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1. January 16, 2018: Byunghee An, bar and cobar

Today I am going to talk about bar and cobar constructions again, between
categories of algebras and coalgebras.

I think that one of the goals is to explain this diagram. You have a category Alg
of algebras and a category Alg∞ of ∞ algebras, and a category Cog of coalgebras,
and a full subcategory of fibrant and cofibrant objects. Among these four categories
we can think of algebras as a non-full subcategory of A∞ algebras. We can think of
coalgebras which are fibrant and cofibrant as a full subcategory of coalgebras. We
want to define functors between these:

Alg Alg∞

Cog Cogcf

B B∞Ω

and B∞ will be an equivalence and all of these will induce equivalences on the
homotopy categories.

I will define everything but this is my goal.
Let’s start with algebras Alg. This is the category of unital augmented dg alge-

bras over k a field, objects are (A, ε) where A is a unital algebra and ε is an algebra
map A → k, and this has a model category structure where the weak equivalences
are the quasi-isomorphisms, the fibrations are the degreewise surjections, and the
cofibrations are the maps with the left-lifting property against trivial fibrations.

It is known

Theorem 1.1. This data defines a model structure on Alg.

Now I want to define the category of coalgebras, so let me denote Cog′ the
category of coaugmented dg coalgebras, an object consists of a complex C with
differential d, a coproduct ∆, a counit η and a coaugmentation ε. We require that
d is a coderivation against ∆, so that (d⊗ 1 + 1⊗ d)∆ = ∆d, that ηε = 1k.

For example, let (V, d) be a complex. Then T c(V ), the “tensor coalgebra” on V ,
is ⊕n≥0 V

⊗n, and the coproduct is defined by the sum of all possible separations.

∆(v1 ⊗⋯⊗ vn) =∑(v1 ⊗⋯⊗ vi) ⊠ (vi+1 ⊗⋯⊗ vn).
So for example ∆(v) = 1 ⊠ v + v ⊠ 1.

There is a canonical projection T c(V )→ V taking the V summand. But T c(V )
is not cofree on V . This does not have a universal property, that coalgebra maps
to T c(V ) are the same as maps to V . Suppose we have C a coalgebra and take a
chain map C → V . Then there need not be a lift to T c(V ). The answer is no.

So I want a smaller (full) subcategory Cog whose objects are cocomplete, meaning

that C = ⊔ker (C → C⊗n → (C/k)⊗n) where C → C⊗n is the iteration ∆(n) of ∆. If
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you take the coproduct enough times it has the base field element in at least one
factor. It cannot be decomposed in a trivial way any more.

We can easily see that the tensor coalgebra is cocomplete, any element is in the
form, a finite sum of v1 ⊗⋯vn, and if you take the coproduct to n + 1 copies, there
will be some 1 somewhere. Actually it is not only cocomplete, it is cofree in the
category of cocomplete coalgebras. For any C in cocomplete coalgebras and any
chain map from C̄ to V we can always find a map from C to T c(V ). These should
be counital maps and send k to 0. So T c(V ) is cofree on V in Cog.

So let’s let C be a cocomplete coalgebra and A a unital augmented algebra.
Then we want to consider Homk(C,A), well, really, we want chain maps that are
compatible with augmentations. We want a differential and algebra structure, and
I’ll put this in Alg, and the differential will be D and the multiplication ∗. The
differential is D(f) = dAf − (−1)∣f ∣fdc. The product is µA(f ⊗ g)∆c, the unit is
ηA ○ ηC .

The nontrivial thing to check is that d is a derivation with respect to the product.

D(f ∗ g) =Df ∗ g + (−1)∣f ∣f ∗Dg.
The left hand side is

dAµA(f ⊗ g)∆C − (−1)∣f ∣+∣g∣µA(f ⊗ g)∆CdC ,

and the ∆C and dC have compatibility and can be interchanged, and likewise dA
and µA, so we get

µA(dA ⊗ 1 + 1⊗ dA)(f ⊗ g)∆C − (−1)∣f ∣+∣g∣µA(f ⊗ g)(dC ⊗ 1 + 1⊗ dC)∆C

= µA(dAf ⊗ g + (−1)∣f ∣f ⊗ dAg) − (−1)∣f ∣+∣g∣µA((−1)∣g∣fdC ⊗ g + f ⊗ gdC)
= µA(Df ⊗ g + (−1)∣f ∣f ⊗Dg)∆C

but this is the multiplication in A and the coproduct in C so this is

Df ∗ g + (−1)∣f ∣f ∗Dg,
which is the right-hand side.

We call τ ∈ Hom1
k(C,A) a twisting cochain if Dτ + τ ∗ τ = 0 and ετε = 0. We

define a set Tw(C,A) as the set of all twisting cochains.
For a given A you get a contravariant functor C ↦ Tw(C,A). We need to check

functoriality, that if you have a map C ′ → C that you get a map Tw(C,A) →
Tw(C ′,A), by postcomposing.

We need to check that this is a twisting morphism. If τ ∈ Tw(C,A) and f ∶ C ′ →
C, we need to check that D(τ ○ f) + (τ ○ f) ∗ (τ ○ f) = 0.

But this is

dA(τf) − (−1)(τf)dC′ + µA(τf ⊗ τf)∆C′

= (dAτ − (−1)τdC)f) + µA(tau⊗ τ)(f ⊗ f)∆C′

=D(τ)f + µA(tau⊗ τ)∆Cf

= (D(τ) + τ ∗ τ)f = 0.

This functor is nice. It’s representable, and I want to give an explicit representation,
which is the bar construction. We define BA as the tensor coalgebra T c(SĀ), where
SA is the shift of the algebra A. Then the differential is ∑1⊗−dA⊗1⊗− plus another
term using the (shifted) algebra b2 (which is s−1µs⊗ s) which is ∑1⊗− ⊗ b2 ⊗ 1⊗−.
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Then BA ∈ Cog, and the canonical projection is to SĀ, and by postcomposition
you have a morphism to Ā, which we denote τ0. I want to show that τ0 is a twisting
cochain. The projection map is degree 0 and the other map is degree 1, so I want
to check that D(τ0) + τ0 ∗ τ0 = 0.

But this is, well, τ0 = S−1π. Then it’s the same as saying that

dA(S−1π) − (−1)(S−1π)dBA + µA(S−1π ⊗ S−1π)∆BA = 0.

If we put v1⊗⋯⊗vn where n ≥ 3 then the projection right away gives 0. We need to
check or v1 ⊗ v2. If you take the latter, then you get, by taking the definition, you
get S−1b2(v1, v2), and the differential dBA is some dA terms and a b2(v1, v2) term.
One of these vanishes because of the projection; the other gives the A∞ relation.
The case with just v is easier.

So what I proved here is that τ0 is a twisting cochain, it’s contained in the set
Tw(BA,A). Now I want to prove that Tw(C,A) is bijective with HomCog(C,BA).
I wnat to show this representation statement. So a map τ ∶ C → A gives a map
C → BA by the universal property. To prove bijectivity, we need to check that
τ̃ ○ τ0 ∈ Tw(C,A).

But this is not hard. The equation for D(τ0 ○ τ̃) + (τ0 ○ τ̃) ∗ (τ0 + τ̃) can be
rewritten (as previously (Dτ0 +
tau0 ∗ τ0) ○ τ̃ = 0.

Dually, this construction, we started with a fixed A and get a contravariant
functorp Dually if we fix a coalgebra then we get a covariant functor by assigning
the same set. It’s corepresentable, and the elements represented by it are “cobar.”
Let’s have a break.

Damien asked why we consider twisting cochains. I said I don’t know why.
[Christophe: They are the first nontrivial examples of Maurer–Cartan elements.

These are very simple elements on which we can express the calculus on A∞ cate-
gories. Knowing these is enough to reconstruct your A∞ category. You can reduce
to calculating these. This corresponds in the Fukaya category, say, to a very precise
calculus.]

You can use a twisting cochain to deform the A∞ structure. So I want to define
a functor Ω ∶ Cog → Alg and will show that Ω and B are adjoint to each other.

Now I fix a coalgebra C, and whenever we have an algebra A we can define a set
of twisting cochains Tw(C,A), and this is functorial, A ↦ Tw(C,A), covariantly.
So we should prove that a morphism A → A′, by postcomposing you get a map
Tw(C,A) → Tw(C,A′). We should check that D(fτ) + (fτ) ∗ (fτ) = 0, and this
is the same as f(Dτ + τ ∗ τ) = 0, so that this functor is well-defined. Moreover
it is actually representable by an element “Cobar,” ΩC, which is nothing but the
tensor algebra T (S−1C̄), this is the tensor algebra. So we want to regard this as an
algebra, so we need a differential, and d = ∑1⊗− ⊗ dC ⊗ 1⊗− +∑1⊗− ⊗ S−1∆⊗ 1⊗−.
Here S−1∆ is something like (S−1 ⊗ S−1)∆S. We need to check that d is actually
a derivation of the tensor product. I don’t want to check the details.

There’s a canonical map, something like C → S−1C → ΩC, this is a degree 1
map, and we can denote this by, well, I want to show that this is in Tw(C,ΩC).
So we need to check that D(iS−1) + (iS−1) ∗ (iS−1) = 0 but this is

dΩC(iS−1) − (−1)iS−1dC + µΩC(iS−1 ⊗ iS−1)∆C

but this is just

dΩCis
−1 − (−1)idS−1CS−1 + µΩCS

−1∆.
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but this is the definition of dΩC , and so this is very complicated but conceptually
this is nothing but the definition of the differential on ΩC. So this ι̃ is a twisting
cochain, and the functor from algebras to sets A ↦ Tw(C,A) is represented by
ΩA, it’s HomAlg(ΩC,A). To see this we have the kind of situation C → A, and
the canonical inclusion C → Ω(C), but this tensor algebra is a free object in the
category of algebras, so we can always find a morphism from Ω(C) to A so we only
need to prove the other way, that the composition of τ̃ ○ ĩ is a twisting morphism.
But this is the same as like τ̃(Dι̃+ ι̃∗ ι̃), and we showed that ι̃ is a twisting cochain,
so this is zero.

So what we’ve shown is that there are two bijections

HomCog(C,BA) ≅ Tw(C,A) ≅ HomAlg(ΩC,A),

there are such bijections, and we have these two functors, and these are adjoint to
each other. So Ω is left adjoint. This is bar and cobar.

I wnat to mention a model structure on the category of coalgebras. A map is a
weak equivalence in Cog if and only if Ω(f) is a weak equivalence in algebras. The
cofibrations in Cog are the degreewise injective morphisms. The fibrations are the
morphisms which have the right lifting property against trivial cofibrations.

Theorem 1.2. (Lefèvre–Hasegawa)

● This data gives a model structure on Cog and Ω preserves cofibrations
and trivial cofibrations and B preserves fibrations and trivial fibrations,
so (Ω,B) are a Quillen adjunction. Actually Ω and B are Quillen equiva-
lences. In other words they induce an equivalence of homotopy categories.

● All objects in Alg are fibrant; all objects in Cog are cofibrant. An algebra
A is cofibrant if and only if it is a retract of ΩC for some C in Cog and
a coalgebra C is cofibrant if and only if it is isomorphic as an underlying
graded coalgebra to T cV for some V .

● If A and A′ are fibrant and cofibrant in Alg, then f ∼ g as maps A→ A′ if
and only if there exists h ∶ A→ A′ of degree −1 with hµA = µA′(f ⊗h+h⊗g)
and f − g = dA′h + hdA. There is a dual statement for coalgebras.

So we have

Alg

Cog Cogcf

BΩ

and to complete the corner, we should pass to Alg∞ the category of augmented
strongly unital A∞ algebras, which is equivalent to considering non-unital A∞ al-
gebras. This has this sequence of maps (A, bn), where bn ∶ A⊗n → A, with all maps
of degree 1. The unital means there is a unit element and it should be zero unless
n = 2.

As before we want to define something like Hom●
k(C,A) for C ∈ Cog and A ∈

Alg∞. We want to equip this with, this has an A∞ structure and there is a unit
and stuff like that.

If f is a map, and we want to define b1(f) = bA1 f − (−1)∣f ∣fdC . For n ≥ 2, we
have

bn(f1, . . . , fn) = bAn (f1 ⊗⋯⊗ fn)∆(n),
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and we need to check that Hom(C,A) with these multiplications is an A∞ algebra.
It’s not hard to check this but I won’t prove it all. I’ll show one simple thing. If
n = 2, then b2(1⊗ b1) + b2(b1 ⊗ 1) + b1b2 should be zero, and this is

(−1)∣f1∣bA2 (f1 ⊗ (bA1 f2 − (−1)∣f2∣f2dC))∆ + bA2 ((bA1 f1 − (−1)∣f1∣f1dC)⊗ f2)∆
+ bA1 (bA2 (f1 ⊗ f2)∆) − (−1)∣f1∣+∣f2∣+1bA2 (f1 ⊗ f2)∆dC

and [some cancellation]. So one can check A∞ relations, so this defines an A∞
algebra structure on the Hom set.

The equation is something like

∑
n≥1

bn(τ ⊗⋯⊗ τ) = 0,

and now τ ∈ Hom0
k(C,A).

There is a canonical way to consider an algebra by setting all higher multiplica-
tions to be zero, so this equation is the same as b1(τ)+b2(τ ⊗τ) = 0. So then in this
case by carefully considering the sign, this is nothing but the equation Dτ+τ ∗τ = 0.

So we want to define the set Tw∞(C,A) as the solutions to this equation.
Then this comment Alg ⊂ Alg∞, if A is an algebra, then this set is the same as

Tw(C,A).
As before one can regard this as a functor Cog → Set which sends the coalgebra

C to Tw∞(C,A). I’ll skip the proof of functoriality (this is actually very easy, you
just pull f ∶ C ′ → C out to the left, this is a standard argument we’ve used many
times).

This functor is representable. You define B∞A for an A∞ algebra as T c(A), the
reduced version, then we want to define a differential, the differential is the sum
of 1⊗− ⊗ bi ⊗ 1⊗−, and one can check that d is a coderivation with respect to the
coproduct. But I want to skip. So it’s almost the end. So I want to show that
representability Tw(C,A) ≅ HomCog(C,B∞(A)), I want to prove this, and before
I prove that, let’s consider the canonical projection B∞A → A, this is degree 0,
and I want to show that this is a twisting cochain in Tw∞(B∞,A), and then by
universal properties, for any twisting cochain τ ∶ C → A this lifts to a coalgebra
map C → B∞A which pulls the canonical twisting cochain on B∞A to the given
one on C.

Let me mention some facts. If V is a graded vector space then the set of A∞-
structures on V is in one to one correspondence with coalgebra differentials on TSV .
If A and A′ are A∞ algebras, then HomAlg

∞
(A,A′) is in one to one correspondence

with HomCog(B∞A,B∞A′). This means that B∞ is a functor from A∞ algebras to
Cog, it’s actually fully faithful.

Theorem 1.3. If C is a coalgebra, then C is fibrant cofibrant if and only if C ≅
B∞A for some A∞ algebra.

This implies that the functor is essentially (quasi-)surjective. Then this is very
close to an equivalence of categories, it’s a (quasi-)equivalence. Moreover, C in Cog

has a minimal model where I ∈ Cogcf and I
∼Ð→ C and there exists f−1 ∈ Cog if

and only if there is an inverse in Ho(Cog). The theorem is that any cocomplete
coalgebra has a minimal model, and on the other hand, if Amin is a minimal model
for A, then this minimal model, this is a kind of A∞ algebra with b1 = 0. Of course,
this is quasi-isomorphic to A.
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Then the functor B∞ makes a bridge between the two minimal models. B∞ of
a minimal model of A. is isomorphic to the minimal model for B∞(A).

Now I can draw my diagram.

Alg Alg∞

Cog Cogcf .

B B∞Ω

And if you take homotopy categories everything is an equivalence of categories. So
in some sense we have four different descriptions of one algebra, but homotopically
they are all the same, there are no new homotopic descriptions. In particular, the
A∞ description is homotopically not new but gives several types, that’s the story I
wanted to tell. I will stop here.


