CONFIGURATION SPACES AND BRAIDS by BYUNG-HEEAN

transcribed by Damien lejay

Today we'll see configuration spaces and braids. Before doing this, let me recall some definitions.

Let X be a topological space (here it means at least locally connecte, Hausdorff, second countable etc). Practically it is going to be a CWcomplex. For $k \geq 0, \operatorname{Conf}_{k}(X)$ is the set of ordered configurations in X . The group Σ_{k} acts on the right on $\operatorname{Conf}_{k}(\mathrm{X})$. The space $\mathrm{B}_{k}(\mathrm{X}):=$ $\left(\operatorname{Conf}_{k}(\mathrm{X})\right)_{\Sigma k}$ is the space of unordered configurations in X. Last week we have computed configuration spaces of the empty set, of the point, the interval, etc.

1 SECTION 2.2

Assume we have a continuous function $f: \mathrm{X} \rightarrow \mathrm{Y}$ that is injective. Then for every k, we have an injective function $f^{k}: X^{k} \rightarrow Y^{k}$. Then it is very easy to see that f induces a map $\operatorname{Conf}_{k}(f): \operatorname{Conf}_{k}(\mathrm{X}) \rightarrow$ $\operatorname{Conf}_{k}(\mathrm{Y})$. In addition, it is compatible with the symmetric group action. That means we also get a map $\mathrm{B}_{k}(f): \mathrm{B}_{k}(\mathrm{X}) \rightarrow \mathrm{B}_{k}(\mathrm{Y})$.

What we have is actually two functors

$$
\operatorname{Conf}_{k}: \text { Top }^{\text {inj }} \longrightarrow \operatorname{Top}^{\Sigma_{k}}
$$

and

$$
\mathrm{B}_{k}: \text { Top }^{\mathrm{inj}} \longrightarrow \text { Top }
$$

Proposition 1.1. - If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is an open embedding. Then $\operatorname{Conf}_{k}(f)$ and $\mathrm{B}_{k}(f)$ are also open embeddings.

Proposition 1.2. - The map

$$
\coprod_{i+j=k} \operatorname{Conf}_{i}(\mathrm{X}) \times \operatorname{Conf}_{j}(\mathrm{Y}) \times{ }_{\Sigma_{i} \times \Sigma_{j}} \Sigma_{k} \longrightarrow \operatorname{Conf}_{k}(\mathrm{X} \text { 山 Y })
$$

Derived Seminar, December 2019, Pohang, Korea. O2019 Damien Lejay. All rights reserved.
is an homeomorphism. Then

$$
\mathrm{B}_{i}(\mathrm{X}) \times \mathrm{B}_{j}(\mathrm{Y}) \longrightarrow \mathrm{B}_{k}(\mathrm{X} \amalg \mathrm{Y})
$$

is an homeomorphism.
Definition 1.3.-Define

$$
\mathrm{B}(\mathrm{X}):=\coprod_{k \geq 0} \mathrm{~B}_{k}(\mathrm{X})
$$

Proposition 1.4. - One has

$$
\mathrm{B}(\mathrm{X} \amalg \mathrm{Y})=\mathrm{B}(\mathrm{X}) \times \mathrm{B}(\mathrm{Y})
$$

Assume \mathcal{B} is a basis for X . Consider

$$
\mathcal{B}_{k}=\left\{\mathrm{U} \subset \mathrm{X} \mid \mathrm{U} \simeq \amalg_{i=1}^{k} \mathrm{U}_{i}, \quad \mathrm{U}_{i} \in \mathcal{B}\right\}
$$

Then one can equip a partial order: $\mathrm{U} \leq \mathrm{V}$ if and only if $\mathrm{U} \subset \mathrm{V}$ and $\pi_{0}(\mathrm{U}) \rightarrow \pi_{0}(\mathrm{~V})$ is surjective.

It can then be extended to

$$
\mathcal{B}_{k}^{\Sigma}:=\left\{(\mathrm{U}, \sigma) \mid \mathrm{U} \in \mathcal{B}_{k}, \sigma:\{1, \ldots, k\} \rightarrow \pi_{0}(\mathrm{U})\right\}
$$

Then the partial order is given by $(\mathrm{U}, \sigma) \leq(\mathrm{V}, \tau)$ if $\mathrm{U} \leq \mathrm{V}$ and $\tau(i)=$ $\pi_{0}(\mathrm{U} \rightarrow \mathrm{V}) \circ \sigma(i)$.

If $\mathrm{U} \in \mathcal{B}_{k}$, then

$$
\mathrm{B}_{k}^{0}(\mathrm{U}):=\left\{\left\{x_{1}, \ldots, x_{k}\right\} \mid \mathrm{U}_{i} \cap\left\{x_{1}, \ldots, x_{k}\right\} \neq \emptyset\right\} \simeq \prod_{i=1}^{k} \mathrm{U}_{i}
$$

is a subset of $\mathrm{B}_{k}(\mathrm{X})$.
If $(U, \sigma) \in \mathcal{B}_{k}^{\Sigma}$, then one has

$$
\operatorname{Conf}_{k}^{0}(\mathrm{U}, \sigma) \subset \operatorname{Conf}_{k}(\mathrm{X}) \simeq \prod_{i=1}^{k} \mathrm{U}_{\sigma(i)}
$$

Proposition 1.5. - The collection of $\mathrm{B}_{k}^{0}(\mathrm{U})$ and the collection of $\operatorname{Conf}_{k}^{0}(\mathrm{U}, \sigma)$ are basis of $\mathrm{B}_{k}(\mathrm{X})$ and $\operatorname{Conf}_{k}(\mathrm{X})$.

The proof is very easy. $\operatorname{Conf}_{k}(\mathrm{X})$ is a subpace of X^{k} with subspace topology, so a basis element in X^{k} is going to be a product of elements in a basis of X. In order to find a basis of $\operatorname{Conf}_{k}(X)$, one only need to prove that for any point x in a a product of opens in X^{k} is contained in $\operatorname{Conf}_{k}^{0}(\mathrm{X}, \sigma)$. This is obvious. The only problem can come frome the fact that opens in the product could intersect. This is why we need Hausdorff property.
Proposition 1.6. - The map $\operatorname{Conf}_{k}(\mathrm{X}) \rightarrow \mathrm{B}_{k}(\mathrm{X})$ is a covering space.
When M^{n} is a manifold, then both $\operatorname{Conf}_{k}(\mathrm{M})$ and $\mathrm{B}_{k}(\mathrm{M})$ are also $n k$-manifolds. So we get functors

$$
\left(\text { Man }^{\text {inj }}, \amalg\right) \longrightarrow(\text { Man }, \times)
$$

环 Theorem 2.1 (Fadell-Neuwirth). - For M a manifold and $k>l$, we have a (homotopy) fibre sequence

$$
\operatorname{Conf}_{k-l}\left(\mathrm{M}-\left\{x_{1}, \ldots, x_{l}\right\}\right) \rightarrow \operatorname{Conf}_{k}(\mathrm{M}) \rightarrow \operatorname{Conf}_{l}(\mathrm{M})
$$

The result does not depend on the choice of the point x_{1} to x_{l}. The projection map is actually a fibre bundle.

Corollary 2.2. - As a consequence, there is a long exact sequence of homotopy groups
$\cdots \rightarrow \pi_{i}\left(\operatorname{Conf}_{k-l}(\mathrm{M}-\{\ldots\})\right) \rightarrow \pi_{i}\left(\operatorname{Conf}_{k}(\mathrm{M})\right) \rightarrow \pi_{i}\left(\operatorname{Conf}_{l}(\mathrm{M})\right) \rightarrow \ldots$
and for M simply connected of dimension $n \geq 3$, then $\operatorname{Conf}_{k}(\mathrm{M})$ is also simply connected, so $\mathrm{B}_{k}(\mathrm{M})$

$$
\pi_{1}\left(\mathrm{~B}_{k}(\mathrm{M})\right) \simeq \Sigma_{k}
$$

Moreover if M^{2} is not the sphere or $\mathbf{R} \mathbf{P}^{2}$, then $\operatorname{Conf}_{k}(\mathrm{M})$ is aspherical.
The proof is very easy and uses the long exact sequence. The proof is trivial for $k=1$ and the rest follows by induction.
Proposition 2.3. - If M has dimension $n \geq 3$, then

$$
\pi_{1}\left(\operatorname{Conf}_{k}(\mathrm{M})\right) \simeq \prod^{k} \pi_{1}(\mathrm{M})
$$

and

$$
\pi_{1}\left(\mathrm{~B}_{k}(\mathrm{M})\right) \simeq \prod^{k} \pi_{1}(\mathrm{M}) \rtimes \Sigma_{k}
$$

Proposition 2.4. - If M has a non-empty boundary N , then $\operatorname{Conf}_{l}(\mathrm{M}) \rightarrow$ $\operatorname{Conf}_{k}(\mathrm{M})$ admits a homotopy section for $l<k$.
Corollary 2.5. - For $n \geq 3$ and $k \geq 0$ and $i \geq 0$,

$$
\pi_{i}\left(\operatorname{Conf}_{k}\left(\mathbf{R}^{n}\right)\right) \cong \prod_{j=1}^{k=1} \pi_{i}\left(\vee_{j} S^{n-1}\right)
$$

The proof follows again using the long exact sequence and the fact that $\pi_{i}\left(\operatorname{Conf}_{k}\left(\mathbf{R}^{n}\right)\right) \rightarrow \pi_{i}\left(\operatorname{Conf}_{k-1}\left(\mathbf{R}^{\mathbf{n}}\right)\right)$ has a section.

3 SECTION 2.4

Let's now talk of braid groups. They were introduced by Artin. A braid is a loop in $\operatorname{Conf}_{k}\left(\mathbf{R}^{2}\right)$. So the braid group is the fundamental group of Conf $_{k}$ or B_{k}.

Define
$\mathbf{B}_{k}:=<\sigma_{1}, \ldots, \sigma_{k-1}\left|\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad\right| i-j\left|>1, \quad \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} \quad\right| i-j \mid=1>$

Then one can build a map \mathbf{B}_{k} to $\pi_{1}\left(\mathrm{~B}_{k}\left(\mathbf{R}^{2}\right)\right)$. This map sends σ_{i} to a braid switching the paths i and $i+1$. It is easy to see that this is a group homomorphism.

There is an obvious map $\mathbf{B}_{k} \rightarrow \Sigma_{k}$ sending σ_{i} to $\tau_{i}=(i, i+1)$. Similarly, there is also a homomorphism $\pi_{1}\left(\mathrm{~B}_{k}\left(\mathbf{R}^{2}\right)\right) \rightarrow \Sigma_{k}$ since $\operatorname{Conf}_{k}\left(\mathbf{R}^{2}\right) \rightarrow \mathrm{B}_{k}\left(\mathbf{R}^{2}\right)$ is a Σ_{k}-cover.

It is then possible to reduced to the case of the pure braid group \mathbf{P}_{k} (the kernel of the map $\left.\mathbf{B}_{k} \rightarrow \Sigma_{k}\right)$ and $\pi_{1}\left(\operatorname{Conf}_{k}\left(\mathbf{R}^{2}\right)\right.$).

Then one can use the long exact sequence again to prove the claim by induction, using that $\pi_{1}\left(\mathbf{R}^{2}-\left\{x_{1}, \ldots, x_{k-1}\right\}\right)$ is a free group and the following lemma.
Lemma 3.1. - One has

$$
\mathbf{P}_{k} \cong U \rtimes \mathbf{P}_{k-1}
$$

where U is the kernel of $\mathbf{P}_{k} \rightarrow \mathbf{P}_{k-1}$.
This lemma is a bit hard to prove because we don't have a presentation for \mathbf{P}_{k}. So we use an alternative lemma
Lemma 3.2. - If D_{k} is the inverse image of Σ_{k-1} in \mathbf{B}_{k}. Then

$$
\mathrm{D}_{k} \simeq \mathrm{U} \rtimes \mathbf{B}_{k-1}
$$

Then follows a discussion about Schrieir sets and fundamental groups of graphs.

