# CGP DERIVED SEMINAR 

GABRIEL C. DRUMMOND-COLE

## 1. November 7: Christophe Wacheux: Homotopy Algebras

(My understanding of) $A_{\infty}$ algebras and $A_{\infty}$ categories. I'll define what is an $A_{\infty}$ algebra and I don't know if I'll define the categories, we'll see along the way. For reference, I'm following the work of Keller, if you take $A_{\infty}$ algebra the first work you thought of is Keller, his student K. Lefévre-Hasegawa, but not Kontsevich, which apparently adopts a very different approach. I'm convinced it has its merits and all, but it was inaccessible and doesn't give a good introduction.

Okay, now I'm going to set $\mathbf{k}$ a field, $V$ a graded $\mathbf{k}$-vector space, so maybe sometimes I'll just say GVS, so I mean I have $V=\oplus_{p \in \mathbb{Z}} V^{p}$ and I define $V[q]$ by $(V[q])^{p}:=V^{p+q}$ and you will see that I'll make an important use of this shift. If $v \in V^{p}$, then it is said to be homogeneous of degree $p$ and we say $|V|=p$.

The category $G$, I don't know if there is conventional notation GrV , has objects graded $\mathbf{k}$-vector spaces and morphisms, let $M$ and $L$ be two graded vector spaces, then $\operatorname{Hom}_{\mathrm{GrV}}(M, L)$ is a graded vector space, in category theory it means something I guess when the homs are again an object, with component

$$
\operatorname{Hom}_{\operatorname{GrV}}(M, L)^{r}:=\prod_{p \in \mathbb{Z}} \operatorname{Hom}_{V e c}\left(M^{p}, L[r]^{p}\right) .
$$

So $f$ is said to be of degree $r$.
So of course you have to pay attention to how you define your morphisms even though they might look the same. If you shift then the degree will change.

Now I will define what is called the monoidal structure. First I'll define $M \otimes L$ to be a graded vector space with

$$
(M \otimes L)^{n}=\bigoplus_{p+q=n} M^{p} \otimes_{\mathbf{k}} L^{q}
$$

where here we have the tensor product of vector spaces, the usual tensor product.
Now if $f: M \rightarrow M^{\prime}$ and $g: L \rightarrow L^{\prime}$, I also need to define what is $f \otimes g$, this will go from $M \otimes L \rightarrow M^{\prime} \otimes L^{\prime}$, and I define this so that $|f \otimes g|=|f|+|g|$, which is a consequence of my definition, I can define it by saying that for $v$ and $w$ homogeneous

$$
(f \otimes g)(v \otimes w)=(-1)^{|g \| v|} f(v) \otimes g(w) .
$$

This is some trick because to get the symbols from the one order to the other order you should permute the $g$ and the $v$. This amounts to a choice of a map $M \otimes L \rightarrow L \otimes M, x \otimes y \mapsto(-1)^{|x||y|} y \otimes x$.

The neutral element for $\otimes$ is $e:=\left\{\begin{array}{l}e^{0}=k \\ e^{n}=\{0\}, n \neq 0 .\end{array}\right.$ So now GrV is a symmetric
monoidal category. An interesting point here is that the morphisms of graded vector spaces are again graded vector spaces. Now if I have $\left(M, d_{M}\right)$ a cochain complex, meaning that $d_{M} \in \operatorname{Hom}_{\operatorname{GrV}}(M, M)^{1}$ satisfying $d_{M}^{2}=0$, and for $\left(M, d_{M}\right)$
and $\left(L, d_{L}\right)$ two complexes, we equip $\operatorname{Hom}_{\operatorname{GrV}}(M, L)$ with differential $\delta$ where $\delta^{r}$ : $\operatorname{Hom}_{\mathrm{GrV}}(M, L)^{r} \rightarrow \operatorname{Hom}_{\mathrm{GrV}}(M, L)^{r+1}$, with $\delta^{r}(f)=d_{L} \circ f-(-1)^{|f|} f \circ d_{M}$ of degree $f$.

I guess, then, $f$ and $f^{\prime}$, morphisms of graded vector spaces (or maybe I'd better reduce to maps of complexes), are homotopic if $f-f^{\prime}=\delta(h)$ for some $h \in \operatorname{Hom}_{\mathrm{GrV}}(M, L)^{|f|-1}$.

A note is that $h$ and $h^{\prime}$ homotopic induce the same maps on cohomology. Normally I'm also supposed to set, if I shift, I set $d_{V[1]}=-d_{V}$.

Now we are ready for $A_{\infty}$ algebras.
Definition 1.1. An $A_{\infty}$ algebra is a graded vector space $A$ with maps $b_{n}:(A[1])^{\otimes n} \rightarrow$ $A[1]$ such that the degree of $b_{n}$ is 1 , for $n \geq 1$.

Here I should stop and make a big comment. Sometimes you want maps $A^{\otimes n}$ to $A$ of degree $2-n$. Understanding the difference of signs is sometimes an annoying thing.

So I just wanted to say that the link between $m_{n}$ and $b_{n}$, if what I read in Lefèvre-Hasegawa, there is a formula linking the $b_{n}$ and the formula linking the $m_{n}$, there are no pluses or minuses linking the $b_{n}$, but for $m_{n}$ there are signs, and he said that, yes, there is no precise, no canonical choice of signs between the $m_{n}$, and, which, I think this is, uh, [some discussion]

Let's write the formula $b_{n}$ satisfies.

$$
\sum_{i+j+\ell=n} b_{i+1+\ell} \circ\left(\mathbf{1}^{\otimes i} \otimes b_{j} \otimes \mathbf{1}^{\otimes \ell}\right)=0
$$

for all $n \geq 1$.
Several comments. The advantage of defining $b_{n}$ like this, now I have maps that are all of the same degree, and also, because I take this as a convention, with this I don't have sign troubles, but I'll have sign issues.

I never apply it to an element, I've never come across it. Okay, so now a representation, if I take, or realization, [pictures].

In this case he has a sign of $(-1)^{i j+\ell}$, but he says there's no canonical choice, so.
Okay so what do we have? For $n=1$ you have $b_{1} \circ b_{1}=0$ so $\left(A[1], b_{1}\right)$ is a complex.

For $n=2$, I can have $b_{2}\left(\mathbf{1} \otimes b_{1}\right)+b_{2}\left(b_{1} \otimes \mathbf{1}\right)+b_{1}\left(b_{2}\right)=0$. If you remember the formula I erased, we know that $b_{2}$ goes from $A[1] \otimes A[1] \rightarrow A[1]$. Then $A[1] \otimes A[1]$ is a complex with differential $d_{A[1]} \otimes \mathbf{1}+\mathbf{1} \otimes d_{A[1]}$. Now if I write $\delta\left(b_{2}\right)$ I get that it is $d_{A[1]} b_{2}-(-1)^{\left|b_{2}\right|} b_{2} \circ\left(d_{A[1]} \otimes \mathbf{1}+\mathbf{1} \otimes d_{A[1]}\right)$, and we know that this is equal to zero by the $A_{\infty}$ equation $\left(A_{2}\right)$. This means that $b_{2}$ is a morphism of complexes.

Now this is where it gets funny. This is also supposed to be like the graded Leibniz rule, because $b_{2}$ is actually the multiplication but here $b_{2}$ is defined on $A[1]$ so you have to get back, that's the discussion we had with you, so actually $m_{2}(x, y)=(-1)^{|x|} s^{-1} b_{2}(s x, s y)$. Normally if we check the formula, we should find out that, I'm going to switch it, I'm going to change in the formula, so I have

$$
d_{A} \circ m_{2}(x, y)=m_{2}\left(d_{A}(x) \otimes y\right)+(-1)^{x} m_{2}\left(x, d_{A}(y)\right)
$$

which is graded Leibniz. Next, $\left(A_{3}\right)$ implies that

$$
\begin{aligned}
& b_{2} \circ\left(b_{2} \otimes \mathbf{1}+\mathbf{1} \otimes b_{2}\right) \\
& \quad+b_{1} \circ b_{3}+b_{3} \circ\left(b_{1} \otimes \mathbf{1} \otimes \mathbf{1}\right)+b_{3} \circ\left(\mathbf{1} \otimes b_{1} \otimes \mathbf{1}\right)+b_{3} \circ\left(\mathbf{1} \otimes \mathbf{1} \otimes b_{1}\right)
\end{aligned}
$$

$$
=0
$$

and when you switch to $m_{2}$ you get associativity of $m_{2}$ up to a homotopy which is more or less $m_{3}$.

For $n>3$ you have a quadratic equality up to higher homotopy. Also, a consequence of what I said, if $b_{n}=0$ for all $n \geq 3$, then we have a dg algebra and vice versa a dg algebra gives you an $A_{\infty}$ algebra with $b_{n}=0$ for $n \geq 3$.

What about $n=0$ ? If I try to adapt the formula, allowing $n=0$ ? Then applying bluntly what happens, in that case, $b_{0}: \mathbf{k} \rightarrow A[1]$, you get that this would modify all the equations, and $\left(A_{0}\right)$ now says that $b_{1} \circ b_{0}=0$ but $\left(A_{1}\right)$ tells youo that $b_{1}^{2}=-b_{2}\left(\mathbf{1} \otimes b_{0}+b_{0} \otimes \mathbf{1}\right)$ so this is what is called, this is not zero, this is what is called weak $A_{\infty}$-algebra or curved $A_{\infty}$ algebra. In Keller and Lefévre-Hasegawa, they say little is known. We'll speak about the rest of this next week.

