk(X).

The proof is very easy. Confk(X) is a subpace of Xk with subspace
topology, so a basis element in Xk is going to be a produ� of elements
in a basis of X. In order to find a basis of Confk(X), one only need to
prove that for any point x in a a produ� of opens in Xk is contained
in Conf0

k(X, σ). This is obvious. The only problem can come frome the
fa� that opens in the produ� could interse�. This is why we need
Hausdorff property.

Proposition .. — The map Confk(X)→ Bk(X) is a covering space.
When Mn is a manifold, then both Confk(M) and Bk(M) are also

nk-manifolds. So we get fun�ors

(Maninj,q) −→ (Man,×)





 section  .

� Theorem . (Fadell-Neuwirth). — For M a manifold and k > l, we have
a (homotopy) fibre sequence

Confk−l(M − {x1, . . . , xl})→ Confk(M)→ Confl(M)

The result does not depend on the choice of the point x1 to xl . The proje�ion
map is a�ually a fibre bundle.

Corollary .. — As a consequence, there is a long exa� sequence of
homotopy groups

· · · → πi(Confk−l(M−{. . . }))→ πi(Confk(M))→ πi(Confl(M))→ . . .

and for M simply conne�ed of dimension n ≥ 3, then Confk(M) is also
simply conne�ed, so Bk(M)

π1(Bk(M)) ' Σk

Moreover if M2 is not the sphere or RP2, then Confk(M) is aspherical.

The proof is very easy and uses the long exa� sequence. The proof
is trivial for k = 1 and the re
 follows by indu�ion.

Proposition .. — If M has dimension n ≥ 3, then

π1(Confk(M)) '
k∏

π1(M)

and

π1(Bk(M)) '
k∏

π1(M)o Σk

Proposition .. — If M has a non-empty boundary N, then Confl(M)→
Confk(M) admits a homotopy se�ion for l < k.

Corollary .. — For n ≥ 3 and k ≥ 0 and i ≥ 0,

πi(Confk(R
n)) �

k=1∏
j=1

πi(∨jSn−1)

The proof follows again using the long exa� sequence and the fa�
that πi(Confk(Rn))→ πi(Confk−1(Rn)) has a se�ion.

 section  .

Let’s now talk of braid groups. They were introduced by Artin. A braid
is a loop in Confk(R2). So the braid group is the fundamental group of
Confk or Bk .

Define

Bk B< σ1, . . . , σk−1|σiσj = σjσi |i−j | > 1, σiσjσi = σjσiσj |i−j | = 1 >





Then one can build a map Bk to π1(Bk(R2)). This map sends σi to a
braid switching the paths i and i + 1. It is easy to see that this is a
group homomorphism.

There is an obvious map Bk → Σk sending σi to τi = (i, i + 1).
Similarly, there is also a homomorphism π1(Bk(R2)) → Σk since
Confk(R2)→ Bk(R2) is a Σk-cover.

It is then possible to reduced to the case of the pure braid group Pk

(the kernel of the map Bk → Σk) and π1(Confk(R2)).
Then one can use the long exa� sequence again to prove the claim

by indu�ion, using that π1(R2 − {x1, . . . , xk−1}) is a free group and the
following lemma.

Lemma .. — One has
Pk � U o Pk−1

where U is the kernel of Pk → Pk−1.

This lemma is a bit hard to prove because we don’t have a presenta-
tion for Pk . So we use an alternative lemma

Lemma .. — If Dk is the inverse image of Σk−1 in Bk . Then

Dk ' U o Bk−1

Then follows a discussion about Schrieir sets and fundamental groups
of graphs.


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