CONFIGURATION SPACES AND BRAIDS

by byung-hee an

transcribed by DAMIEN LEJAY

Today we'll see configuration spaces and braids. Before doing this, let me recall some definitions.

Let X be a topological space (here it means at least locally connecte, Hausdorff, second countable etc). Practically it is going to be a CWcomplex. For $k \ge 0$, $Conf_k(X)$ is the set of ordered configurations in X. The group Σ_k acts on the right on $Conf_k(X)$. The space $B_k(X) := (Conf_k(X))_{\Sigma k}$ is the space of unordered configurations in X. Last week we have computed configuration spaces of the empty set, of the point, the interval, etc.

1 SECTION 2.2

Assume we have a continuous function $f : X \to Y$ that is injective. Then for every k, we have an injective function $f^k : X^k \to Y^k$. Then it is very easy to see that f induces a map $Conf_k(f) : Conf_k(X) \to Conf_k(Y)$. In addition, it is compatible with the symmetric group action. That means we also get a map $B_k(f) : B_k(X) \to B_k(Y)$.

What we have is actually two functors

$$\operatorname{Conf}_k : \operatorname{Top}^{\operatorname{inj}} \longrightarrow \operatorname{Top}^{\Sigma_k}$$

and

$$B_k : Top^{inj} \longrightarrow Top$$

PROPOSITION 1.1. — If $f : X \to Y$ is an open embedding. Then $Conf_k(f)$ and $B_k(f)$ are also open embeddings.

PROPOSITION 1.2. — The map

$$\coprod_{i+j=k} \operatorname{Conf}_i(\mathbf{X}) \times \operatorname{Conf}_j(\mathbf{Y}) \times_{\Sigma_i \times \Sigma_j} \Sigma_k \longrightarrow \operatorname{Conf}_k(\mathbf{X} \amalg \mathbf{Y})$$

Derived Seminar, December 2019, Pohang, Korea. ©2019 Damien Lejay. All rights reserved.

is an homeomorphism. Then

$$B_i(X) \times B_i(Y) \longrightarrow B_k(X \sqcup Y)$$

is an homeomorphism.

DEFINITION 1.3. — Define

$$\mathbf{B}(\mathbf{X}) \coloneqq \bigsqcup_{k \ge 0} \mathbf{B}_k(\mathbf{X})$$

PROPOSITION 1.4. — One has

$$B(X \sqcup Y) = B(X) \times B(Y).$$

Assume \mathcal{B} is a basis for X. Consider

$$\mathcal{B}_k = \{ \mathbf{U} \subset \mathbf{X} | \mathbf{U} \simeq \coprod_{i=1}^k \mathbf{U}_i, \quad \mathbf{U}_i \in \mathcal{B} \}$$

Then one can equip a partial order: $U \le V$ if and only if $U \subset V$ and $\pi_0(U) \rightarrow \pi_0(V)$ is surjective.

It can then be extended to

$$\mathcal{B}_k^{\Sigma} \coloneqq \{ (\mathbf{U}, \sigma) | \mathbf{U} \in \mathcal{B}_k, \sigma : \{1, \dots, k\} \to \pi_0(\mathbf{U}) \}$$

Then the partial order is given by $(U, \sigma) \le (V, \tau)$ if $U \le V$ and $\tau(i) = \pi_0(U \to V) \circ \sigma(i)$.

If $U \in \mathcal{B}_k$, then

$$\mathbf{B}_{k}^{0}(\mathbf{U}) \coloneqq \{\{x_{1},\ldots,x_{k}\} | \mathbf{U}_{i} \cap \{x_{1},\ldots,x_{k}\} \neq \emptyset\} \simeq \prod_{i=1}^{k} \mathbf{U}_{i}$$

is a subset of $B_k(X)$.

If $(\mathbf{U}, \sigma) \in \mathcal{B}_k^{\Sigma}$, then one has

$$\operatorname{Conf}_k^0(\mathbf{U},\sigma) \subset \operatorname{Conf}_k(\mathbf{X}) \simeq \prod_{i=1}^k \operatorname{U}_{\sigma(i)}$$

PROPOSITION 1.5. — The collection of $B_k^0(U)$ and the collection of $Conf_k^0(U, \sigma)$ are basis of $B_k(X)$ and $Conf_k(X)$.

The proof is very easy. $\operatorname{Conf}_k(X)$ is a subpace of X^k with subspace topology, so a basis element in X^k is going to be a product of elements in a basis of X. In order to find a basis of $\operatorname{Conf}_k(X)$, one only need to prove that for any point x in a a product of opens in X^k is contained in $\operatorname{Conf}_k^0(X, \sigma)$. This is obvious. The only problem can come frome the fact that opens in the product could intersect. This is why we need Hausdorff property.

Proposition 1.6. — The map $Conf_k(X) \rightarrow B_k(X)$ is a covering space.

When M^n is a manifold, then both $Conf_k(M)$ and $B_k(M)$ are also *nk-manifolds*. So we get functors

$$(Man^{inj}, \amalg) \longrightarrow (Man, \times)$$

- 2 SECTION 2.3
- THEOREM 2.1 (Fadell-Neuwirth). For M a manifold and k > l, we have a (homotopy) fibre sequence

$$\operatorname{Conf}_{k-l}(M - \{x_1, \dots, x_l\}) \to \operatorname{Conf}_k(M) \to \operatorname{Conf}_l(M)$$

The result does not depend on the choice of the point x_1 to x_l . The projection map is actually a fibre bundle.

COROLLARY 2.2. — As a consequence, there is a long exact sequence of homotopy groups

$$\cdots \to \pi_i(\operatorname{Conf}_{k-l}(\operatorname{M}-\{\dots\})) \to \pi_i(\operatorname{Conf}_k(\operatorname{M})) \to \pi_i(\operatorname{Conf}_l(\operatorname{M})) \to \dots$$

and for M simply connected of dimension $n \ge 3$, then $Conf_k(M)$ is also simply connected, so $B_k(M)$

$$\pi_1(\mathbf{B}_k(\mathbf{M})) \simeq \Sigma_k$$

Moreover if M^2 is not the sphere or \mathbb{RP}^2 , then $\operatorname{Conf}_k(M)$ is aspherical.

The proof is very easy and uses the long exact sequence. The proof is trivial for k = 1 and the rest follows by induction.

PROPOSITION 2.3. — If M has dimension $n \ge 3$, then

$$\pi_1(\operatorname{Conf}_k(\mathbf{M})) \simeq \prod^k \pi_1(\mathbf{M})$$

and

$$\pi_1(\mathbf{B}_k(\mathbf{M})) \simeq \prod^k \pi_1(\mathbf{M}) \rtimes \Sigma_k$$

PROPOSITION 2.4. — If M has a non-empty boundary N, then $\text{Conf}_l(M) \rightarrow \text{Conf}_k(M)$ admits a homotopy section for l < k.

COROLLARY 2.5. — For $n \ge 3$ and $k \ge 0$ and $i \ge 0$,

$$\pi_i(\operatorname{Conf}_k(\mathbf{R}^n)) \cong \prod_{j=1}^{k=1} \pi_i(\vee_j \mathrm{S}^{n-1})$$

The proof follows again using the long exact sequence and the fact that $\pi_i(\operatorname{Conf}_k(\mathbf{R}^n)) \to \pi_i(\operatorname{Conf}_{k-1}(\mathbf{R}^n))$ has a section.

3 SECTION 2.4

Let's now talk of braid groups. They were introduced by Artin. A braid is a loop in $\text{Conf}_k(\mathbf{R}^2)$. So the braid group is the fundamental group of Conf_k or \mathbf{B}_k .

Define

$$\mathbf{B}_k \coloneqq < \sigma_1, \dots, \sigma_{k-1} | \sigma_i \sigma_j = \sigma_j \sigma_i \quad |i-j| > 1, \quad \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \quad |i-j| = 1 > 0$$

Then one can build a map \mathbf{B}_k to $\pi_1(\mathbf{B}_k(\mathbf{R}^2))$. This map sends σ_i to a braid switching the paths *i* and *i* + 1. It is easy to see that this is a group homomorphism.

There is an obvious map $\mathbf{B}_k \to \Sigma_k$ sending σ_i to $\tau_i = (i, i + 1)$. Similarly, there is also a homomorphism $\pi_1(\mathbf{B}_k(\mathbf{R}^2)) \to \Sigma_k$ since $\operatorname{Conf}_k(\mathbf{R}^2) \to \mathbf{B}_k(\mathbf{R}^2)$ is a Σ_k -cover.

It is then possible to reduced to the case of the pure braid group \mathbf{P}_k (the kernel of the map $\mathbf{B}_k \to \Sigma_k$) and $\pi_1(\operatorname{Conf}_k(\mathbf{R}^2))$.

Then one can use the long exact sequence again to prove the claim by induction, using that $\pi_1(\mathbf{R}^2 - \{x_1, \ldots, x_{k-1}\})$ is a free group and the following lemma.

LEMMA 3.1. — One has

$$\mathbf{P}_k \cong \mathbf{U} \rtimes \mathbf{P}_{k-1}$$

where U is the kernel of $\mathbf{P}_k \rightarrow \mathbf{P}_{k-1}$.

This lemma is a bit hard to prove because we don't have a presentation for \mathbf{P}_k . So we use an alternative lemma

LEMMA 3.2. — If D_k is the inverse image of Σ_{k-1} in \mathbf{B}_k . Then

$$\mathbf{D}_k \simeq \mathbf{U} \rtimes \mathbf{B}_{k-1}$$

Then follows a discussion about Schrieir sets and fundamental groups of graphs.