
CGP DERIVED SEMINAR

GABRIEL C. DRUMMOND-COLE

1. Feb 19: Damien Lejay, T-structures

We’ll review the modern theory about T -structures. I won’t give any proofs.
They are either evident or require computations I don’t want to make.

I’ll try to use the diagrammatic way of thinking, rectangles more than triangles.
So I won’t be precise, and I want somehow to settle a bit of vocabulary, we

have been talking about triangulated categories, but what we really want is stable
∞-categories, which are gadgets with certain properties.

An ∞-category has objects, for every two objects it has a homotopy type of
maps between them, so you can think of this as a topological space up to weak
equivalence. You see the problem of saying that I have maps. I don’t want to say
how to compose maps because it should be homotopical.

This is a regular ∞-category, instead of having a set of maps, you have a space
of maps, and from this you can always make a regular category by taking the same
objects, and the maps are the connected components of the maps from x to y. This
is called the homotopy category.

Here I’m being very loose because once the language is set up I can just use the
language. Then I can kill the homotopy information and just get the category. Now
I want it to be stable, so I add a 0 object, coproducts, which are the same as products
(finite ones). Because of my zero object, I have a map from X∐Y →X∏Y which
is an equivalence. I also want to have pushouts and pullbacks. So for instance the

pushout of X
fÐ→ Y along X → 0 is Cof(f) and the pullback of f along 0 → Y is

Fib(f). I use the special notation ΣX for the pushout 0 ← X → 0 and ΩX for the
pullback 0→X ← 0, and I want stability, Σ is the inverse of Ω.

These axioms are very strong, and there are many ways to see them, in different
settings. An equivalent description, is that a square

X Y

Z T

is a pushout if and only if it is a pullback.
So for Y = Z = 0, that says that Ω(ΣX) ≅ X. I drew the pushout but I can do

the other order.
The key thing is that when C is stable, the homotopy category is canonically

triangulated. I think it’s not true that every triangulated category is the homotopy
category of a stable ∞-category but they are artificial.

1



2 GABRIEL C. DRUMMOND-COLE

Let me remind you of the octahedral axiom that is easy to get back in this
context. What people call a distinguished triangle is a cofiber

X Y

0 Cof(f)

f

and then the thing you do is compose two maps.

X Y Z

0 Cof(f) Cof(g ○ f)

0 0 Cof(g)

f g

By abstract nonsense, the bottom right triangle is a pushout, so it’s a distinguished
triangle, and this is the octahedral axiom.

Here I’ll try not to say triangulated but stable.
I recall examples of stable categories, spectra, the derived category of a nice

enough Abelian category. Once you have some building blocks, the traditional
category theory language lets you do this, you can for instance take categories of
sheaves, sheaves of chain complexes, of spectra, all the things you could do in the
Abelian setting you can do in the stable setting.

The only problem with triangulated and stable categories is that there is an
anti-theorem.

Theorem 1.1. If C is stable and X → Y is a monomorphism (think of a subobject),
then X ≅ Y .

You don’t have monomorphisms. The same is true for epimorphisms. So you
can’t factorize through images. Somehow all your tools, your gadgets are broken,
so you need another way to factorize your maps, and this is where you introduce
T -structures.

Normally this is given in your category, so you need to add data in how you
factor or truncate. You need to rewire your mind because your intuition changes
things. The T -structure replaces the intuition.

If you have C stable you can define a T -structure either on C or on hC, you give
yourself full subcategories C≥0 and C0≥. The axioms are:

(1) You want C≥0[1] ⊂ C≥0,
(2) you want Hom(x, y) = 0 if x ∈ C≥0 and y ∈ C−1≥, and
(3) you want a factorization, a fiber/cofiber sequence τ≥0X →X → τ−1≥X.

Now you can resplit your things.
One comment I made last week is that there is too much data here. One thing

is that you only need to know C≥0, because you can get back the other one, C0≥ is
the objects x such that Hom(x, y) = 0 for y ∈ C≥1.

These two are very nice. For example, the category C0≥ is a localization, and C≥0
is a colocalization, a coreflective subcategory.



DERIVED SEMINAR 3

Remember that the heart is the intersection of C0≥ and C≥0 and this is always
an Abelian category. If you compose truncations, you have truncations that go to
the heart. In this you can call this π0 or H0, if you use a shift, this lets you define
πn for n ∈ Z. You have the fact that the heart is quivalent to Cn≥ ∩ C≥n, and this
is how you get your Hn or πn. If you don’t give yourself a T -structure, then you
can’t get those things. Then the important thing is the long exact sequences. If
you give yourself a fiber sequence, then by computing these homotopy groups you
get a long exact sequence, and that’s absolutely impossible to do unless you have
a T -structure.

So what I wanted to do is show you how you can forget about one of the two
subcategories.

We said that C0≥ is a localization of C, so when you have such a thing, a reflective
subcategory, you always have the class S of maps in C such that L(S) becomes an
isomorphism. You look at maps that become isomorphisms after localization, and
this is equivalent, so that C0≥ is the same as C[S−1]. When you have a T -structure,
you have in particular a localization, I’ll now say that this is a special class of maps
that has properties:

● every isomorphism is in S,
● if h = g ○ f , I have the two out of three property, meaning if any two maps

are in S then the third one is in S. This is trivial, since it’s something true
of isomorphisms.

● The third condition (this is not typical) is that S should be pushout stable.
The pushout of an S-map is in S. That’s the property that this class S
satisfies.

Call a class satisfying these three conditions (quasi-saturated) then the following
things are

Now I’ll say how you generate a T -structure.

Proposition 1.1. Let C be stable, equipped with a localization, and suppose the
localization is by a class of maps S that are quasi-saturated. Then the following are
equivalent:

(1) There exist a class of maps f ∶ 0 → X which generate S (S is the smallest
quasi-saturated class containing those maps),

(2) Cge0 = {A∣LA = 0} and C−1≥ = {A∣LA = A}

So you can write C+ as

⋃
n

Cn≥

which is the subcategory of left-bounded objects. In particular if C is C+ then C is
left-bounded. Similarly you can make a subcategory of right-bounded objects C−
and say that C is right-bounded if C = C−.

When you have a stable category with a T -structure you want to figure out the
long exact sequence. But you want a recognition principle that tells me something
about going back from the information of the πn. You do something by induction,
proving n by n that something is an isomorphism or something is zero. So what
you want is to be able to recover your full object from its truncations.

You say that C is left t-complete if

C → lim
n
Cn≥



4 GABRIEL C. DRUMMOND-COLE

is an equivalence. You say that C is right t-complete if

C → lim
n
C≥n

is an equivalence.
In any case you call limn Cn≥ is Ĉ. All the examples you know are already right

t-complete and in nature the question is whether it’s left t-complete. So Ĉ is a
stable ∞-category and always left complete.

Let me give an example, the category of spectra is both left and right t-complete.
You get a map from C+ to C and this gives a map Ĉ+ → Ĉ, which is always an

equivalence, and you have an equivalence between the left bounded categories and
the left t-complete categories, via C ↦ C+ and D ↦ D̂.

So I want C≥0 to be stable under countable products, and if you have this, and
the intersection of C≥n is zero, then C is left complete.

So a non-example, D(A) is maybe not left t-complete. You take A to be Ga-
representations over Fp.

You can take ∏≥1A[n], each component has nothing in degree zero, and H0 of
that can be non-zero.

If A is Grothendieck then D(A) is right-complete. This satisfies AB5 and so most
derived categories are right complete. Then the question is about left completeness.
Let’s have a break and then I’ll talk more.

If I take D(A)−, the bounded (below) derived category of an Abelian category,
then this is always left complete. If A is nice enough, and I take C a left-complete
stable infinity category with a t-structure, and I have an exact functor from A to
the heart of C. Then you can extend to a map D(A)− → C which is t-exact.

What does t-exact mean? A functor between categories with t-structures is
t-exact if it sends C≥0 to D≥0 and C0≥ o D0≥.

This is the universal property of this D(A)−. There is a substatement where
things are right exact you can look up. This is something that makes you wish for
completeness of a category, you get a map from D(C♡)− to C, and usually you have
enough injectives, so

D(C♡)+ → C
where C is right complete and C♡ has enough injectives.

You take a stable category with a t-structure. You have a comparison map.
So now if I have F a right exact functor from A to B, and what people usually

do is take the derived functors, So now if you take (D(A)−)♡ that’s A, and so this
is already a functor between hearts, and this gives a functor D−(A)→ D−(B), and
this is the derived functor LF of F (the left-derived functor). This is only right
t-exact even though it preserves all small limits and colimits.

So as an example, derive the tensor product, you take the category of Abelian
groups and tensor by Z2. You get a derived functor D(Ab)− → D(Ab)− which is
⊗L
Z2

, and this will be exact and right t-exact. You can just reverse everything and
you can reverse everything. So if you want to derive the global section functor of
sheaves, this is left but not right exact, so you get something similar.

Let me make a remark for people who might recognize something. The comple-
tion issues, for derived functors it’s well-known how to make derived functors.

If you do a bit of derived algebraic geometry, you’re going to consider not just
varieties but schemes and derived schemes and derived stacks, and something that
people want to define are quasi-coherent sheaves over X. Sometimes this is not



DERIVED SEMINAR 5

the object you want. Sometimes people will derive “ind-coherent” sheaves. The
quasi-coherent sheaves is left t-complete and ind-coherent sheaves are not, and this
map is just the completion. If X is a smooth variety then ind-coherent sheaves of
X is already left complete, so these coincide. Most things are right complete, and
that left completeness is the key difference.

If you remember correctly, we want to study motives, general cohomology theo-
ries on algebraic varieties. If you take the topological version of that, it’s spectra,
and the key property is that this is stable and has a t-structure. When people look
for something motivic, they’re looking for triangulated structures, and when we
talk about pure motives, that’s the heart of the t-structure, and this is the modern
approach to all of that. So this is what people have in mind, at least as a goal.

A last comment for five minutes, stable ∞-categories plus t-structures is the input
data to be able to speak of spectral sequences. If you’ve ever heard of spectral
sequences, where can I compute these? a stable ∞-category and a t-structure.
That’s the typical place to do this. The goal here is to compute the πn of a
directed colimit of Xp, and then there’s a recipe using the πn of all the cofibers,
and this has a modern interpretation in stable ∞-categories with a t-structure.

Every time you have a spectral sequence, usually you can rephrase it in something
like this. The takehome is that a stable ∞-category without its t-structure is useless,
and the t-structure is something very categorical that has a lot of implications, and
in examples there are t-structures that are not obvious. It’s not, yeah, I see my
t-structures, they’re obvious, but you have some subtle issues. Next week we have
the pleasure of hearing Rune talking about a cohomology theory that people can
compute on varieties.


