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GABRIEL C. DRUMMOND-COLE

1. January 29: Yong-geun Oh: reminder on triangulated categories

This talk will be very elementary and may bore some of you, but going slowly
may be helpful for some of the audience.

Let me start with category theory, with Abelian categories, what this is about.
Let me first introduce additive categories, which have some kind of linear structure.
We exploit the knowledge of modules where we know what linearity is. Many defi-
nitions are using some kind of functor which maps something in the given category
to a category of modules. Then many objects in this abstract category are defined
by representatives of functors satisfying certain properties.

Definition 1.1. An additive category C is a category such that

(1) for any pair (X,Y ) of objects, the space of morphisms HomC(X,Y ) has
the structure of an additive group, an Abelian group, or Z modules, and
the composition map is linear, so given two such groups, HomC(X,Y ) ×
HomC(Y,Z)→ HomC(X,Z), this map is bilinear,

(2) there is a zero object 0, such that the space of morphisms HomC(0,0) = 0,
(3) for any pair (X,Y ) in the objects of the category, the functor C →Mod(Z)

(−)↦ HomC(X,−) ×HomC(Y,−)
is representable, meaning that there exists X∐Y such that for any W , we
have

HomC(X∐Y,W ) ≅ HomC(X,W ) ×HomC(Y,W ),
(now this definition works for any category),

(4) a similar statement for the other way, X∏Y represents

(−)↦ HomC(−,X) ×HomC(−, Y )
as well—and in factX∐Y andX∏Y are isomorphic and so can be denoted
X ⊕ Y which has natural maps i1 ∶X →X ⊕ Y and i2 ∶ Y →X ⊕ Y .

This is the object level, given maps from X → W and Y → W then there is a
unique map making the diagram commute:

X

X ⊕ Y W

Y

i1 f

h

i2 g

Now the next thing we are going to do, we’re given an additive category, but working
with a module category, w can always define kernels and cokernels, and we want the
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same thing in this additive category. We’ll state the universal property, defining
kernel and cokernel as representatives of a certain functor.

So say C is an additive category, and Z an object of it. Then we are going to,
for a given morphism f ∶X → Y , we’ll associate a similar morphism in the category
of modules, we associate HomC(−, f), this is again a functor, so we have

HomC(Z, f) ∶ Hom(Z,X)→ Hom(Z,Y )
So we’ll consider this HomC(−, f) as a functor from C to Mod(Z). So we can talk
about kernels. Then we have a functor which I denote

(−)↦ Ker(HomC(−, f)).
More explicitly, for each object W we look at the kernel of HomC(W,f), which is
a map from HomC(W,X) to HomC(W,Y ).

This is a subset of the domain, φ ∈ HomC(W,X) such that f ○ φ = 0.
We want this to be representable, so when this functor is representable, its

representing object we call the kernel of f and denote it ker f . Unlike the kernel
of linear homomorphisms. It’s not a subset of X necessarily. It’s another object in
the abstract category, and at the moment ker f ⊂X does not make sense.

This is the object level, I want to state the characterizing property. By definition,
we have the following isomorphisms:

HomC(W,ker f) ≅ Ker(HomC(W,f)).
Similarly, the cokernel is defined by considering another functor

(−)↦ Coker(HomC(f,−)).
Let me state several properties of kernels. Suppose f ∶ X → Y , in an additive
category the kernel may or may not exist. Suppose f ∶ X → Y has a kernel.
Then we have a natural morphism (natural transformation) which I’ll denote β ∶
HomC(−,ker f) → HomC(−,X). How is it defined? Let Z be an object of C and
consider βZ ∶ HomC(Z,ker f)→ HomC(Z,X). Let

α ∈ HomC(Z,ker f) ≅ Ker(HomC(Z, f)),
which is a subset of the domain HomC(Z,X). Therefore we have this map βZ . The
property of morphisms you can check. In particular, let’s apply this to Z = ker f ,
then we have the identity element of HomC(ker f,ker f), then β of this identity
element defines a map ker f →X, which we denote α. In this way, we cannot think
of it as a subset but at least there’s a natural map, and the universal property of
kernels, the kernel of f has the universal property that for any morphism e ∶W →X,
whenever you look at f ∶X → Y , whenever f ○ e = 0, there is a lift

W X Y.

ker f

e f

α

Now I want to denote images or coimages.

Definition 1.2. Assume α ∶ ker f → X has cokernel, then we denote coker(α)
as the coimage of f . Similarly, if the associated canonical map for the cokernel
γ ∶ Y → coker f has a kernel, then we denote it by the image of f .

One important lemma is the following.
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Lemma 1.1. Assuming all these exist, there is a natural map from the coimage to
the image.

I’ll give the proof of this.

Proof. We have

ker f
αÐ→X

fÐ→ Y.

We have a natural map from X to the cokernel coker(α ∶ ker f →X) By definition,
f ○ α = 0 so there is a map δ from this cokernel to Y . Then we consider a similar
diagram, we have

coker(α) δÐ→ Y
γÐ→ coker f

and we have an inclusion of kerγ into Y . We check that γ ○ δ = 0, so by universal
properties there is a map from coker(α) to ker(γ). �

In general this map may not be an isomorphism. Here comes the definition of
an Abelian category.

Definition 1.3. An additive category C is called an Abelian category if

(1) any morphism has a kernel and cokernel, and
(2) the natural map from the coimage of f to the image of f is an isomorphism

for any f .

You may wonder what is going on. Here are some examples of additive categories
which are not Abelian.

(1) First you have topological categories. If you have Banach spaces, sometimes
you need to do things that aren’t algebraic, like closure. In Banach spaces
(normed complete vector spaces with morphisms the bounded linear maps),
the kernel of f is canonically defined, but the cokernel is not. For linear
things, it’s usually the quotient of the target by the image. So there is no
canonical way of defining a Banach space on the quotient. The cokernel
of f is Y /imf . You can check that this satisfies the defining property of
a cokernel. But the problem is, there exists a homomorphism f such that
both ker f = 0 and coker f = 0 but f is not an isomorphism. If you densely
define an operator.

(2) this is more algebraic, this is the category of filtered modules over a filtered
ring, maybe this is more relevant to the Fukaya category.

Let me take a five minute break.
Now I want to talk about triangulated categories, and the motivation will be

from example, with the homotopy category of complexes, once we talk about this,
the homotopy category of complexes over an additive category, this will eventually
give us triangulated categories.

So let’s talk about the homotopy category of complexes. Let’s say C is an additive
category, then a complex in C is a sequence X = (Xn, dnX) for n ∈ Z where Xn is an
object and dnX is a map from Xn to Xn+1 satisfying that consecutive compositions
are zero in HomC(Xn,Xn+2).
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The morphisms between two complexes X and Y are the {fn}, a sequence of
maps fn ∶Xn → Y n that makes, that commute, so that the diagram commutes

Xn Xn+1

Y n Y n+1
fn

dnX

fn+1

dnY

Let C(C) be the category of complexes. This is again an additive category, let me
not talk about this but you do most things termwise.

Definition 1.4. The shifted complex, for k an integer and X a complex in C(C),
a new complex X[k], is defined by

X[k]n =Xn+k

dnX[k] = (−1)kdn+kX .

For a given morphism f ∶ X → Y , we denote by f[k] ∶ X[k] → Y [k] the map
f[k]n = fn+k.

Given a category, you can quotient by a collection of morphism, we’ll define the
homotopy category as the quotient by some collections.

Definition 1.5. A morphism f ∶ X → Y in C(C) is called homotopic to zero if
there exist morphisms sn ∶Xn → Y n−1 such that

fn = sn+1dnX + dn−1Y sn.

Lemma 1.2. The composition, we want to quotient this category by a collection of
morphisms, we want this to be multiplicative, so the composition

HomC(C)(X,Y ) ×HomC(C)(Y,Z)→ HomC(C)(X,Z)
maps

Ht(X,Y ) ×HomC(C)(Y,Z) ⊔HomC(C)(X,Y ) ×Ht(Y,Z)
to Ht(X,Z). So this allows us to define

Definition 1.6. The category K(C) is defined by, at the object level it’s the cat-
egory of complexes C(C), and the morphisms from X to Y are the maps in C(C)
from X to Y quotiented by Ht(X,Y ), i.e., the set of homotopy classes of chain
maps. There are many ways of changing the morphisms, you can try to define
these as some kind of homology.

The category of complexes will be an Abelian category of C is Abelian, but K(C)
may not be Abelian even if C is Abelian. So you need to go beyond in general.

Definition 1.7. Assume that C is Abelian. We denote by Zk(X) the kernel of dkX
and by Bk(X) the image of dk−1X and Hk(X) the cokernel of the canonical map
Bk(X)→ Zk(X), in other words Zk(X)/Bk(X), the kth cohomology group of X.

So Hk is an additive functor from C(C) to C, and Hk(X) satisfies H0(X[k]). We
have canonical short exact sequences that hold in cohomology groups in the category
of complexes in Abelian groups. For example, let me state Xk−1 → Zx(X) →
Hk(X) → 0. You have to check things because you don’t have subgroups and so
on. I want to state one important proposition.
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Proposition 1.1. You can define the notion of exact sequence, and for a short
exact sequence 0→X → Y → Z → 0 in C(C) you have a long exact sequence

⋯→Hn(X)→Hn(Y )→Hn(Z)→Hn+1(X)→ ⋯

The only thing you might want to check is the existence of the connecting mor-
phism, but I want to skip it. So many of the basic homological algebra tools work in
Abelian categories. Mitchell’s theorem says that any Abelian category is embedded
into a category of modules, so Abelian categories are in many senses equivalent to
the category of modules.

So now I want to talk about mapping cones. This works for any additive category.
Suppose f ∶X → Y are morphisms in the category of complexes C(C).

Definition 1.8. The mapping cone M(f) of f ∶ X → Y is the object in C(C)
defined by, M(f)n =Xn+1 ⊕ Y n with differential the lower triangular matrix

( dnX[1] 0

fn dY
)

There is a natural map α(f) ∶ Y →M(f) and β(f) → X[1] defined by α(f)n =

( 0
idY n

) and β(f)n = ( idXn+1 0 ).

Here is an important lemma satisfied by the mapping cone. For any morphism
f ∶X → Y , there is a map φ ∶X[1]→M(α(f)) such that

(1) φ is an isomorphism in K(C) the homotopy category and
(2) the diagram

Y M(f) X[1] Y [1]

F M(f) M(α(f)) Y [1]

α(f) β(f) [1]

β(α(f))

commutes.

Maybe I will write down what this φ is, and its homotopy inverse.

Proof.
M(α(f))n = Y n+1 ⊕M(f)n = Y n+1 ⊕Xn+1 ⊕ Y n

and we define φn ∶X[1]n →M(α(f))n as

⎛
⎜
⎝

−fn+1
idXn+1

0

⎞
⎟
⎠

and ψn = (0, idXn+1 ,0) is a homotopy inverse of φ. You can check that ψ○φ = idX[1]
and the other direction is homotopic to the identity. Also ψ ○ α(α(f)) = β(f) and
β(α(f)) ○ φ ≅ −f[1]. �

Definition 1.9. A triangle X → Y → Z → X[1] in K(C) is distinguished if it is
isomorphic to the basic triangle X → Y →M(f)→X[1] for some f .

So a triangle is called a distinguished triangle if the triangle is isomorphic to
the basic triangle. Now let me state the basic properties will be the same as the
definition of a triangulated category if you replace the homotopy category by any
general additive category.
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Theorem 1.1. The collection of distinguished triangles above satisfy the following.

TR0 Any triangle isomorphic to a distinguished triangle is distinguished.
TR1 (existence of enough distinguished triangles) if X is in Ob(K(C)), then

X →X → 0→X[1] is distinguished.
TR2 Any f ∶ X → Y in K(C) can be embedded into a distinguished triangle,

meaning that X
fÐ→ Y → Z →X[1] is for some Z and maps.

TR3 (rotation) If X
fÐ→ Y

gÐ→ Z
hÐ→X[1], then the rotation

Y → Z →X[1]→ Y [1]
is distinguished.

TR4 Given two distinguished triangles X → Y → Z → X[1], then X ′ → Y ′ →
Z ′ → X ′[1] and maps u ∶ X → X ′ and v ∶ Y → Y ′ making the diagram
commute, this can be extended to a morphism of triangles.

TR5 (the most mysterious axiom, the octahedron axiom)—then I’ll stop. Suppose

given two triangles X
fÐ→ Y → Z ′ → X[1] and Y

gÐ→ Z → X ′ → Y [1], and

there is a distinguished triangle X
g○fÐÐ→ Z → Y ′ → X, then there exist

triangle Z ′ → Y ′ →X ′ → Z ′[1]:

X Y Z

Z ′ X ′

Y ′

and various things commute and are distinguished.

For the homotopy category all these are satisfied.
Now here is the definition, you replace the homotopy category with an addi-

tive category which satisfies these five axioms, and the prototype is the homtopy
category of an Abelian category.


