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1. July 15: Kyeong-Seog Lee: Motivic integrations

Let me start with some motivation. Let X and Y be smooth projective Calabi–
Yau varieties over C, birationally equivalent, meaning that I have some open set
UX in X which is isomorphic to another open set UY in Y .

Then there is a theorem by Batyrev who says that the Betti numbers of X and
Y are the same. Later Kontsevich made the stronger statement, that for every p
and q the Hodge numbers hp,q(X) = hp,q(Y ) for all p and q.

Let me sketch how they approach this problem, with the idea of (half of) the
proof.

Let X be an algebraic variety over C. By Deligne there is a so-called mixed
Hodge structure on Hk(X,C), which means there is a natural increasing weight
filtration

0 =W−1 ⊂W0 ⊂ ⋯ ⊂W2k =Hk(X,Q),
and a decreasing Hodge filtration

Hk(X,C) = F 0 ⊃ F 1 ⊃ ⋯ ⊃ F k ⊃ F k+1 = 0.

such that F ● satisfies GrW` Hk(X,Q) =W`/W`−1 is a pure Hodge structure of weight
`.

hp,q(Hk(X,C)) = dimC(F pGrWp+qH
k(X) ∩ F qGrWp+qHk(X))

When I have an arbitrary algebraic variety, I can define this kind of Hodge
Deligne-number and Danilov–Khovanski tells me there’s a mixed Hodge structure
on Hk

c (X,C). For X a complex algebraic variety, I define

E(X) = ∑
0≤p,q≤dimX

∑
0≤k≤2dimX

(−1)khp,q(Hk
c (X,C))upvq.

The theorem is that if X is a union of locally closed pieces then E(X) = ∑E(Xi)
where Xi are these pieces. Moreover, E(X × Y ) = E(X)E(Y ), and finally if Y

FÐ→
X is a locally trivial fibration with respect to the Zariski topology then E(Y ) =
E(X)E(F ).

Let Var /C be the category of complex alebraic varieties.
The Grothendieck ring of Var /C is the free Abelian group generated by isomor-

phism classes of varieties, modulo the relation [x] − [y] − [X ∖Y ] where Y is closed
in X.

This has a natural ring structure via the product.
You can localize K0(Var /C) by inverting the affine line, and then define M̂C,

and get a sequence of embeddings of Z[u, v] into the completion of Z[u, v, 1
uv

] so if

X ↦ E(X) become the same in Z[u, v, 1
uv

] completed then they were already the
same.
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There are lots of definitions we have to discuss to make this precise.
Let me call an element M in K0(Var /C) d-dimensional if there is an expression

M = ∑mi[Xi]

in K0(Var /C) with mi ∈ Z and Xi an algebraic variety of dimension at most d, and
there exists no such expression like this with all dimensions at most d − 1.

Then this gives a mapK0(Var /C) → Z∪{−∞} and this factors throughK0(Var /C)
localized at L1, and I can define

Fd(K0(Var /C)[L−1])

to be

{M ∈K0(Var /C)[L−1] ∶ dimM ≤ d}

and F d = F−d, and we let M̂C be the inverse limit of MC/F dMC. So you want

Var /C→K0(Var /C) →MC → M̂C .
This will be accomplished by motivic integration.
The final goal is to have [X] = ∫J∞(X) 1dµX , so I should define J∞ and 1 and

dµ.
LetX be a scheme of finite type over k. Anm-jet ofX is a morphism Speck[t]/(tm+1) →

X. Then Jm(X) is the scheme of all m-jets into X. Then because I have a natural
projection Jm(X) → Jm−1(X), I can take the inverse limit to define J∞(X). We
call this the arc space of X. This is represented by Speck[[t]].

Let me give two examples. Let X be affine. If X is An then Jm(X) is maps from

k[x1, . . . , xn] → k[t]/(tm+1). So xi ↦ x
(0)
i +⋯ + x(m)i tm, and this is free so Jm(X)

is An(m+1).
Now let Y be a hypersurface in An defined by f = 0.
Then Jm(Y ) is maps Speck[t]/(tm+1) → Y , which is maps k[x1, . . . , xn]/(f) →

k[t]/(tm+1), and f can be written as f (0) +⋯+ f (m)tm and so you get the zeros of

f (0), . . . , f (m).
Finally, let me write a proposition. When X is a smooth scheme of dimension

n over k then Jm(X) is locally an Anm-bundle over X. In particular Jm+1(X) is
locally an An-bundle over Jm(X).

I have my domain J∞(X) and I want to define dµ.
A subset A in J∞(X) is stable if for every large enough integer m, let me define

Am to be πm(A) is a constructible subset of Jm(X) (here πm is the projection
from the inverse limit to Jm), A is π−1m (Am), and Am+1 → Am is a locally trivial
An-bundle.

Then I can define a measure µX(A) as follows. We say that it’s [Am]L−nm ∈Mk.
For large enough m, we have [Am+1] = [Am]Ln, so µX(A) is well-defined.

A measurable set is the same philosophy as constructible sets, and then define
the measure here.

When you remember real analysis very well, you can define a measurable func-
tion, and define a function F from J∞(X) → N≥0 ∪∞ is measurable if for every s
in N≥0, F−1(s) is measurable and F −1(∞) is measure 0.

The typical measurable function in this case, for Y a subscheme, is ordY ∶
J∞(X) → N ∪ {∞}, where, θ ∶ Speck[[t]] → X, so it’s a map OX → k[[t]], and
this is, ordY (θ) is the supremum of e such that θ(IY ) ⊂ (te).
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Let X be a smooth k-scheme and Y a smooth subscheme of X. Then the motivic
integration of L−ordY on X is defined to be

∫
J∞(X)

L−ordY dµX =
∞
∑
s=0

µ(ord−1Y (s))L−s.

When Y is empty, then the order of Y is uniformly 0 then

∫
J∞(X)

L−ordY dµX = µ(ord−1Y (0)),

and this is some kind of A∞ bundle over X, and so Jm(X) is just an Anm-bundle
over X. I defined my integral by µX(A) = [Am]L−nm, and so the class in the
Grothendieck ring is just [X][Anm][L−nm] and this is [X] in Mk, and then I just
complete.

This trivial integral is nothing but [X] itself.
The second remark is that when Y n−1 is a smooth divisor in Xn, my Js(Y ) is

locally A(n−1)s-bundle over Y , and I can do this type of integral again, and ord−1Y (s),
let me not explain this calculation, is π−1s−1Js−1(Y ) − π−1s Js(Y ).

Then because this class is nothing but [Y ]L(n−1)s and I can define my motivic
integration

∫
J∞(X)

L−ordY dµX = [X − Y ] +
∞
∑
s=1

[Y ](L − 1)L−sL−s

and the final result is that this is

[X − Y ] + [Y ]
[P1]

.

Finally we can prove Kontsevich’s theorem. First let me say, let Z
fÐ→X be a proper

birational morphism of smooth k-schemes and D an effective divisor on X. Then

∫
J∞(X)

L−ordDdµX = ∫
J∞(Z)

L−ordf−1D+KZ/X dµZ .

So you can compute this integral after pulling back if you modify it in this way.
You know that when you have a function g ∶ g−1A→ A. Then

∫
A
h(f)dµ = ∫

g−1A
h(f)Jac(g)dµ

and this Jacobian looks something like this KZ/X term.
Let me give two examples.
First, let Z be a blowup of X along Y of codimension c, and D = ∅. Then the

canonical bundle formula says that KZ/X is (c − 1)E, and then

[X] = ∫
J∞(X)

L−ord∅dµX = ∫
J∞(Z)

L−ord(c−1)EdµZ = [Z −E] + [E]
[Pc]

,

and in the blowup case, this is a Pc bundle over Y , so this is

[X − Y ] + [Y ] = [X].

Theorem 1.1 (Kontsevich). Let X and Y be smooth projective Calabi–Yaus and
birational. Then hp,q(X) = hp,q(Y ).
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Proof. I can find a dominant smooth projective variety Z above X and Y via proper
birational maps.

Since these are Calabi–Yau, KZ/X =KZ − f∗KX =KZ , and the same for KZ/Y .
Then by my formula

[X] = ∫
J∞(Z)

L−ordKZ/X

= ∫
J∞(Z)

L−ordKZ/Y

= [Y ]

in M̂k. �

So you have this map

Var /k →K0(Var /k) →K0(Var /k)[L−1] → M̂k

and we only just found out that the last map here is injective. The composite
certainly isn’t. So we wonder what you can say if [X] = [Y ] under this map.

Zargar changed the framework to DMeff
gm (k), an ∞-category related to Voevod-

sky motives, and this goes to M(k,R) in K0 of stable ∞-categories and you get an
injection at the level of K0.

We say that X and Y are K-equivalent if there is a span X ← Z → Y with
f∗KX = g∗KY . Then we can ask about M(X) and M(Y ) and the theorem is that
we have

Mnum(X)Q ≅Mnum(Y )Q.
I think this is a quite powerful tool and it has many applications. I proved a result
using it, and it might have more.


