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Okay, my title is the bar functor. I want to define functors between the categories
of augmented algebras and the coaugmented coalgebras. I’ll also use A∞ algebras.
I have a non-full subcategory inclusion of algebras and A∞ algebras; I also have
a full subcategory inclusion of cofibrant fibrant coalgebras and coalgebras. I have
bar and cobar between algebras and coalgebras. I want to define a bar functor
B∞ from A∞ algebras to the cofibrant fibrant coalgebras which is an equivalence
of categories. I want to show that all of these functors induce equivalences on the
homotopy categories.

Actually, using this, one can think, well,

Proposition 1.1. Let A be an A∞ algebra over k. Then there exists an algebra
U(A) such that A → U(A) is a quasi-isomorphism, this is just the composition of
the three functors, ΩB∞A.

Let’s start with algebras. k is a field and algebras are always augmented and
unital. Unital means it has an element 1. Augmented means there is an map
ε ∶ A → k which sends 1 to 1. This has a model structure with weak equivalences
the quasi-isomorphisms and fibrations the surjections. The cofibrations have some
lifting property.

There is a theorem, that these three define a model structure on differential
graded (augmented unital) algebras.

Now I want to define coalgebras and the bar and cobar construction. Here I want
augmented, dg coalgebras, it’s basically a chain complex, it has a differential and
a grading, and it has another operation, called a coproduct, (C,∆, d, ε, η). This is
∆ ∶ C → C ⊗ C satisfying ∆ ○ d = (1 ⊗ d + d ⊗ 1) ○ ∆. Our ε is a coaugmentation
k→ C and η is a counit C → k. This satisfies η ○ ε = 1k.

Now let V be a complex. Then TV = ⊕V ⊗n. One can assign a coproduct here
like this: ∆ ∶ TV → TV ⊠ TV (introducing ⊠ to separate the tensors) then

(v1 ⊗⋯⊗ vn)↦∑(v1 ⊗⋯⊗ vi) ⊠ (vi+1 ⊗⋯⊗ vn).
This sum ranges from 0 to n, and one can prove that this defines a coproduct.

I want to define a coaugmentation and unit map. You have an inclusion k → V ⊗0

and the projection is the counit.
So to show that this has a coalgebra structure I write T cV , regarding this as a

coalgebra.
So if you have a complex V then we can make TV an algebra, and this con-

struction is kind of a free functor, from complexes to algebras, and this satisfies
some universal property. We have a canonical map V → TV , and given a map from
V → C, a dg map to an algebra map C.
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As a coalgebra TV is not cofree. If you have a map T cV → V , even if you have a
map, a k-linear map C → V , we might not be able to fill with an arrow C → T cV .

So maybe our, there is another construction to make something slightly bigger,
a bigger coalgebra which is cofree, but in this talk I want to shrink our category of
coalgebras. Instead of thinking of all coalgebras, I want to consider some “cocom-
plete” coalgebras. We say C a coalgebra is cocomplete if C = ⋃ker(C → C⊗n →
(C/k)⊗n). If you apply the coproduct (n − 1) times, then mod out by the scalar
part at each factor, the kernel here means that if we take some iterated coproduct,
then there is eventually some scalar in each factor. Then Cog is our category of
cocomplete coalgebras.

One can prove that T cV → V is now a cofree cocomplete coaugmented coalgebra.
Any element is a sum up to a finite length of tensors. If you take the coproduct
more than n times you will have at least one scalar factor. So it’s cocomplete
(conilpotent). Now it’s cofree in this category.

Now let A be a dg algebra and consider a chain complex of k-linear maps
Homk(C,A), and these are both graded, and we want a differential on here and

a multiplication. So d(f) = d ○ f − (−1)∣f ∣f ○ d. Then the product f ∗ g (for µ
the product on A) is µ ○ (f ⊗ g) ○ ∆. We need to check that this differential is a
derivation with respect to this product, but having done so, then Homk(C,A) is a
dg algebra.

Here’s a definition.

Definition 1.1. A twisting cochain τ in Hom1(C,A) is a element that satisfies
dτ + τ ∗ τ = 0

So then Tw(C,A) will be the set of twisting cochains, and this gives for fixed A
a functor from Cog to sets. This is a subset of Hom(C,A). If it defines a functor
it should be contravariant.

So given f ∶ C →D, we can ask if τ ○ f is a twisting cochain for τ twisting in D.
Then we see d(τ ○f)+(τ ○f)∗(τ ○f) = d○τ ○f +τ ○f ○d+µ○(τ ○f)⊗(τ ○f)○∆ and
since f commutes with coproducts and differentials this is (dτ + τ ∗ τ) ○ f which is
zero.

So this is really a functor. This functor is (co)representable byBA, so Tw(C,A) ≅
Hom(C,BA), and so replacing C with BA we get a special (universal) twisting
cochain τ0.

So BA = T c(SA) along with a differential D which has two components, one

which looks like 1⊗a ⊗ dsA ⊗ 1⊗b and the other given by 1⊗a ⊗ b2 ⊗ 1⊗(b−1). You
have another functor, fixing C instead of A, defining a set Tw(C,A), and one can
prove that this is a functor. The representation is denoted by ΩC, so that Hom (in
algebra) between ΩC and A is in bijection with Tw(C,A). Indeed ΩC is the tnsor
algebra of T (s−1C) along with a differential.

So Ω and B are adjoint to each other.

Theorem 1.1. (Lefévre–Hasegawa) these form a Quillen equivalence. This means
that they preserve the model category structure and moreover induce an equivalence
of categories on the homotopy level.

Secondly, all algebras are fibrant and all coalgebras are cofibrant. So A is cofi-
brant if and only if it is a retract of a cobar of something; C is fibrant if and only
if it is quasi-free.
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The homotopy relation between two maps, f and g are morphisms between A and
A′ fibrant and cofibrant objects. Then f ∼ g if and only if there exists a homotopy
h ∶ A → A′ of degree −1 such that (some augmentation condition is satisfied) and
h ○ µA = µB ○ (f ⊗ h + h⊗ g) and f − g = dh + hd.

I didn’t say anything about the model category structure in coalgebras. In
coalgebras, the weak equivalences are those whose image Ω(f) is a weak equivalence
in algebras. The cofibrations are injections. The fibrations have the lifting property.

Let’s see how this result is related to A∞-algebras and minimal models. An A∞
algebra (maybe with augmented strict unit), as before, C is a coalgebra, cocomplete
(or conilpotent) and we want to consider all the k-linear maps from C to A. By
using the A∞ algebra structure, we can define an A∞ structure on Hom(C,A) as

bn(f1 ⊗⋯⊗ fn) = bAn ⊗ (f1 ⊗⋯⊗ fn) ○∆(n).
As before I want to define twisting cochains, as the set of morphisms τ satisfying

the Maurer–Cartan equation,

∑ bn(τ, . . . , τ) = 0

Now fix A. Whenever we choose a coalgebra C, we can assign a set Tw(C,A), and
one can prove that this is functorial and moreaever representable, by B∞A. Then
Tw(C,A) ≅ HomCog(C,B∞A). Practically, B∞A is T c(sA) with some differential.
Then actually, in fact, if you use V a graded vector space then there is a bijection
of sets between A∞ structures on V and differentials on the coalgebra structures
on T (sV ). Another fact, the hom sets, HomA∞(A,A′) ≅HomCog(B∞A,B∞A′), so
B∞ as a functor from A∞ algebras to coalgebras is fully faithful.

Moreover, there’s a theorem

Theorem 1.2. (Lefèvre–Hasegawa) This functor B∞ is essentially surjective to
cofibrant-fibrant objects.

So any cofree coalgebra has some A∞ algebra with equivalent B∞.
Secondly, for each C there exists a minimal model and if A has Amin, then

B∞(Amin) is the minimal model of B∞(A).
So we have a diagram that I drew at the beginning.

Alg Alg∞

Cog Cogcf

B B∞Ω

fully faithful

I was supposed to say more but let me just give one more example. I mentioned
about the classification of fibrant and cofibrant objects. Actually in Alg, when A is
cofibrant then it must be free as a graded algebra but the converse is not true. So
say ∣1∣ = 1, then k⊕k1+⋯ and d(1) = 1⊗ 1. Then by using this you can show that
this has homology that vanishes except at the bottom, and so you have a trivial
“cofibration” from the trivial algebra. Then it’s clear that k is fibrant cofibrant, so
that we should be able to invert the map up to homotopy. But we can’t.


