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1. Rune Haugseng: February 26: Yet another introduction to
algebraic K-theory

I’m supposed to tell you something about algebraic K-theory. We heard a lot
about motives and algebraic K-theory last time so I thought I would focus on the
part I actually understand which is how you define K-theory.

Let me start with the warm-up, which is the Grothendieck group. Suppose C is
a category with some notion of weak equivalences and a 0 object and some notion
of direct sum (coproducts), and some sort of notion of a short exact sequence.

If you have this data (I’ll be precise later) then you can define an Abelian group
K0(C) generated by the objects of the category with the following relations:

(1) If c and c′ are weakly equivalent then [c] = [c′], i.e., c ∼ c′ in the equivalence
relation generated by weak equivalences. In the simplest examples this will
be isomorphisms.

(2) We want the direct sum to agree with addition in the group, [c ⊕ c′] =
[c] + [c′]

(3) Given a short exact sequence

a b

0 c

you want [b] = [a] + [c].

Example 1.1. ● (Grothendieck, late fifties) Let C be the category of alge-
braic vector bundles on a nice variety X. Here isomorphisms are the weak
equivalences. This gives K0(X).

● As a special case, think of vector bundles on the affine scheme of R, and
these are finitely generated projective modules over R. This is usually
K0(R). Since we restrict to projective modules, all short exact sequences
split and we can forget the third relation. So for R a field, every projective
module is free, and so you get Z, one for each integer and then you get the
negatives.

● If K is a number field you get the ideal class group of K and a copy of Z,
which I guess is just a consequence of how projective modules over O(K)
look.

● If X is a topological space, you can look at K0(Z[π1X]) and this connects
to geometric topology, containing the Wall finiteness obstruction, which
measures whether you’re a CW complex.
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The number field gives something that number theorists are interested in, this
gives something interesting to geometric topologists, if you plug in vector bundles
on a scheme it might be interesting to algebraic geometers.

● You could plug in a small triangulated category with the short exact se-
quences the distinguished triangles. This is a non-example because this
contains enough information to define K0 but not the higher K-groups
we’ll come to later.

● So far all the examples have the weak equivalences be the isomorphisms.
Let me give an example where they’re not. If you want to define K0(X) for
an arbitrary scheme X, then you need nice chain complexes of sheaves of
OX -modules, the “perfect complexes with globally finite Tor-amplitude”.
The point is that in this case you use quasi-isomorphism.

● If you consider the category of pointed finite sets, and short exact sequences
are pushouts of injective maps, and you get that K0 of finite sets is Z.

You can do more fancy things, cell complexes over and under a fixed space X, which
gives Waldhausen’s version and so on.

In the early 60s you get K1(R) and K2(R) explicitly with what look like parts
of long exact sequences. Bass also constructed negative groups.

Quillen defined (in the 70s) higher K groups Kn(C) = πnK(C) for a space K(C)
and eventually for some of the other examples you need a construction written up
by Waldhausen in the early 80s, the S⋅ construction, although the story is that this
was due to Graeme Segal but never appeared in print.

What I’ll try to do in this talk is try to explain the Waldhausen S⋅ construction
of K-theory. We can define K0 as taking place via three steps.

(1) First, if we have some notion of weak equivalence, we can identify the
weakly equivalent objects in the monoid of objects of C under direct sum

(2) You add negatives for the direct sum, something you can do for any monoid,
called the group completion, in this case a commutative monoid

(3) Add the relations that split short exact sequences.

The goal is to explain how the S⋅ construction is a kind of homotopical analogue
of these three steps. I want to explain in turn a homotopical version of each one of
them.

So we want some way of inverting morphisms. So for this I have to talk about
simplicial objects. We write ∆ for the category whose objects are finite non-empty
ordered sets and [n] is the set {0 < ⋯ < n} and the morphisms are order-preserving
maps between these.

For example, we can define a map di from [n − 1] to [n] which is the inclusion
where you skip i (coface) or in the other direction we can do si by repeating i once
(codegeneracy). Every morphism in the category can be written as composites of
face and degeneracy maps, but not uniquely, there are some relations. I won’t tell
you the relations because I think they’re quite useless. The point is that you can
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think of the simplicial as looking like this:

[0] [1] [2] ⋯

now a simplicial set is a functor ∆op XÐ→ Set so Set∆ = Fun(∆op,Set) so X is
a collection of sets X0, X1, and so on, along with face maps Xn → Xn−1 and
degeneracies Xn →Xn+1.

I’ll tell you a way to get a space out of a simplicial set and then how to get
a simplicial set out of a category so putting them together we’ll get a topological
space out of a category.

So let me define geometric simplices. There’s a functor from ∆ to topological
spaces which takes [n] to a geometric n-simplex

∣∆n∣ = {(x0, . . . , xn) ∈ Rn+1 ∶ 0 ≤ xi;∑xi = 1}.
You can define maps between these, if you have a map ϕ ∶ [n] → [m] a map of

ordered sets, you can define a map ∣∆n∣ ϕÐ→ ∣∆m∣ where

(x0, . . . , xn)↦ (y0, . . . , ym)
yi = ∑

j∈ϕ−1(i)
xj

and this gives the face and degeneracy maps. The relations I’m not telling you give
the identities on faces of faces, and the degeneracies are some kind of projections.

So now having this geometric simplex functor, I formally get from that an ad-
junction relating simplicial sets to topological spaces, with left adjoint geometric
realization and right adjoint the singular simplicial set. I start with a space and
take (SingT )n to be HomTop(∣∆n∣, T ).

The left adjoint geometric realization is given by a coend

∫
∆op

X × ∣∆∗∣

or a coequalizer of

∐
ϕ∶[m]→[n]

Xn × ∣∆m∣⇉∐
n

Xn × ∣∆n∣.

You should think of this as giving you a topological space given by building up using
X as a blueprint, by taking a copy of a geometric n-simplex for every σ ∈ Xn and
glue them in along their faces, according to the face maps and collapse degenerate
faces.

Here’s something else I can do, I can define a functor from ∆ into categories,
by taking [n] to the category 0 → 1 → ⋯ → n, also called [n]. Again formally this
gives rise to an adjunction between simplicial sets and categories, where the right
adjoint is N , the nerve, and the left adjoint h, kind of the “homotopy category”
described by a coend but colimits in categories are not very nice.
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This nerve has a very explicit description. The n-simplices of the nerve are
HomCat([n],C), which is the sequences of n composable morphisms in C. In this
explicit description, the face maps correspond to composing, the face maps are
composition at xi if i is not 0 or n, and by forgetting the first or last morphism at
the ends. The degeneracies are given by inserting identity maps.

Let me tell you some facts about this functor N . In fact it’s fully faithful, a
morphism of simplicial sets between nerves is exactly the same thing as a functor
between the categories. Then for a general simplicial set I can’t say much about
h, but if I apply h to SingT then I get something equivalent to the fundamental
groupoid π≤1X, which is given by taking objects the points and the morphisms from
p to q the homotopy classes of paths from p to q. It tells you all the fundamental
groups of X at the same time.

If we start from C we can build a topological space by first taking the nerve and
then the geometric realization, ∣∣C∣∣ ∶= ∣NC∣, often called the classifying space of C,
and formally there is a map from the nerve of C to Sing ∣∣C∣∣.

I claim that ∣∣C∣∣ is a homotopical upgrade of inverting the morphisms in C—if
you start by inverting morphisms of C you get a groupoid.

I want to say something about what this looks like, ∣∣C∣∣ has a point for every
object of C and then an edge relating those two points for each morphism p → q,
and then you add in two-cell for all composable pairs of morphisms, and keep going.

In particular, you’re making the morphisms invertible because edges have in-
verses.

The set of components π0∣∣C ∣∣ is the quotient of the objects of C by the equivalence
relation generated by c ∼ d if there exists a morphism from c to d.

You can also show that π≤1∣∣C∣∣ ≅ C[C−1].
I can view this construction taking C ot C[C−1] as left adjoint to the inclusion of

groupoids into categories, and this construction ∣ − ∣ ∶ Set∆ → Top, you can view as
modelling the ∞-version of this, left adjoint to the inclusion of ∞-groupoids into
∞-categories. We’re regarding a category as a kind of ∞-category, and then doing
this left adjoint there.

I guess, well, this was mainly a remark to those who know something about
∞-categories already, so not very useful maybe.

Let me tell you about this, if I start with a monoid M in Set, then I can define
a category BM which has one object ∗ and HomBM(∗,∗) is M with composition
multiplication in M .

I can apply this construction to BM , and get ∣∣BM ∣∣ which is BM , which is called
the classifying space of M , and so if G is a group, then ∣∣BG∣∣ is exactly the usual
space BG ≅K(G,1), the universal space where π1 is G.

Let me say one more sentence to finish the first section. For K-theory we had a
category with weak equivalences, and we wanted to upgrade modding out equivalent
objects, so we take ∣∣wC∣∣ for some subcategory wC spanned by weak equivalences.

2. Group completion

Right, so before the break we were talking about modding out by weak equvi-
lances homotopically, now this is a homotopical version of group completion. If I
had a monoid, I can define BM = ∣∣BM ∣∣ = ∣∣NBM ∣∣ which is obtained by inverting
morphisms in BM , which is the same as adding negatives or inverses to M . Indeed,
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BM is the same as BMgp and since Mgp ≅ ΩBM . So then ΩBM implements group
completion of monoids in sets.

We want to do something similar for “monoids” in topological spaces. We have
to be, you have to think what is the right notion of a monoid. For K-theory, we’d
like ∣∣wC∣∣ to be a “monoid” via direct sum or coproduct in C. This might not be
literally a monoid in the strict sense. But this is likely not strictly associative,
that a⊕ (b⊕ c) and (a⊕ b)⊕ c, they’re probably not strictly equal but canonically
isomorphic.

The classical way to solve this is to replace the category C with a different one
where the sum is associative. The modern thing to do, and you kind of have to do it
in a sense, is a notion of monoid that’s homotopy coherent. Let me start by saying
this in the classical sense. If I have M a category with products (such as sets) then
I can define an associative monoid as the data of a functor X from ∆op to M such
that Xn →X×n

1 (coming from the inclusions of [1] into [n]) is an isomorphism.
Let me try and justify that, X0 says that this is isomorphic to a point, and so

we have the degeneracy map ∗ ≅ X0 → X1, which is a point, which tells you the
unit of the monoid. If I look at X2, the condition tells me that it’s isomorphic to
X1×X1, and the face map tells me that I have a binary product, which tells me the
multiplication. Then if I look in X3, there’s an isomorphism to X×3

1 and looking at
the face maps I see that this is associative.

X×3
1 X×2

1

X×2
1 X2

(m,id)

(id,m)

and you can show that the other data tells you nothing else.
For a monoid M in Set the corresponding map ∆op → Set is exactly NBM .

Definition 2.1. An A∞-monoid in Top (for the purpose of this talk) is a functor
∆op → Top such that Xn →X×n

1 is a weak homotopy equivalence.

A monoidal category corresponds to functors from ∆op → Cat so that Xn →X×n
1

is an equivalence of categories.
In particular, explicitly in the case of C a category with coproducts, we can define

C⊗ ∶ ∆op → Cat by taking C⊗n to be the category of diagrams

0 0 0

X1 X2 ⋯ Xn

X12

⋱

X1n.
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If I remember right Milnor showed that ∣ − ∣ ∶ Setop
∆ → Top preserves homotopy

equivalence. Using that you can show that if C is a monoidal category viewed as
C⊗ ∶ ∆ → Cat then ∣∣C∣∣ is an A∞ monoid. For X ∶ ∆op → Top we can define
∣X ∣ by some coequalizer formula, and then for X an A∞-monoid in Top we have
BX1 ∶= ∣X ∣.

There is a canonical map X1 → ΩBX1 which comes about by adjoint to ΣX1 →
BX1.

Then this gives a morphism of A∞ monoids, the loop space is always an A∞
monoid, by concatenation of loops. This is even an A∞ group, which is an A∞
monoid such that π0(X1), that’s a monoid, and if that’s actually a group, we say
that this is an A∞ group.

The fact is that ΩBX1 is the universal A∞ group with a map from X. In
particular, if you take π0 you get the group completion, π0ΩBX1 ≅ (π0X1)gp. You
can think of this as the ∞ analog of what I started with in Set. You can think
of this as the ∞-category with one object, and then we invert morphisms to have
inverses, invert morphisms to get an ∞ groupoid, and then we recover a monoid as
the endomorphisms of the base point.

How do we apply this to K-theory? We start with C and take ∣∣wC∣∣ and that’s
an A∞-monoid, and we can form its group completion in this sense as ΩB∣∣wC1∣∣,
and if C was one of these examples where all short exact sequences split, then this
is already the K-theory space of C. So Kn(C) is πn(C).

If I want to split short exact sequences then I need something more complicated.
I won’t make precise the notion of a Waldhausen category, but I can build a new

category called SnC which consists of diagrams

0 A01 A02 ⋯ A0n

0 A12 ⋯ A1n

0 ⋮

⋱ ⋮

0.

I should say a Waldhausen category is a category C of cofibrant objects with cofi-
brations, weak equivalences, 0 and ∐ and pushouts of cofibrations exist and are
cofibrations. So these diagrams, the morphisms that are horizontal are cofibrations
and all the squares are pushouts.

These categories have a natural simplicial structure S.C ∶ ∆op → Cat where wSnC
is the subcategory where the morphisms are objectwise weak equivalences, I have
this simplicial diagram of categories, and I can take ∣∣wS.C∣∣, then the loop space of
that.

This is the definition of K(C), so for C∐ the diagram I had before, then I can
get a map wC∐ to wS.C by taking split exact sequences. If I look in level two, the
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data corresponds to a pair, [unintelligible], and so you get a map from ΩB∣∣wC∣∣ →

Ω∣∣∣wS.C∣∣∣, and you can think of this as quotienting out by splitting exact sequences.

So S0C is a point, S1C is 0→X → 0 which is just C itself. Then an object in S2C
is a short exact sequence, so this is the category of short exact sequences, so I add
in a two simplex when I take geometric realization which has as its boundaries the
entries, so that the middle entry (as a loop) is the sum of the other two entries.

I’ll say one more word. Each category is a Waldhausen category, and K(S2C)
has maps (two of them) to the K-theory of C, and the additivity says that K(S2C)
is equivalent to K(C)×K(C) and similarly for higher n, which shows that K(S.C) is
an A∞-monoid (in fact an A∞-group) and I can deloop it, and iterate that, applying
the S. construction as many times as I want, and doing that I get an Ω-spectrum.
So it’s not just a space, it’s a spectrum.

I should definitely stop.


