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1. January 15: Damien Lejay: Introduction to spectra

This is going to be informal, so this has two meanings. First, stop me whenever
you want, ask a question. On my part, it means that I can lie and not give you the
full details. All right? So last time we saw an algebraic cohomology in the sense of
Weyl. I’ll remind you of the definition and then we’ll see what the definition tells
us.

A cohomology theory is a functor H∗ from smooth projective varieties, con-
travariant, it should go to graded Abelian groups, so they’ll be graded commutative
algebras with a non-degenerate trace,

H∗ ∶ SPV op →K − algTr .

So K here is characteristic zero field. All my varieties are over C, an algebraically
closed field. In the domain, you have the symmetric monoidal structure of taking
the product, and on the right you have the tensor product, and you require this
to be symmetric monoidal, taking the product to the tensor product. You should
have some shifts, Tate twists, and blah blah blah, because it’s complicated.

If you only satisfy this, you know nothing from this, where is the algebraic
geometry. What you always require on top of that is a transformation H∗

cl(−, k)→
H∗. Then every time you give yourself a variety, you should have something in H∗,
and this is compatible with pullback, and non-degenerate, the trace of a point is 1,
so you can recover something non-trivial.

You can think of this as a kind of sheaf of rings, and you have a morphism of
rings from the classical object to any of your homology theories. Anything is below
this initial object, the classical cohomology. It’s like the way Z controls a lot about
rings, this classical cohomology gives this kind of control.

One of the examples of such a thing is the topological cohomology, the cohomol-
ogy with values in any field that you like. I was thinking that this is very related
to this, but maybe this is not a cohomology theory. It’s a bit as for quantum field
theories, maybe it’s too hard and you look at those that are topologically invariant.
So we know that H∗(−,K) is topologically invariant. People have asked for a long
time, how do I make this representable, say that this is the same as the maps into
some object, H∗(−,K) ≅ Hom(−, ?).

In algebraic topology the answer is via spectra.
You have what is called a generalized cohomology theory and what is called a

generalized multiplicative theory. You could ask to have cohomology groups, and
how they behave linearly, and this is spectra. If you add a multiplicative structure,
you get something called ring spectra. Then later we can add a multiplicative
structure.
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There’s a very famous paper in 1945 of Eilenberg and Steenrod that I invite you
to read, it’s only 6 pages and absolutely marvelous. I’ll write the axioms that they
give for a homology theory. Then we’ll simplify the axioms and change the category
a bit. A (co)homology theory is a functor that takes pairs (X,A) (where X is a
space and A a closed subspace) to Hn(X,A) (I put no coefficients), which should
be functorial, it means that for f ∶ (X,A) → (Y,B) (that is, a map f ∶ X → Y so
that f(A) ⊂ B) I get maps

Hn(X,A) f∗Ð→Hn(Y,B)

and a boundary map

Hn(X,A) ∂Ð→Hn−1(A) =Hn−1(A,∅),

and I want this data to be functorial too.
I also want to posit long exact sequences

⋯→Hq(X)→Hq(X,A)→Hq−1(A)→ ⋯

and I ask that this be a (long) exact sequence.
The final axiom is excision, whenever you have U ⊂ A ⊂ X with U open and its

closure contained in an open set V inside A, you have

Hq(X ∖U,A ∖U) ≅Hq(X,A)

which I don’t understand but let me say something I do understand that’s equivalent

Hq(X,A) ≅Hq(X/A,A/A)

in good cases, and the final axiom that is no longer used is

Hq(∗) = 0

if q ≠ 0.
One thing you can see with some computation, you need H∗(∅) = 0, so you

can factor this through the category of pointed spaces. So you can go to pointed
topological spaces, where every space has a specified point. The point is initial
and is still the terminal object, and AbZ is pointed too, by zero, so Top∗ → AbZ

is the reduced homology. The axiom becomes a bit more manageable if we write
them for reduced homology theories. This you can think of as a baby example of a
factorization, we go toward more representability by doing this. Then H∗ we say is a
functor and when we take a map of pointed spaces, you can take the quotient which
should give you exact sequences in good cases H̃q(X)→ H̃q(Y )→ H̃q(Y /X)→ ⋯

One axiom I forgot, not always included, is that homology should commute
with disjoint unions. Another property that you can derive from this is, there is
something called a suspension, and one property of a suspension is that H̃q(ΣX) ≅
H̃q−1(X), and this is something that fills this square

X ∗

∗ ΣX

and we do this homotopy invariantly, so this is a cone with its end glued to a point.
So instead of the boundary, you can ask H̃q(ΣX) ≅ H̃q−1(X). I forgot to say

that if X ∼ Y is a homotopy equivalence then you get an induced equivalence.
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So the things you get are homotopy invariant, shift along the suspension functor,
and give you exact sequences. If you want you also have H̃n(⋁Xi) =⊕Hn(Xi).

Nom I want to talk about representability. If A is nice and you have a functor

Aop FÐ→ Set which commutes with all small limits. Then F gets a (left) adjoint G.
Because the category of sets is generated by a point, you have a single object of
Aop which is the value at a point. Then F (X) = Hom(X,G(∗)).

The exact sequence for quotients and for disjoint unions is about commutation
with limits, but the homotopy axiom and the suspension axiom are not.

Let’s say you have a map of groups between a group G and an Abelian group A.
Because A is Abelian, you can always factor through the quotient G/[G,G]. We
have functors that respect the homotopy thing and suspension thing. So we should
take topological spaces and go to something where we have inverted or quotiented
out by homotopies, where the objects are homotopy types of topological spaces.

One way to build this is to keep the same objects and add inverses of homotopy
equivalences. If you do this in a universal way, you get this homotopy category.
Now suppose you have a functor F from Top to C so that when you take a homotopy
equivalence it goes to an isomorphism, then you can always factor F through the
localization to this homotopy category.

What this means is that our homology or cohomology theories are homotopy
invariant and should factor through this homotopy category.

The only thing is that by doing this you destroy all your understanding of the
category. So what people do to understand this, they put a model structure on Top,
that’s a lot of extra data to add but then we can have a fine-grained understanding
when we invert all the things.

Because you’re invariant by the shift functor, you have to localize again to say
that the shift is invertible. So now Top[he−1][Σ−1] is the category of spectra.

There are many models for these spectra, but I’ll give one model. I’ll go back to
generalized cohomology theory and do that step by step in a kind of stupid way.

So when I write Hn(X) I imagine I have a special space so that this is [X,En],
equivalence classes of continuous maps up to homotopy. Let’s say for every n I can
represent that functor. Then since

H̃n(ΣX)congH̃n−1(X).

So I get [ΣX,En] ≅ [X,En−1], and [ΣX,En] is isomorphic to [X,ΩEn]. So I can
ask that E0 ≅ ΩE1 et cetera, so that En−1 ≅ ΩEn.

This is called an Ω-spectrum, a bunch of pointed topological spaces and homo-
topy equivalences like this. Then we’d say En(X) ≅ [X,En]. In the literature when
people start speaking of spectra, they use E∗ for the cohomology theory.

You can put a model structure on spectra (sort of) and the best example is the
Eilenberg–MacLane spectrum, there’s a space K(n,Z), where e.g., K(1,Z) ≅ S1,
and K(n − 1,Z) is equivalent to ΩK(n,Z). You could do the same thing with A.

Now I’ll mention one of the coolest things about Ω-spectra. I should tell you
about homotopy groups. I give myself an Ω-spectrum E∗, with E0 ≅ ΩE1 etc.

I know that πi(E0) ≅ πi(ΩE1) = πi+1(E1), and so this is also the same as
πi+2(E2), and is also πi+n(En). I can then define π0(E) to be π0(E0). For π1(E)
I can define π1(E) to be either π1(E0) or π1(E1).

Now there’s something I can do, I can define π−1(E) to be π0(E1). So now I
have the negative groups that I can define only starting at a certain point, π−n(E) =
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π0(En) ≅ π1(En+1) ≅ ⋯, so now this has πi in each direction. Now a homotopy
equivalence is a map of pointed spectra that induces an equivalence of all πi.

This is the same as Ω-spectra where I’ve inverted homotopy equivalences. So now
I want to be able to invert homotopy equivalences. I have a concrete category, and
once I invert these maps, I get the category of spectra that I want, the localization
of Ω-spectra.

Now I have the Brown representability theorem, which says that generalized
cohomology theories, up to homotopy, are the same as Ω-spectra, up to homotopy.
You can also represent maps between cohomology theories as maps between spectra.

So say you define a reduced cohomology theory Topop
∗

H̃∗ÐÐ→ AbZ, and there is a
functor from Topop

∗ to Spop, called Σ∞, and

H̃∗(X) ≅ HomSp(Σ∞X,E)

Well, this needs shifts so let me say instead that H̃n(X) ≅ [X,En], and that is the
solution to the problem of motives in this case.

This is a linear version, we didn’t have the monoidal structure. There is a
monoidal structure on spectra, topological spaces have the product structure. For
pointed topological spaces, then the product becomes something called the smash
product ∧. One way is that you take two pointed topological spaces, which is the
quotient of the product X × Y by the (pointed) sum X ∧ Y . This has the property
that you want which is that Hom∗(X∧Y,Z) ≅ Hom(X,Hom(Y,Z)), and this smash
product can be defined on the category of spectra. If you take Ω-spectra it’s not
easy to define.

I’ll tell you about another model, which is called just a pre-spectrum. A pre-
spectrum is a bunch of pointed spaces and instead of having homotopy equivalences
you just have maps ΣEn → En+1, what is absolutely clear is that an Ω-spectrum
gives you a spectrum, because you can use the adjunction to get from En ≅ ΩEn+1
to ΣEn → En+1, but we don’t ask about anything being a homotopy equivalence.
With prespectra you can easily define the smash product. Then I can tell you the
suspension spectrum. Take X a pointed space and then suspend it n times. This
is a prespectrum. This is a priori not an Ω spectrum. The nice way to go from
pointed topological spaces to spectra goes to prespectra, which might not land in
Ω-spectra, to do that you want to localize at homotopy equivalences. This is what
people call Σ∞. If you suspend S0 many times you get the sphere spectrum S,
probably the most important spectrum, so this one represents the stable homotopy
groups.

I have other things to say, but anyway that’s another model. People also use
other models. I wanted to introduce those to give the smash product of prespectra.

If you have E and F you want to define (E∧F )2n, which will be En∧Fn and I’ll
define (E∧F )2n+1 as En∧Fn∧S1, so this is the suspension Σ(En∧Fn). With a lot
of work you can see that this is compatible with homotopies. So you can say what
is a monoid object in this homotopy category. I want a monoid in the category of
spectra, this is a ring spectrum, so you have E ∧E → E with associativity, unit, so
on, up to homotopy. Then the cohomology theory becomes multiplicative.

So this gives an equivalence between multiplicative cohomology theories and ring
spectra. Up to now we were talking about non-multiplicative theories. These are
central to people doing stable homotopy theory. The sphere spectrum is the unit for
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the smash product, so it has the same universal property that Z has for rings, it’s
hard to understand, we don’t know its homotopy groups. But it acts everywhere.

With the Eilenberg–MacLane spectrum, you can turn a ring into HR, the ring
spectrum, and you have a morphism of ring spectra S→HR, including HZ, so you
can go below Z to S, and this is what people want to do to go to spectral algebraic
geometry. This is stuff, K-theory, cobordism, between S and HZ.

I could speak about topological K-theory, maybe, with my remaining time. So
K-theory has things in all directions, not just in positive degrees.

So I’ll define K-theory as a spectrum, I’ll define an Ω-spectrum. Because of my
equivalence that’s the same as defining the cohomology theory. If X is compact,
then I’ll define, and then I’ll extend by universal constructions to other spaces.

So K0(X) is the set of equivalence classes of finite dimensional vector bundles
on X, complex vector bundles and because I can always take the sum of vector
bundles, I get the direct sum, and I want an Abelian group, and there’s a universal
construction to give a group, with pairs of vector bundles (V1, V2) with the relation
(V1, V2) ∼ (V1 ⊕Z,V2 ⊕Z) where Z is anything.

Since X is compact, any vector bundle is a factor of a free bundle. I can always
find a Z so that V1 ⊕Z ≅ Cn. So my Abelian group of (Vect(X),⊕) as (V,n) with
n ∈ Z, I think of this as V −Cn. This is representable already by a topological space,
there is a candidate for that. People in algebraic geometry can say that this is the
same as the homotopy classes of maps from X to BU ×Z, this is BU the classifying
space for linear bundles of varying dimension and n is the virtual class.

I said that I want a spectrum, so I need to define the other guys. I could say
that K−1(X), this has to be [X,Ω(BU × Z)] and K−2 is [X,Ω2(BU × Z)]. Then
Bott periodicity says that K−2(X) ≅K0(X). So this has non-trivial groups in both
directions.

There are variants, like with real bundles, where you have BO, and then you have
eight-fold periodicity. That’s an example of a spectrum, in fact a ring spectrum,
which comes from the external tensor product.

The literature is enormous on that.


