CGP DERIVED SEMINAR

GABRIEL C. DRUMMOND-COLE

1. July 15: Kyeong-Seog Lee: Motivic integrations

Let me start with some motivation. Let X and Y be smooth projective CalabiYau varieties over \mathbb{C}, birationally equivalent, meaning that I have some open set U_{X} in X which is isomorphic to another open set U_{Y} in Y.

Then there is a theorem by Batyrev who says that the Betti numbers of X and Y are the same. Later Kontsevich made the stronger statement, that for every p and q the Hodge numbers $h^{p, q}(X)=h^{p, q}(Y)$ for all p and q.

Let me sketch how they approach this problem, with the idea of (half of) the proof.

Let X be an algebraic variety over \mathbb{C}. By Deligne there is a so-called mixed Hodge structure on $H^{k}(X, \mathbb{C})$, which means there is a natural increasing weight filtration

$$
0=W_{-1} \subset W_{0} \subset \cdots \subset W_{2 k}=H^{k}(X, \mathbb{Q})
$$

and a decreasing Hodge filtration

$$
H^{k}(X, \mathbb{C})=F^{0} \supset F^{1} \supset \cdots \supset F^{k} \supset F^{k+1}=0
$$

such that F^{\bullet} satisfies $G r_{\ell}^{W} H^{k}(X, \mathbb{Q})=W_{\ell} / W_{\ell-1}$ is a pure Hodge structure of weight ℓ.

$$
h^{p, q}\left(H^{k}(X, \mathbb{C})\right)=\operatorname{dim}_{\mathbb{C}}\left(F^{p} G r_{p+q}^{W} H^{k}(X) \cap \overline{F^{q} G r_{p+q}^{W} H^{k}(X)}\right)
$$

When I have an arbitrary algebraic variety, I can define this kind of Hodge Deligne-number and Danilov-Khovanski tells me there's a mixed Hodge structure on $H_{c}^{k}(X, \mathbb{C})$. For X a complex algebraic variety, I define

$$
E(X)=\sum_{0 \leq p, q \leq \operatorname{dim} X} \sum_{0 \leq k \leq 2 \operatorname{dim} X}(-1)^{k} h^{p, q}\left(H_{c}^{k}(X, \mathbb{C})\right) u^{p} v^{q} .
$$

The theorem is that if X is a union of locally closed pieces then $E(X)=\sum E\left(X_{i}\right)$ where X_{i} are these pieces. Moreover, $E(X \times Y)=E(X) E(Y)$, and finally if $Y \xrightarrow{F}$ X is a locally trivial fibration with respect to the Zariski topology then $E(Y)=$ $E(X) E(F)$.

Let Var $/ \mathbb{C}$ be the category of complex alebraic varieties.
The Grothendieck ring of Var $/ \mathbb{C}$ is the free Abelian group generated by isomorphism classes of varieties, modulo the relation $[x]-[y]-[X \backslash Y]$ where Y is closed in X.

This has a natural ring structure via the product.
You can localize $K_{0}(\operatorname{Var} / \mathbb{C})$ by inverting the affine line, and then define $\widehat{M}_{\mathbb{C}}$, and get a sequence of embeddings of $\mathbb{Z}[u, v]$ into the completion of $\mathbb{Z}\left[u, v, \frac{1}{u v}\right]$ so if $X \mapsto E(X)$ become the same in $\mathbb{Z}\left[u, v, \frac{1}{u v}\right]$ completed then they were already the same.

There are lots of definitions we have to discuss to make this precise.
Let me call an element M in $K_{0}(\operatorname{Var} / \mathbb{C}) d$-dimensional if there is an expression

$$
M=\sum m_{i}\left[X_{i}\right]
$$

in $K_{0}(\operatorname{Var} / \mathbb{C})$ with $m_{i} \in \mathbb{Z}$ and X_{i} an algebraic variety of dimension at most d, and there exists no such expression like this with all dimensions at most $d-1$.

Then this gives a map $K_{0}(\operatorname{Var} / \mathbb{C}) \rightarrow \mathbb{Z} \cup\{-\infty\}$ and this factors through $K_{0}(\operatorname{Var} / \mathbb{C})$ localized at \mathbb{L}^{1}, and I can define

$$
F_{d}\left(K_{0}(\operatorname{Var} / \mathbb{C})\left[\mathbb{L}^{-1}\right]\right)
$$

to be

$$
\left\{M \in K_{0}(\operatorname{Var} / \mathbb{C})\left[\mathbb{L}^{-1}\right]: \operatorname{dim} M \leq d\right\}
$$

and $F^{d}=F_{-d}$, and we let $\widehat{M_{\mathcal{C}}}$ be the inverse limit of $M_{\mathbb{C}} / F^{d} M_{\mathbb{C}}$. So you want $\operatorname{Var} / \mathbb{C} \rightarrow K_{0}(\operatorname{Var} / \mathbb{C}) \rightarrow M_{\mathbb{C}} \rightarrow \widehat{M_{\mathcal{C}}}$.

This will be accomplished by motivic integration.
The final goal is to have $[X]=\int_{J_{\infty}(X)} \mathbf{1} d \mu_{X}$, so I should define J_{∞} and $\mathbf{1}$ and $d \mu$.

Let X be a scheme of finite type over k. An m-jet of X is a morphism $\operatorname{Spec} k[t] /\left(t^{m+1}\right) \rightarrow$ X. Then $J_{m}(X)$ is the scheme of all m-jets into X. Then because I have a natural projection $J_{m}(X) \rightarrow J_{m-1}(X)$, I can take the inverse limit to define $J_{\infty}(X)$. We call this the arc space of X. This is represented by Spec $k[[t]]$.

Let me give two examples. Let X be affine. If X is \mathbb{A}^{n} then $J_{m}(X)$ is maps from $k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k[t] /\left(t^{m+1}\right)$. So $x_{i} \mapsto x_{i}^{(0)}+\cdots+x_{i}^{(m)} t^{m}$, and this is free so $J_{m}(X)$ is $\mathbb{A}^{n(m+1)}$.

Now let Y be a hypersurface in \mathbb{A}^{n} defined by $f=0$.
Then $J_{m}(Y)$ is maps Spec $k[t] /\left(t^{m+1}\right) \rightarrow Y$, which is maps $k\left[x_{1}, \ldots, x_{n}\right] /(f) \rightarrow$ $k[t] /\left(t^{m+1}\right)$, and f can be written as $f^{(0)}+\cdots+f^{(m)} t^{m}$ and so you get the zeros of $f^{(0)}, \ldots, f^{(m)}$.

Finally, let me write a proposition. When X is a smooth scheme of dimension n over k then $J_{m}(X)$ is locally an $\mathbb{A}^{n m}$-bundle over X. In particular $J_{m+1}(X)$ is locally an \mathbb{A}^{n}-bundle over $J_{m}(X)$.

I have my domain $J_{\infty}(X)$ and I want to define $d \mu$.
A subset A in $J_{\infty}(X)$ is stable if for every large enough integer m, let me define A_{m} to be $\pi_{m}(A)$ is a constructible subset of $J_{m}(X)$ (here π_{m} is the projection from the inverse limit to $\left.J_{m}\right), A$ is $\pi_{m}^{-1}\left(A_{m}\right)$, and $A_{m+1} \rightarrow A_{m}$ is a locally trivial \mathbb{A}^{n}-bundle.

Then I can define a measure $\mu_{X}(A)$ as follows. We say that it's $\left[A_{m}\right] \mathbb{L}^{-n m} \in M_{k}$. For large enough m, we have $\left[A_{m+1}\right]=\left[A_{m}\right] \mathbb{L}^{n}$, so $\mu_{X}(A)$ is well-defined.

A measurable set is the same philosophy as constructible sets, and then define the measure here.

When you remember real analysis very well, you can define a measurable function, and define a function F from $J_{\infty}(X) \rightarrow \mathbb{N}_{\geq 0} \cup \infty$ is measurable if for every s in $\mathbb{N}_{\geq 0}, \mathbb{F}^{-1}(s)$ is measurable and $F^{-1}(\infty)$ is measure 0 .

The typical measurable function in this case, for Y a subscheme, is ord_{Y} : $J_{\infty}(X) \rightarrow \mathbb{N} \cup\{\infty\}$, where, $\theta: \operatorname{Spec} k[[t]] \rightarrow X$, so it's a map $\mathcal{O}_{X} \rightarrow k[[t]]$, and this is, $\operatorname{ord}_{Y}(\theta)$ is the supremum of e such that $\theta\left(I_{Y}\right) \subset\left(t^{e}\right)$.

Let X be a smooth k-scheme and Y a smooth subscheme of X. Then the motivic integration of $\mathbb{L}^{-\operatorname{ord}_{Y}}$ on X is defined to be

$$
\int_{J_{\infty}(X)} \mathbb{L}^{-\operatorname{ord}_{Y}} d \mu_{X}=\sum_{s=0}^{\infty} \mu\left(\operatorname{ord}_{Y}^{-1}(s)\right) \mathcal{L}^{-s}
$$

When Y is empty, then the order of Y is uniformly 0 then

$$
\int_{J \infty(X)} \mathbb{L}^{-\operatorname{ord}_{Y}} d \mu_{X}=\mu\left(\operatorname{ord}_{Y}^{-1}(0)\right)
$$

and this is some kind of \mathbb{A}^{∞} bundle over X, and so $J_{m}(X)$ is just an $\mathbb{A}^{n m}$-bundle over X. I defined my integral by $\mu_{X}(A)=\left[A_{m}\right] \mathbb{L}^{-n m}$, and so the class in the Grothendieck ring is just $[X]\left[\mathbb{A}^{n m}\right]\left[\mathbb{L}^{-n m}\right]$ and this is $[X]$ in M_{k}, and then I just complete.

This trivial integral is nothing but [X] itself.
The second remark is that when Y^{n-1} is a smooth divisor in X^{n}, my $J_{s}(Y)$ is locally $\mathbb{A}^{(n-1) s}$-bundle over Y, and I can do this type of integral again, and $\operatorname{ord}_{Y}^{-1}(s)$, let me not explain this calculation, is $\pi_{s-1}^{-1} J_{s-1}(Y)-\pi_{s}^{-1} J_{s}(Y)$.

Then because this class is nothing but $[Y] \mathbb{L}^{(n-1) s}$ and I can define my motivic integration

$$
\int_{J_{\infty}(X)} \mathbb{L}^{- \text {ordY }} d \mu_{X}=[X-Y]+\sum_{s=1}^{\infty}[Y](\mathbb{L}-1) \mathbb{L}^{-s} \mathbb{L}^{-s}
$$

and the final result is that this is

$$
[X-Y]+\frac{[Y]}{\left[\mathbb{P}^{1}\right]}
$$

Finally we can prove Kontsevich's theorem. First let me say, let $Z \xrightarrow{f} X$ be a proper birational morphism of smooth k-schemes and D an effective divisor on X. Then

$$
\int_{J_{\infty}(X)} \mathbb{L}^{-\operatorname{ord}_{D}} d \mu_{X}=\int_{J_{\infty}(Z)} \mathbb{L}^{-\operatorname{ord}_{f^{-1}}^{D+K_{Z / X}}} d \mu_{Z}
$$

So you can compute this integral after pulling back if you modify it in this way.
You know that when you have a function $g: g^{-1} A \rightarrow A$. Then

$$
\int_{A} h(f) d \mu=\int_{g^{-1} A} h(f) \operatorname{Jac}(g) d \mu
$$

and this Jacobian looks something like this $K_{Z / X}$ term.
Let me give two examples.
First, let Z be a blowup of X along Y of codimension c, and $D=\varnothing$. Then the canonical bundle formula says that $K_{Z / X}$ is $(c-1) E$, and then

$$
[X]=\int_{J_{\infty}(X)} \mathbb{L}^{-\operatorname{ord} \varnothing} d \mu_{X}=\int_{J_{\infty}(Z)} \mathbb{L}^{-\operatorname{ord}_{(c-1) E}} d \mu_{Z}=[Z-E]+\frac{[E]}{\left[\mathbb{P}^{c}\right]}
$$

and in the blowup case, this is a \mathbb{P}^{c} bundle over Y, so this is

$$
[X-Y]+[Y]=[X]
$$

Theorem 1.1 (Kontsevich). Let X and Y be smooth projective Calabi-Yaus and birational. Then $h^{p, q}(X)=h^{p, q}(Y)$.

Proof. I can find a dominant smooth projective variety Z above X and Y via proper birational maps.

Since these are Calabi-Yau, $K_{Z / X}=K_{Z}-f^{*} K_{X}=K_{Z}$, and the same for $K_{Z / Y}$. Then by my formula

$$
\begin{aligned}
{[X] } & =\int_{J_{\infty}(Z)} \mathbb{L}^{-\operatorname{ord}_{K_{Z / X}}} \\
& =\int_{J_{\infty}(Z)} \mathbb{L}^{-\operatorname{ord}_{K_{Z / Y}}} \\
& =[Y]
\end{aligned}
$$

in $\widehat{M_{k}}$.
So you have this map

$$
\operatorname{Var} / k \rightarrow K_{0}(\operatorname{Var} / k) \rightarrow K_{0}(\operatorname{Var} / k)\left[\mathbb{L}^{-1}\right] \rightarrow \widehat{M_{k}}
$$

and we only just found out that the last map here is injective. The composite certainly isn't. So we wonder what you can say if $[X]=[Y]$ under this map.

Zargar changed the framework to $D M_{g m}^{e f f}(k)$, an ∞-category related to Voevodsky motives, and this goes to $M(k, R)$ in K_{0} of stable ∞-categories and you get an injection at the level of K_{0}.

We say that X and Y are K-equivalent if there is a span $X \leftarrow Z \rightarrow Y$ with $f^{*} K_{X}=g^{*} K_{Y}$. Then we can ask about $M(X)$ and $M(Y)$ and the theorem is that we have

$$
M_{n u m}(X)_{\mathbb{Q}} \cong M_{n u m}(Y)_{\mathbb{Q}} .
$$

I think this is a quite powerful tool and it has many applications. I proved a result using it, and it might have more.

