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1. November 7: Christophe Wacheux: Homotopy Algebras

(My understanding of) A∞ algebras and A∞ categories. I’ll define what is an A∞
algebra and I don’t know if I’ll define the categories, we’ll see along the way. For
reference, I’m following the work of Keller, if you take A∞ algebra the first work
you thought of is Keller, his student K. Lefévre-Hasegawa, but not Kontsevich,
which apparently adopts a very different approach. I’m convinced it has its merits
and all, but it was inaccessible and doesn’t give a good introduction.

Okay, now I’m going to set k a field, V a graded k-vector space, so maybe
sometimes I’ll just say GVS, so I mean I have V = ⊕p∈Z V p and I define V [q] by
(V [q])p ∶= V p+q and you will see that I’ll make an important use of this shift. If
v ∈ V p, then it is said to be homogeneous of degree p and we say ∣V ∣ = p.

The category G, I don’t know if there is conventional notation GrV, has objects
graded k-vector spaces and morphisms, let M and L be two graded vector spaces,
then HomGrV(M,L) is a graded vector space, in category theory it means something
I guess when the homs are again an object, with component

HomGrV(M,L)r ∶=∏
p∈Z

HomV ec(M
p, L[r]p).

So f is said to be of degree r.
So of course you have to pay attention to how you define your morphisms even

though they might look the same. If you shift then the degree will change.
Now I will define what is called the monoidal structure. First I’ll define M ⊗ L

to be a graded vector space with

(M ⊗L)n = ⊕
p+q=n

Mp
⊗k L

q

where here we have the tensor product of vector spaces, the usual tensor product.
Now if f ∶M →M ′ and g ∶ L → L′, I also need to define what is f ⊗ g, this will

go from M ⊗ L → M ′ ⊗ L′, and I define this so that ∣f ⊗ g∣ = ∣f ∣ + ∣g∣, which is a
consequence of my definition, I can define it by saying that for v and w homogeneous

(f ⊗ g)(v ⊗w) = (−1)∣g∣∣v∣f(v)⊗ g(w).

This is some trick because to get the symbols from the one order to the other
order you should permute the g and the v. This amounts to a choice of a map
M ⊗L→ L⊗M , x⊗ y ↦ (−1)∣x∣∣y∣y ⊗ x.

The neutral element for ⊗ is e ∶=

⎧⎪⎪
⎨
⎪⎪⎩

e0 = k

en = {0}, n ≠ 0.
So now GrV is a symmetric

monoidal category. An interesting point here is that the morphisms of graded
vector spaces are again graded vector spaces. Now if I have (M,dM) a cochain
complex, meaning that dM ∈ HomGrV(M,M)1 satisfying d2M = 0, and for (M,dM)
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and (L,dL) two complexes, we equip HomGrV(M,L) with differential δ where δr ∶

HomGrV(M,L)r → HomGrV(M,L)r+1, with δr(f) = dL ○ f − (−1)∣f ∣f ○dM of degree
f .

I guess, then, f and f ′, morphisms of graded vector spaces (or maybe I’d
better reduce to maps of complexes), are homotopic if f − f ′ = δ(h) for some

h ∈ HomGrV(M,L)∣f ∣−1.
A note is that h and h′ homotopic induce the same maps on cohomology. Nor-

mally I’m also supposed to set, if I shift, I set dV [1] = −dV .
Now we are ready for A∞ algebras.

Definition 1.1. AnA∞ algebra is a graded vector spaceA with maps bn ∶ (A[1])⊗n →
A[1] such that the degree of bn is 1, for n ≥ 1.

Here I should stop and make a big comment. Sometimes you want maps A⊗n to
A of degree 2 − n. Understanding the difference of signs is sometimes an annoying
thing.

So I just wanted to say that the link between mn and bn, if what I read in
Lefèvre-Hasegawa, there is a formula linking the bn and the formula linking the
mn, there are no pluses or minuses linking the bn, but for mn there are signs, and
he said that, yes, there is no precise, no canonical choice of signs between the mn,
and, which, I think this is, uh, [some discussion]

Let’s write the formula bn satisfies.

∑
i+j+`=n

bi+1+` ○ (1⊗i ⊗ bj ⊗ 1⊗`) = 0

for all n ≥ 1.
Several comments. The advantage of defining bn like this, now I have maps that

are all of the same degree, and also, because I take this as a convention, with this
I don’t have sign troubles, but I’ll have sign issues.

I never apply it to an element, I’ve never come across it. Okay, so now a repre-
sentation, if I take, or realization, [pictures].

In this case he has a sign of (−1)ij+`, but he says there’s no canonical choice, so.
Okay so what do we have? For n = 1 you have b1 ○ b1 = 0 so (A[1], b1) is a

complex.
For n = 2, I can have b2(1 ⊗ b1) + b2(b1 ⊗ 1) + b1(b2) = 0. If you remember the

formula I erased, we know that b2 goes from A[1]⊗A[1]→ A[1]. Then A[1]⊗A[1]
is a complex with differential dA[1] ⊗ 1 + 1⊗ dA[1]. Now if I write δ(b2) I get that

it is dA[1]b2 − (−1)∣b2∣b2 ○ (dA[1] ⊗ 1 + 1⊗ dA[1]), and we know that this is equal to
zero by the A∞ equation (A2). This means that b2 is a morphism of complexes.

Now this is where it gets funny. This is also supposed to be like the graded
Leibniz rule, because b2 is actually the multiplication but here b2 is defined on
A[1] so you have to get back, that’s the discussion we had with you, so actually

m2(x, y) = (−1)∣x∣s−1b2(sx, sy). Normally if we check the formula, we should find
out that, I’m going to switch it, I’m going to change in the formula, so I have

dA ○m2(x, y) =m2(dA(x)⊗ y) + (−1)xm2(x, dA(y))
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which is graded Leibniz. Next, (A3) implies that

b2 ○ (b2 ⊗ 1 + 1⊗ b2)

+ b1 ○ b3 + b3 ○ (b1 ⊗ 1⊗ 1) + b3 ○ (1⊗ b1 ⊗ 1) + b3 ○ (1⊗ 1⊗ b1)

= 0

and when you switch to m2 you get associativity of m2 up to a homotopy which is
more or less m3.

For n > 3 you have a quadratic equality up to higher homotopy. Also, a conse-
quence of what I said, if bn = 0 for all n ≥ 3, then we have a dg algebra and vice
versa a dg algebra gives you an A∞ algebra with bn = 0 for n ≥ 3.

What about n = 0? If I try to adapt the formula, allowing n = 0? Then applying
bluntly what happens, in that case, b0 ∶ k → A[1], you get that this would modify
all the equations, and (A0) now says that b1 ○ b0 = 0 but (A1) tells youo that
b21 = −b2(1 ⊗ b0 + b0 ⊗ 1) so this is what is called, this is not zero, this is what is
called weak A∞-algebra or curved A∞ algebra. In Keller and Lefévre-Hasegawa,
they say little is known. We’ll speak about the rest of this next week.


