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1. Feb 6: Christophe Wacheux: A∞-structure on Fukaya categories II

I have way too much stuff. Last time I showed the formula of the derivative that
we will, the differential of the Floer complex.

∂(p) = ∑
q∈L0⋔L1

[u]∶µ([u])=1

#M(p, q; [u], J)Tω[u]q.

In order to make it so that this is a zero dimensional manifold, I want to count
only Maslov index 1 holomorphic disks. Because I have an orientation, in the good
case, a spin structure on the Lagrangian, I can do this and get an orientation on
the moduli space and get signs so that I can now count with signs, and that’s the
count I put here. This ω[u] is ∫D u

∗ω. There is lots of reason for this not to be
well-defined. This is a compactness issue which is taken care of using the Gromov
compactness theorem.

This, as we saw earlier, belongs to ΛR, the Novikov ring.
The plan today is to try and define some of the things, I want you all to see

the actual formula for the k-ary operation, and then after that I discuss as many
details as possible.

Just to mention, the theorem was to show that

Theorem 1.1 (Floer). If k = Z2 and [ω].π2(M,Li) = 0, then

(1) ∂ is well-defined,
(2) ∂2 = 0,
(3) HF (L,L) ≅H∗(L,Z2), and
(4) HF (L0, L1) doesn’t depend on the choice of J , of isotopy class of Li

This result helps prove the Arnold conjecture, at least in this case. Then it was
extended to another very nice setting. It was extended to the case which is called
monotone, also a very important case, Yong-Geun did it, that ∫D u

∗ω = λµ([u]) for
u representing a class in π2(M,L).

Now I’ll make a huge jump to define, to give any sense to this formula, this is
assuming everything works fine. I should write “AEWF,” and I’ll try to give sense
to what this acronym means. Now the product that we will call m2, Now you
have a pair of pants [sic]. It’s the disk with three marked points, each of which is
sent to one intersection (between L0, L1, and L2 pairwise). So z0 goes to q in the
intersection of L0 and L2 and zi to pi in the intersection of Li−1 and Li. Then we
have

m2 ∶ CF (L1, L2)⊗CF (L0, L1)→ CF (L0, L2)

given by

m2(p2 ⊗ p1) = ∑
q∈L1⋔L2

[u]∣µ[u]=0

#M(p1, p2, q; [u], J)T
ω[u]q.
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This is the formula. And I guess now we start to understand that we have some pat-
tern going on. The whole general operation mk ∶ CF (Lk−1, Lk)⊗⋯⊗CF (L0, L1)→

CF (L0, Lk) is given by

mk(pk ⊗⋯⊗ p1) = ∑
q∈L0⋔Lk

[u]∣µ([u])=2−k

M(p1, . . . , pk, q; [u], J)T
ω[u]q.

You can guess, these verify A∞ relations. Maybe this is not worth taking time to
verify.

I really want to address a bunch of problems. If I want an honest A∞ structure,
then I need to define a grading. So now I want to talk about Maslov index and
grading of CF . First we need an orientation on the Lagrangian if you want to
work over something other than Z2, then you will need to be able to define a
consistent grading. The way to do this is with the Maslov index. If you have your
Lagrangian manifold living in some big ambient symplectic manifold, if you look
at the tangent space, then TpL is a Lagrangian subspace of TpM . What are the
Lagrangian subspaces of M? If I give you a distribution of Lagrangian subspaces,
does it integrate to a Lagrangian submanifold? So if I say now, I look at, just,
on TpM it’s just the same as R2n, I can locally trivialize, and I define LG(n) as
the set of Lagrangian vector spaces of R2n, the “Lagrangian Grassmanian.” There
is a result which tells you that this is isomorphic to U(n)/O(n). You can look

at det2 ∶ U(n)/O(n) → S1, and this goes, for π1[det2] ∶ π1(U(n)/O(n)) → Z, and
that’s an isomorphism.

Essentially this is going to define µ. I’ll define two things, I’m going to define
the Maslov index of a holomorphic strip, the Maslov class of the Lagrangian, and
the degree of a point. Let me write, now given u a J-holomorphic strip, let me
remind you how this looks [picture].

If I look at u∗R×{i}TLi ∶ [0,1] → LG(n) and call that `i, then my path of La-

grangian subspaces, since L0 and L1 intersect transversally, then

`0(0) ⋔ `1(0) and `0(1) ⋔ `1(1).

As you said, Gabriel, I want to identify (R2n, ω0) ≅ (C, ω) and I want to say
that `0 ∈ LG(n), there exists an A0 ∈ GLn(C) such that A0(`0(0)) = Rn and
A0(`1(0)) = iRn.

Now I call this λ(t) ∶= A−1
0 (ei

π
2 tRn). [pictures].

Now I identify what is the path going from the tangent to the tangent, between
`0(0) and `1(0). I can do the same stuff with a different identification for λ1(t),
between `0(1) and `1(1). Now I will define the Maslov index of a J-holomorphic
strip.

Definition 1.1. Define γ ∶ [0,1]→ LG(n) by γ = `0 ● λ1 ● `
−1
1 ● λ−10 and then

µ([u]) ∶= π1[
2

det][γ]

and that’s the Maslov index of a strip.

We’ve defined the Maslov index of a strip. In order to start doing all this business
I need a spin structure, which is a choice of a section in the double cover of U(n),
or O(n).

Now to define a Z-grading, I will need exactly to make sure that µ[u] depends
only on ∣p∣− ∣q∣ but not on [u] even if I didn’t define it yet. To make it happen, one
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thing is to ask for 2c1(TM) = 0, which, now you get a hint for why this works in Z2.
Why do you need this? I’ll define something more elaborate than a Lagrangian,
something we called a [unintelligible]Lagrangian submanifold, taking a universal
cover of the Lagrangian Grassmannian.

So c1(TM) tells me, take Θ ∈ ∧nT ∗M ⊗ C, then ϕ(D) = arg(Θ∣D) ∈ S1. Now
you define ϕ̃(D), a choice of smooth lift of ϕ(D), and since π1(LG(n)) is Z, you
can think of the universal cover,


