
PROPER BASE CHANGE FOR LCC ÉTALE SHEAVES OF SPACES

CHANG-YEON CHOUGH

Abstract. The goal of this paper is to prove the proper base change theorem for locally
constant constructible étale sheaves of spaces, generalizing the usual proper base change in
étale cohomology. As applications, we show that the profinite étale homotopy type functor
commutes with finite products and the symmetric powers of proper algebraic spaces over a
separably closed field, respectively. In particular, the commutativity of the étale fundamental
groups with finite products is extended to all higher homotopy groups.
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1. Introduction

1.1. One of the fundamental results of étale cohomology theory is the proper base change
theorem [17, Exposé XII.5.1]; consider a cartesian square

(1.1.1) X ′
g′ //

f ′

��

X

f

��
Y ′

g // Y

in the category of schemes. Let F be a torsion étale sheaf of abelian groups on X. If f is
proper, then for each integer n ≥ 0, the canonical base change morphism

g∗Rnf∗F → Rnf ′∗(g
′∗F )

is an isomorphism in D+(Ab(Y ′ét)).
1
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In this paper, we study a non-abelian version of the proper base change theorem; in the
simple case of set-valued étale sheaves, the push-pull transformation

g∗f∗ → f ′∗g
′∗

is an isomorphism of functors from the category of set-valued étale sheaves on X to the
category of set-valued étale sheaves on Y ′. Extending to the ∞-categories of étale sheaves
which take values in the ∞-category S of spaces, there is a commutative diagram of ∞-topoi

Shvét(X
′)

g′∗ //

f ′∗
��

Shvét(X)

f∗
��

Shvét(Y
′)

g∗ // Shvét(Y ).

(1.1.2)

The main result of this paper is the following:

Theorem 1.2. Suppose we are given a cartesian square (1.1.1) of quasi-compact and quasi-
separated schemes. Let F be a locally constant constructible object of Shvét(X). If f is proper,
then the push-pull morphism

θ : g∗f∗F → f ′∗g
′∗F

is an equivalence in Shvét(Y
′).

Remark 1.3. Suppose (1.1.1) is a pullback square of topological spaces. If f is a proper
and separated, then the canonical base change morphism is an isomorphism in D+(Ab(Y ′))
[16, Exposé Vbis.4.1.1]. Likewise, in the simple case, the push-pull transformation is an
isomorphism of functors.

These proper base change theorems were generalized to a non-abelian case by Jacob Lurie
in [9, 7.3.1.18]; suppose we are given a fibered square (1.1.1) of locally compact Hausdorff
spaces. If f is proper, then the push-pull transformation is an isomorphism of functor between
the ∞-categories of S-valued sheaves.

1.4. However, a non-abelian version in the algebro-geometric setting is subject to some re-
strictions; if it were true for every S-valued sheaves, we would have the proper base change
for any (not necessarily torsion) étale sheaves of abelian groups by the same argument as in
[9, 7.3.1.19], which is not the case (see [17, Exposé XII.2]).

So, we need to impose some finiteness condition on étale sheaves of spaces. Indeed, we will
show that the non-abelian proper base change theorem holds for those étale sheaves of spaces
which are locally constant constructible [10, E.2.5.1]. Its proof will be parallel to the proof
of the classical one: use passage to limit argument to reduce to the case when Y is a strictly
henselian local ring and g is the inclusion of the closed point (cf. [17, Exposé XII.6.1]).

Remark 1.5. The proof cannot be reduced to the case of 0-truncated sheaves—the usual
proper base change for set-valued sheaves. This is because 0-truncation functors do not
necessarily commute with pushforward functors. So, as in the proof of Lurie’s generalization
for topological spaces, a new approach is required. In our case, the key observation from
[10, E.2.3.3] is that for geometric morphisms of∞-topoi, the associated morphisms of locally
constant constructible objects are completely determined by the maps of profinite shapes of
the ∞-topoi.
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1.6. Our applications of the non-abelian proper base change theorem 1.2 come from the étale
homotopy theory. Let f : X → Spec k and g : Y → Spec k be morphisms of schemes, where k
is a separably closed field. Assume f is proper and g is locally of finite type. It is well-known
from [13, Exposé X.1.7] that the natural map

π1(X ×k Y )→ π1(X)× π1(Y )

is an isomorphism of profinite groups (here we omit the base points). This raises a natural
question of whether it can be extended to higher homotopy groups. Or, more precisely, if the
natural map

(1.6.1) ĥ(X ×k Y )→ ĥ(X)× ĥ(Y )

is an equivalence of profinite spaces, where ĥ denotes the profinitely completed étale homotopy
type functor. By cohomological criteria [1, 4.3], it suffices to show that for each integer n ≥ 0

and for each local coefficient system of finite abelian groups on ĥ(X)× ĥ(Y ), the associated
map of n-th cohomology groups is an isomorphism. The difficulty here is that we cannot
simply apply the Künneth formula in étale cohomology [17, Exposé XVII.5.4.3] because we
do not know how local systems on the product of profinite spaces look like in general.

To this end, we shift our perspective from étale homotopy types [1, p.114] to (∞-)shapes
(see [2, 6.0.5] for the equivalence of these two approaches and [5, 4.1.5] for the equivalence of
profinite completions in ∞-category theory and in model category theory). For each scheme
T and the ∞-topos Shvét(T ) of S-valued étale sheaves on T , the associated shape Sh(T ) is
defined to be the composite π∗ ◦ π∗ : S→ S, where π∗ : Shvét(T )→ S denotes the essentially
unique geometric morphism of ∞-topoi. The advantage of this ∞-categorical perspective
is an intermediate object Sh(X) ◦ Sh(Y )—the composition of pro-spaces—which helps us to
understand the homotopy type of X ×k Y ; there is a commutative triangle of pro-spaces

Sh(X ×k Y )

((
Sh(X) ◦ Sh(Y )

66

// Sh(X)× Sh(Y ).

(1.6.2)

The bottom line is that the bottom map is under our control and that the left diagonal map
is obviously very closely related to the non-abelian proper base change theorem 1.2 by the
definition of shapes: in the setting of (5.3.1), the left diagonal is nothing but the canonical
map

p∗p
∗q∗q

∗ → p∗q
′
∗p
′∗q∗.

Using this idea, we will show in 5.3 that (1.6.1) is an equivalence.

Remark 1.7. The intermediate object with the maps in (1.6.2) are naturally defined in the
∞-categorical setup, but hardly seen in the classical étale homotopy theory or in its model
categorical refinement.

1.8. A second application concerns symmetric powers of algebraic spaces. Using the qfh
topology of schemes, Marc Hoyois proved that for a quasi-projective schemes X over a sepa-
rably closed field k and a prime ` different from the characteristic of the field k, the natural
map

Symn h(X )→ h( Symn X )(1.8.1)
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is a Z/`-homological equivalence (here h denote the étale homotopy type functor); see [7,
5.4]. One of the main steps in the proof is that the map (1.6.1) before taking the profinite
completions induces a Z/`-homological equivalence for finite type k-schemes, which can be
reduced to the Künneth formula in étale cohomology (see [7, 5.1]). As mentioned above,
however, this is not the case for its profinite version 5.3. Using 5.3 as an essential piece, we
prove in 6.12 that (1.8.1) is a profinite equivalence for proper k-algebraic spaces X.

Remark 1.9. Under the extra assumption thatX is geometrically normal, the commutativity
of the profinite étale homotopy types and the symmetric powers 6.12 recovers [18, Theorem
1] of Arnav Tripathy. In contrast with Tripathy’s proof involving a concrete discussion of the
étale fundamental groups of symmetric powers, our approach is very formal.

1.10. Conventions. We assume that the reader is familiar with the basic theory of ∞-
categories as developed in [9]. We follow the set-theoretic convention of [9].

Let ∗ denote the final object of an ∞-category C, if exists.

1.11. Acknowledgements. This work was supported by IBS-R003-D1. The author is
grateful to Marc Hoyois for helpful comments on profinite étale homotopy types.

2. Preliminaries on Shapes and Profinite Completion

2.1. Let us give a quick review of pro-categories in ∞-category theory (see [10, A.8.1] for
more details). Let C be an accessible ∞-category which admits finite limits. Let Pro(C) ⊆
Fun(C, S)op denote the full subcategory spanned by those functors C→ S which are accessible
and preserve finite limits. We refer to it as the ∞-category of pro-objects of C. It has the
expected universal property: let D be an∞-category which admits small cofiltered limits, and
let Fun′(Pro(C),D) ⊆ Fun(Pro(C),D) denote the full subcategory spanned by those functors
which preserve small cofiltered limits. By virtue of [10, A.8.1.6], the Yoneda embedding
induces an equivalence of ∞-categories

Fun′(Pro(C),D)→ Fun(C,D).

2.2. Recall from [10, E.0.7.8] that an object X ∈ S is defined to be π-finite if it satisfies the
following conditions:

(i) The space X is n-truncated for some integer n ≥ −2.
(ii) The set π0X is finite.

(iii) For each x ∈ X and each integer m ≥ 1, the group πm(X, x) is finite.

Let Sπ ⊆ S denote the full subcategory spanned by the π-finite spaces. The associated
pro-category Pro(Sπ) is referred to as the ∞-category of profinite spaces.

2.3. The universal property of pro-categories applied to the fully faithful embedding i :
Sπ ↪→ S extends it to a fully faithful embedding Pro(i) : Pro(Sπ)→ Pro(S) of pro-categories.
Meanwhile, composition with i induces a forgetful functor Pro(S) → Pro(Sπ) which is left
adjoint to Pro(i) by [10, E.2.1.3]. We refer to it as the profinite completion functor.

2.4. Let X be an ∞-topos. For an essentially unique geometric morphism π∗ : X → S, the
composition π∗π

∗ : S → S is an object of Pro(S), which is referred to as the shape of X and
denoted by Sh(X). In fact, [10, E.2.2.1] supplies a left adjoint functor Sh :∞Top→ Pro(S),
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where ∞Top denotes the ∞-category of ∞-topoi. Composing with the forgetful functor
Pro(S)→ Pro(Sπ), one obtains a functor

Shπ :∞Top→ Pro(Sπ).

We refer to the image Shπ(X) of an∞-topos X under this functor as the profinite shape of X.

Definition 2.5. Let f∗ : X → Y be a geometric morphism of ∞-topoi. We say that f∗ is a
profinite shape equivalence if it induces an equivalence Shπ(X)→ Shπ(Y) of profinite spaces.

2.6. Recall from [10, E.2.5.1] that an object F of an∞-topos X is locally constant constructible
if there exists a finite collection of objects {Xi ∈ X}1≤i≤n such that the map

∐
Xi → ∗ is

an effective epimorphism, a collection of π-finite spaces {Yi}1≤i≤n, and equivalences π∗i Yi '
F × Xi in the ∞-topos X/Xi

for 1 ≤ i ≤ n, where πi
∗ : S → X/Xi

is the essentially unique

geometric morphism. Let Xlcc ⊆ X denote the full subcategory spanned by the locally constant
constructible objects.

If f ∗ : Y → X is a geometric morphism of ∞-topoi, then it carries locally constant con-
structible objects to locally constant constructible objects. In what follows, it is of the utmost
importance that locally constant constructible objects completely determine profinite shape
equivalences; according to [10, E.2.3.3], the pushforward f∗ is a profinite shape equivalence if
and only if the restriction functor f ∗ : Ylcc → Xlcc is an equivalence of ∞-categories.

2.7. According to [2, 6.0.5], for locally noetherian schemes, the ∞-categorical counterparts
of Artin-Mazur’s étale homotopy types (or their model categorical reformulations) are the
shapes of the hypercompletions of the ∞-topoi of S-valued étale sheaves on the schemes; see
also [5, 4.1.5] for the compatibility of profinite completions in model category theory and in
∞-category theory.

In this paper, we will mainly work with the shapes of ∞-topoi rather than of the hyper-
completions of ∞-topoi. When applying our results to étale homotopy types, there is no
harm in doing so because profinitely completed étale homotopy types are of interest to us:

Lemma 2.8. Let X be an ∞-topoi. Then the natural map

Shπ(X∧)→ Shπ(X)

of profinite spaces is an equivalence, where X∧ denotes the hypercompletion of the ∞-topoi X.

Proof. By evaluating at π-finite spaces, the statement follows immediately from [9, 6.5.2.9]
that τ≤nX ⊆ X∧ for every integer n ≥ −2. �

3. Limits with respect to Shapes and Lcc sheaves

Throughout this section, we fix a diagram of ∞-topoi satisfying the following condition:

(∗) Let I be a filtered ∞-category and let p : Iop → ∞Top be a diagram of ∞-topoi
{Xi}. Assume that each Xi is coherent [10, A.2.1.6] and that for each of the transition
morphisms pij∗ : Xj → Xi, the restriction of pij∗ to τ≤n−1 Xj—the full subcategory of
Xj spanned by the (n− 1)-truncated objects—commutes with filtered colimits for all
integers n ≥ 0.

Remark 3.1.
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(i) In fact, for the rest of this section, we may assume henceforth that I is a directed
partially ordered set I; see [9, 5.3.1.18].

(ii) The condition (∗) is met by schemes of interest in this paper, as we will see in a moment
(see 3.5 for more examples).

3.2. Let X be a scheme. The usual small étale topology on X induces a Grothendieck
topology on the nerve of the category Ét(X) of étale X-schemes. Let Shvét(X) (resp. Pét(X))

denote the ∞-category of sheaves (resp. presheaves) of spaces on N(Ét(X)). Remark from
[9, 6.4.5.7] that the ∞-topos Shvét(X) is 1-localic.

Now assume that X is quasi-compact and quasi-separated. Let Ét(X)fp ⊆ Ét(X) denote
the full subcategory consisting of those étale X-schemes which are of finite presentations.
With respect to the induced Grothendieck topology on N(Ét(X)fp), the associated geometric
morphism of ∞-topoi is an equivalence since the ∞-topoi are 1-localic and it is the case for
the 0-truncations. Specifically, one may assume henceforth that Shvét(X) is induced by a
finitary Grothendieck topology [10, A.3.1.1], and thus is coherent by virtue of [10, A.3.1.3].

3.3. Let I be a filtered 1-category. Let {Xi}i∈Iop be a compatible family of quasi-compact
and quasi-separated schemes with affine transition maps. Set X := limXi. There is an
equivalence Shvét(X) ' limi∈Iop Shvét(Xi) in ∞Top as the ∞-topoi are all 1-localic and it is
the case for the usual 1-topoi by virtue of [16, Exposé VII.5.6] and [16, Exposé VI.8.2.3].

One deduces from the following result that the diagram {Shvét(Xi)} of ∞-topoi satisfies
the condition (∗):

Theorem 3.4. (cf. [16, Exposé VI.5.1]) Let C and D be small ∞-categories which admit
finite limits and which are equipped with finitary Grothendieck topologies. Let f : C→ D be a
continuous functor which commutes with finite limits. Let p∗ : Shv(D)→ Shv(C) denote the
induced geometric morphism of ∞-topoi. Then for each integer n ≥ 0, the restriction of p∗
to τ≤n−1 Shv(D) commutes with filtered colimits.

Proof. Let J be a filtered ∞-category, and let {Fα}α∈J be a compatible family of (n − 1)-
truncated sheaves on D. We claim that the canonical map

colim
α∈J

p∗Fα → p∗ colim
α∈J

Fα

is an equivalence of sheaves on D. Using [9, 1.2.4.1], it suffices to show that for each G ∈
Shv(C), the induced map

MapShv(C)(G, colim p∗Fα)→ MapShv(C)(G, p∗ colimFα)

is a weak homotopy equivalence. It follows from [10, A.3.1.3] that the finitary assumption
guarantees the composition of the Yoneda embedding j : C → P(C) with the sheafification
L : P(C) → Shv(C) carries each object C ∈ C to a coherent object L(j(C)) of Shv(C).
After applying [10, A.2.3.1] to the ∞-topos Shv(C)/L(j(C)), one deduces that the restriction
of MapShv(C)(L(j(C)),−) to τ≤n−1 Shv(C) commutes with filtered colimits. Since P(C) is
generated under small colimits by the Yoneda embedding, one can then reduce to establishing
that the canonical map

colim MapShv(C)(L(j(C), p∗Fα)→ MapShv(C)(L(j(C), p∗ colimFα)
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is an equivalence for each C ∈ C. By the adjunction of (p∗, p∗), the desired equivalence is a
consequence of [10, A.2.3.1] applied to Shv(D)/Lj(f(C)). �

Remark 3.5. The previous result also implies that the diagrams of ∞-topoi satisfying the
condition (∗) exist in great abundance. Recall from [10, A.7.5.3] that there is an equivalence
of ∞-categories from the ∞-category of bounded ∞-pretopoi to the opposite of the full
subcategory of the ∞-category of coherent ∞-topoi spanned by the bounded coherent ∞-
topoi, given on objects by C 7→ Shv(C) (here C is equipped with the effective epimorphism
topology [10, A.6.2.4]): see [10, A.7.4.1] and [10, A.7.5.2] for the definitions of these ∞-
categories, and [10, A.7.1.2] for the definition of bounded ∞-topoi.

If C→ D is a morphism of bounded ∞-pretopoi (equipped with the effective epimorphism
topology), then it satisfies the assumptions of 3.4 (in a larger universe), thereby the equiva-
lence of ∞-categories guarantees that every cofiltered diagram of bounded coherent ∞-topoi
satisfies the condition (∗).

3.6. Let X denote the cofiltered limit of the diagram p in (∗). Let Iop → Ĉat∞ be the

diagram of Xi obtained via the embedding∞Top ⊆ Ĉat∞, where Ĉat∞ denote the∞-category
of (not necessarily small) ∞-categories. Then this diagram classifies a Cartesian fibration
q : Z → I. Using [9, 3.3.3.2] and [9, 6.3.3.1], the underlying ∞-category of the ∞-topos X

can be identified with the ∞-category of cartesian sections of q.

3.7. Let π∗ : X → S and πi∗ : Xi → S denote the unique (up to homotopy) geometric
morphisms, respectively. Let pi∗ : X→ Xi denote the geometric morphism associated to the
limit ∞-topos X.

The virtue of the condition (∗) is that one can describe p∗i as in the case of 1-categories
(see, for example, [11, Lemma 2]):

Lemma 3.8. Fix i ∈ I and an integer n ≥ 0. Let F be an (n − 1)-truncated object of Xi.
Then the section of q, given by

j 7→ colim
k≥i,j

pjk∗p
∗
ikF,

is equivalent to p∗iF .

Proof. The condition (∗) guarantees that this section is cartesian, so it can be viewed as an
object of X. Note that the pushforward pi∗ sends an object {Gj} of X to its i-th component
Gi. Therefore, it suffices to observe that there is a chain of equivalences

MapX({colim
k≥i,j

pjk∗p
∗
ikF}, {Gj}) ' lim

j≥i
lim
k≥j

MapXj
(pjk∗p

∗
ikF, pjk∗Gk)

' lim
k≥i

MapXk
(p∗ikF,Gk)

' MapXi
(F,Gi).

�

3.9. The following result shows that profinite shapes preserve limits of ∞-topoi (under the
condition (∗)):

Proposition 3.10. The canonical map

Shπ(X)→ lim
i∈Iop

Shπ(Xi)
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is an equivalence of profinite spaces.

Proof. This amounts to the assertion that for each π-finite space A, the canonical map

colim
i∈Iop

πi∗π
∗
iA→ π∗π

∗A

is an equivalence of spaces. Fix i ∈ I. Then there is a chain of equivalences

π∗π
∗A ' πi∗pi∗p

∗
iπ
∗
iA ' πi∗ colim

k≥i
pik∗π

∗
kA ' colim

k≥i
πk∗π

∗
kA,

where the second and third equivalences follow from 3.8 and [10, A.2.3.1], respectively. �

3.11. We mimic the proof of [10, E.2.7.1] to investigate the relationship between limits of
∞-topoi and locally constant constructible objects:

Theorem 3.12. The canonical map

colim
i∈I

Xlcc
i → Xlcc

is an equivalence of ∞-categories.

Proof. Let p∗ denote the canonical map in the statement. According to [10, E.2.3.2], the
∞-categories Xlcc and Xlcc

i are ∞-pretopoi [10, A.6.1.1]. Since small filtered colimits of ∞-

pretopoi can be computed in Ĉat∞ [10, A.8.3.1], one can view p∗ as a morphism of∞-pretopoi
[10, A.6.4.1]. To prove that p∗ is an equivalence, by virtue of [10, A.9.2.1], it suffices to show
that p∗ satisfies the following conditions:

(i) The functor p∗ is essentially surjective.
(ii) For every (−1)-truncated morphism u : F ′ → F in colimXlcc

i , if p∗u is an equivalence in
Xlcc, then u is an equivalence.

To establish the condition (i), let H ∈ Xlcc. Then one can choose a full subcategory K ⊆ S

spanned by finitely many π-finite spaces such that H is K-constructible; see [10, E.2.7.2].
Then [10, E.2.7.7] supplies an essentially unique geometric morphism g∗ : Xlcc → Fun(K', S)
such that H ' g∗ι, where ι ∈ Fun(K', S) denotes the inclusion functor (here K' denotes the
largest Kan complex contained in K). Since K' ∈ Sπ, it follows from 3.10 that g∗ factors
through some geometric morphism gi∗ : Xlcc

i → Fun(K', S). Therefore, H ' g∗ι ' p∗i g
∗
i ι is in

the essential image of the functor p∗.

It remains to verify the condition (ii). Fix such a morphism u. One can find i such
that u is the image of some morphism ui : F ′i → Fi in Xlcc

i . Enlarging i if necessarily,
one can assume that ui is a (−1)-truncated morphism in Xlcc

i . Now [10, E.2.6.7] supplies a
complement G ∈ Xlcc

i of F ′i as a subobject of Fi. The assumption that p∗u is an equivalence
implies p∗iG ' ∅, where ∅ denote the initial object of X. Applying [10, E.2.6.7] to the (−1)-
truncated object τ≤−1G of Xlcc

i , one obtains a decomposition ∗ ' τ≤−1G
∐
G′, where ∗ denote

the final object of Xlcc
i . Let T denote the topological space {t, t′} with the discrete topology.

Using [10, A.6.4.4], one can find a geometric morphism gi
∗ : Shv(T ) → Xlcc

i which classifies
the decomposition of ∗ (here t and t′ correspond to τ≤−1G and G′, respectively). Note that
p∗i τ≤−1G is initial in X, so that p∗iG

′ is final in X. Therefore, [10, A.6.4.4] implies that the

composite X
pi∗−→ Xi

gi∗−→ Shv(T ) factors through the inclusion i∗ : Shv({t′}) ↪→ Shv(T ). Since
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Shv({t′}) ' S, one can find a dotted arrow which makes the left triangle commute in the
diagram

X
pi∗ //

$$

Xi

��

gi∗ // Shv(T )

Shv({t′}).
i∗

88

Remark that the right triangle does not necessarily commute; nonetheless, since Shv(T )
is a profinite ∞-topos [10, E.2.4.3], 3.10 guarantees that enlarging i if necessary, one can
assume that the right triangle also commutes. Then, τ≤−1G is initial in Xi and thus so is G.
Consequently, u is an equivalence, thereby completing the proof. �

4. Proper Base Change for Lcc Étale Sheaves of Spaces

4.1. Suppose we are given a commutative diagram of ∞-categories

C′
q′∗ //

p′∗
��

C

p∗

��
D′

q∗ // D .

Assume that q∗ and q′∗ admit left adjoints denoted by q∗ and q′∗, respectively. Consider the
composition

q∗p∗ → q∗p∗q
′
∗q
′∗ ∼→ q∗q∗p

′
∗q
′∗ → p′∗q

′∗,

where the first and third arrows are induced by a unit for the adjunction (q′∗, q′∗) and a
counit for the adjunction (q∗, q∗), respectively. This composite is referred to as the push-pull
transformation (sometimes called the Beck-Chevalley transformation).

4.2. The purpose of this section is to prove the non-abelian proper base change theorem 1.2
whose proof is deferred until the end of the section. As in the case of the usual proper base
change theorem, we will show that the morphism θ in 1.2 is an equivalence by looking at
stalks.

4.3. So, we begin with the special case of 1.2 where the morphism g in (1.1.1) is a point of
Y ; consider a pullback diagram of quasi-compact and quasi-separated schemes

Xs
//

��

X

f

��
Spec k

s // S

where f is proper and k is a separably closed field. There is a commutative diagram of
∞-topoi

Shvét(Xs)
p′∗ //

f ′∗
��

Shvét(X)

f∗
��

Shvét(Spec k)
p∗ // Shvét(S).
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4.4. For each object F ∈ Shvét(S), let Fs denote the pullback p∗F . To give an explicit
description of the pullbacks, consider a continuous functor

δ : Ét(S)→ Ét(Spec k) : S ′ 7→ Spec k ×S S ′.

Then the restriction functor

p̂∗ : Pét(Spec k)
◦N δop

−−−−→ Pét(S)

admits a left adjoint p̂∗ given by the left Kan extension along N δop [9, 4.3.3.7], given on
objects by the formula

(4.4.1) (p̂∗F )(Y ) = colim
(S′,ρ)∈Iop

Y

F (S ′).

Here IY is the 1-category whose objects are pairs (S ′, ρ), where S ′ ∈ Ét(S) and ρ : Y → δ(S ′)

is a morphism in Ét(Spec k), and for which a morphism

(S ′′, ρ′)→ (S ′, ρ)

is a morphism a : S ′′ → S ′ in Ét(S) such that δ(a) ◦ ρ′ = ρ.

Note that if Y = Spec k, then one can identify IY with the category Is of étale neighbor-
hoods of the geometric point s : Spec k → S.

Lemma 4.5. Let G be an object of Pét(Spec k). Then the canonical map

αG : MapPét(Spec k)(∗, G)→ MapShvét(Spec k)(∗, LG)

is a weak homotopy equivalence, where L : Pét(Spec k) → Shvét(Spec k) denotes the sheafifi-
cation functor.

Proof. Let Γ and γ denote the global section functors on Shvét(Spec k) and Pét(Spec k),
respectively. We prove by induction that the map

αG : γG→ ΓLG,

which is induced by the unit for the adjunction between Pét(Spec k) and Shvét(Spec k), is
n-connective for every n ≥ 0. The case n = 0 follows from the property of sheafification that
every section of LG locally comes from that of G (up to equivalence) and that every étale

covering of the final object of Ét(Spec k) admits a refinement by the identity on the final
object.

Suppose that n > 0. It suffices to prove that for every pair of maps η, η′ : ∗ → γG, the
induced map of fiber products

βG : ∗ ×γG ∗ → ∗ ×ΓLG ∗

is (n − 1)-connective. Let H = ∗ ×G ∗ ∈ Pét(Spec k). Using the fact that γ, Γ, and L all
commute with finite limits, one can identify βG with αH ; the desired result now follows from
the inductive hypothesis. �

4.6. We will need the following lemmas to prove the special case of proper base change
theorem:
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Lemma 4.7. Let k ⊂ K be an extension of separably closed fields and let X be a proper
scheme over Spec k. Let Xk′ := X ×Spec k SpecK. For each object F ∈ Shvlcc

ét (X), the
canonical map

MapShvét(X)(∗, F )→ MapShvét(XK)(∗, F ′)
is a weak homotopy equivalence, where F ′ denotes the pullback of F to Shvét(Xk′).

Proof. According to [17, Exposé XII.5.4], the projection Xk → X induces a weak equivalence
on the profinite étale homotopy types, which in turn implies that the natural map

Shπ(Shvét(XK)∧)→ Shπ(Shvét(X)∧)

is an equivalence of profinite spaces by [5, 4.2.2], where Shvét(XK)∧ and Shvét(X)∧ denote
the hypercompletions of the∞-topoi Shvét(XK) and Shvét(X), respectively. By virtue of 2.8,
the natural map Shπ(Shvét(XK))→ Shπ(Shvét(X)) is also an equivalence of profinite spaces.
Now [10, E.2.3.3] guarantees that the functor Shvlcc

ét (X) → Shvlcc
ét (XK) is an equivalence of

∞-categories, which completes the proof. �

4.8. Using [17, Exposé XII.5.5] in lieu of [17, Exposé XII.5.4], an analogous statement holds:

Lemma 4.9. Let R be a henselian local ring and let X be a proper scheme over SpecR with
closed fiber Xk. For each object F ∈ Shvlcc

ét (X), the canonical map

MapShvét(X)(∗, F )→ MapShvét(Xk)(∗, Fk)
is a weak homotopy equivalence, where Fk denotes the pullback of F to Shvét(Xk).

4.10. Note that the essentially unique geometric morphism

Shvét(Spec k)→ S : F 7→ MapShvét(Spec k)(∗, F )

is an equivalence of∞-categories as Shvét(Spec k) is an 1-localic∞-topos and it is the case for
the usual 1-topoi. Under this equivalence, the pushforward functor f ′∗ in 4.3 can be identified
with the global section functor on the ∞-topos Shvét(Xs).

We now formulate and give a proof of the special case of the proper base change theorem
under this identification:

Proposition 4.11. In the situation of 4.3, for each object F ∈ Shvlcc
ét (X), the push-pull

morphism
θ : (f∗F )s → MapShvét(Xs)(∗, p′

∗
F )

is an equivalence in the ∞-category S.

Proof. Recall the strict henselization of S at s:

(4.11.1) OS,s := colim
(U,u)∈Iop

s

Γ(U,OU)

where Is is the category of étale neighborhoods of s, which is cofiltered. Fix a separable
closure k(s)sep of k(s) in k. Consider a commutative diagram of schemes

Xs
//

��

X ′ //

��

X(s)
//

��

X

f

��
Spec k // Spec(k(s)sep) // Spec(OS,s) // S
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where all squares are cartesian. There are canonical maps

(f∗F )s → MapShvét(X(s))
(∗, F(s))→ MapShvét(X′)

(∗, F ′)→ MapShvét(Xs)(∗, p′
∗
F )

where F(s) and F ′ denote the pullbacks of F to Shvét(X(s)) and Shvét(X
′), respectively. Since

the second and third arrows are equivalences by 4.9 and 4.7, respectively, it remains to show
that the first arrow is an equivalence.

Under the identification Shvét(Spec k) ' S, the stalk (f∗F )s is identified with its global
section which is equivalent to the global section of the presheaf p̂∗(f∗F ) by 4.5. Using the
formula (4.4.1) and the fact that colimits are preserved under the change of cofinal map of
index categories [9, 4.1.1.8], there is an identification

(f∗F )s ' colim
(U,u)∈Iaff,op

s

F (X ×S U)

where Iaff
s ⊆ Is is the full subcategory spanned by the affine étale neighborhoods of s. On the

other hand, applying the cofinality argument to (4.11.1), there is an isomorphism of schemes

X(s) ' lim
(U,u)∈Iaff

s

X ×S U.

Since the projectionX×SU → X is étale, one can identify F (X×SU) with MapShvét(X×SU)(∗, FX×SU),
where FX×SU is the restriction of F to Shvét(X ×S U). Consequently, the desired equivalence
will follow if the canonical map

colim
(U,u)∈Iaff,op

s

MapShvét(X×SU)(∗, FX×SU)→ MapShvét(X(s))
(∗, F(s))

is an equivalence; this is guaranteed by 3.12, thereby completing the proof. �

4.12. We are now ready to prove the proper base change theorem 1.2:

Proof of 1.2. Every π-finite space is a truncated object of S, and the pullbacks and push-
forwards of geometric morphisms preserve n-truncated objects for every integer n. So,
we may work with the hypercompletions of ∞-topoi and the associated geometric mor-
phisms in (1.1.2). Since Shvét(Y

′) is locally coherent by 3.2 and [10, A.3.1.3], so is its
hypercompletion Shvét(Y

′)∧ by [10, A.2.2.2]. Consequently, the ∞-categorical Deligne Com-
pleteness Theorem [10, A.4.0.5] guarantees that Shvét(Y

′)∧ has enough points. Therefore,
one can check that θ is an equivalence after pulling back along a geometric morphism
p∗ : S → Shvét(Y

′) (given by a point of Shvét(Y
′)∧ followed by the fully faithful geomet-

ric morphism Shvét(Y
′)∧ → Shvét(Y

′)). Since Shvét(Y
′) is an 1-localic ∞-topos and points

of the étale 1-topos of Y ′ are determined by geometric points s : Spec k → Y ′, where k is a
separably closed field [16, Exposé VIII.7.9], one can assume that the point p of Shvét(Y

′) is
induced by a geometric point s of Y ′. Consider the commutative diagram of ∞-topoi

Shvét(X
′
s)

p′∗ //

f ′′∗
��

Shvét(X
′)

g′∗ //

f ′∗
��

Shvét(X)

f∗
��

Shvét(Spec k)
p∗ // Shvét(Y

′)
g∗ // Shvét(Y ),
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where the left square is associated to the cartesian square defining X ′s := Spec k ×Y ′ X ′. In
that case, p∗θ fits into a commutative triangle

p∗f ′∗g
′∗F

θ′

&&
p∗g∗f∗F

p∗θ
88

θ′′ // f ′′∗ p
′∗g′∗F,

where θ′ and θ′′ are equivalences by virtue of the special case of proper base change theorem
4.11. Therefore, p∗θ is an equivalence as desired. �

5. Application: Profinite Shapes of Products

5.1. For each scheme X, let Sh(X) and Shπ(X) denote the shape and profinite shape of the
∞-topos Shvét(X), respectively.

5.2. Let X be a locally noetherian scheme, and let x : SpecK → X be a geometric point of
X. For each integer n ≥ 0, the n-th homotopy (pro-)group πn(X, x) of the pointed scheme
(X, x) is defined to be the n-th homotopy pro-group of the étale homotopy type of X with
the associated base point (here the étale homotopy type of X can be replaced by the shape
of the hypercompletion of the ∞-topoi Shvét(X); see [2, 6.0.5]).

It follows from [4, 3.4.2] that the fundamental groups of locally noetherian schemes are
isomorphic to the enlarged étale fundamental groups in the sense of [15, Exposé X.6]. In
particular, their profinite completions are isomorphic to the étale fundamental groups in the
sense of [13, Exposé V.7].

By the universal property of profinite completions, there is a natural map

(5.2.1) π̂n(X, x)→ πn(ĥ(X), x)

of profinite groups, where π̂n(X, x) denotes the profinite completion of πn(X, x) and ĥ(X)
denotes the profinite étale homotopy type of X.

When n = 1, (5.2.1) is an isomorphism by virtue of [1, 3.7]. From this point of view, the
following theorem generalizes the commutativity of étale fundamental groups (or, equivalently,
fundamental groups of profinite étale homotopy types) with finite products of proper schemes
over a separably closed field [13, Exposé X.1.7] to all higher homotopy groups of profinite
étale homotopy types of such schemes:

Theorem 5.3. Let f : X → Spec k be a separated and finite type morphism of schemes, and
let g : Y → Spec k be a proper morphism of schemes, where k is a separably closed field. Then
the canonical map

Shπ(X ×k Y )→ Shπ(X)× Shπ(Y )

is an equivalence of profinite spaces.
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Proof. There is a commutative diagram of ∞-topoi

Shvét(X ×k Y )
p′∗ //

q′∗
��

Shvét(Y )

q∗
��

Shvét(X)
p∗ // Shvét(Spec k).

(5.3.1)

Recall the commutative triangle (1.6.2) of pro-spaces, which is induced by canonical maps.
Using the fact that profinite completions commute with finite limits, the desired equivalence
will follow if one can show that both the left diagonal and the bottom maps in (1.6.2) are
equivalences after applying the profinite completion functor. For the left diagonal map, we
need to show that for each π-finite space A, the canonical map

p∗p
∗q∗q

∗A→ p∗q
′
∗p
′∗q∗A

is an equivalence of spaces; since g is proper and the sheaf q∗A is locally constant constructible,
this is a consequence of the proper base change for lcc étale sheaves of spaces 1.2.

For the bottom map, choose cofiltered systems {Ai ∈ S}i∈I and {Bj ∈ S}j∈J in such a way
that Sh(X) and Sh(Y ) are equivalent to the cofiltered limits of the functors corepresented
by Ai and Bj, respectively. Let A be a π-finite space. The bottom map evaluated at the
final object of S is clearly an equivalence, so we may assume that A is n-truncated for some
n ≥ −1. There is a chain of equivalences

(Sh(X) ◦ Sh(Y ))(A) ' Sh(X)(colim
j∈Jop

MapS(Bj, A))

' colim
j∈Jop

Sh(X)(MapS(Bj, A))

' colim
j∈Jop

colim
i∈Iop

MapS(Ai,MapS(Bj, A))

' (Sh(X)× Sh(Y ))(A),

where the second equivalence follows from [10, A.2.3.1] that the pro-space Sh(X) commutes
with filtered colimits of n-truncated objects of S. �

5.4. It is usually not true that (5.2.1) is an isomorphism for higher homotopy groups. Never-
theless, in some cases 5.3 can be stated in terms of the homotopy groups of (étale homotopy
types of) schemes rather than the homotopy groups of the profinite étale homotopy types of
the schemes:

Corollary 5.5. In the situation of 5.3, assume further that X and Y are geometrically
normal. Let (x, y) : SpecK → X ×k Y be a geometric point of X ×k Y . Let x and y denote
the induced geometric points on X and Y , respectively. Then for each integer n ≥ 0, the
canonical map

πn(X ×k Y, (x, y))→ πn(X, x)× πn(Y, y)

is an isomorphism of profinite groups.

Proof. Since X and Y are geometrically normal, X ×k Y is normal. Then one deduces from
[1, 11.1] that the étale homotopy types of X, Y , and X ×k Y are all profinite. Equivalently,
the shapes of the hypercompletions of the ∞-topoi Shvét(X), Shvét(Y ), and Shvét(X ×k Y )
are profinite spaces by combining [2, 6.0.5] with [5, 4.1.5] which guarantees that profinite
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completions in model category theory and in ∞-category theory are equivalent. Using 2.8,
the statement follows from 5.3. �

6. Application: Profinite Shapes of Symmetric Powers

6.1. Let X be a connected CW-complex. For each integer n ≥ 0, the n-th symmetric power
SymnX is defined as the quotient space Xn/Sn of the natural action of the symmetric group
Sn on the n-fold product of X with itself. The classical Dold-Thom theorem [6, 6.10] shows
that for each integer i > 0, the natural map

Hi(X;Z)→ πi(colim
n≥0

SymnX)

is an isomorphism.

In the setting of algebraic geometry, Arnav Tripathy proved in [18, Theorem 1] that for a
proper, normal, and geometrically connected algebraic space X over a separably closed field,
the natural map (1.8.1) is a \-isomorphism [1, 4.2] of pro-objects in the homotopy category of
those connected pointed CW-complexes whose homotopy groups are all finite; in particular,
the Dold-Thom theorem in the algebro-geometric setting holds.

6.2. The purpose of this section is to generalize [18, Theorem 1] by removing the assumption
that X is normal. In contrast with Tripathy who made a detailed study of the étale funda-
mental group of SymnX and used Deligne’s computation of the cohomology of SymnX, we
will use the qfh topology where the behavior of symmetric powers of algebraic spaces becomes
categorical. Remark that the idea of using the qfh topology in the study of étale homotopy
types appears in the work of Marc Hoyois [7].

As we will use various topologies associated to algebraic spaces, let us make it clear what
the associated shapes mean:

Definition 6.3. Let X be an ∞-topos. The shape of an object F ∈ X is the shape of the
∞-topos X/F . The profinite shape of F ∈ X is the profinite completion of the shape of F .
Let Sh(F ) and Shπ(F ) denote the shape and the profinite shape of F , respectively.

6.4. Let T be a usual 1-topos, and let F be an object of T . The author defined the topological

type h(F ) and the profinite topological type ĥ(F ) of F in [4, 2.3.2] and [4, 4.1.7], respectively;
they are compatible with the definitions above in the following sense:

Lemma 6.5. Let X be a 1-localic ∞-topos, and let F be an object of X. Then the shape
Sh((X/F )∧) of the hypercomplete ∞-topos (X/F )∧ is equivalent to the topological type h(F ) of
F as an object of the 1-topos Disc(X) under the equivalence of the model categorical and the
infinity categorical pro-spaces [2, 6.0.1]. Moreover, the profinite shape Shπ(F ) of F ∈ X is

equivalent to the profinite topological type ĥ(F ) of F ∈ Disc(X) under the equivalence of the
model categorical and the infinity categorical profinite spaces [2, 7.4.9].

Proof. Combine [2, 6.0.4] with [4, 2.3.16] that h(F ) is equivalent to the topological type of
the 1-topos Disc(X)/F . For profinite completions, use [5, 4.1.5] and 2.8. �

6.6. Let (Sch /S) denote the category of S-schemes. Let Tét and Tqfh denote the ∞-category
of S-valued sheaves with respect to the big étale and the big qfh topologies on (the nerve
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of) (Sch /S), respectively. The identity functor (Sch /S)ét → (Sch /S)qfh is continuous and
commutes with finite limits, thereby inducing a geometric morphism of ∞-topoi

i∗ : Tqfh → Tét .

Let X be an algebraic space over a scheme S. Regarding X as a 0-truncated object of Tét,
one can define its shape Sh(X) and profinite shape Shπ(X) (see 6.3). In the case where X is
a scheme, these definitions do not conflict with 5.1 (cf. [4, 3.2.3]).

6.7. Fix an integer n ≥ 0. Let Sn denote the symmetric group on n letters. Let Sub(Sn)
denote the partially ordered set of subgroups of Sn. For each subgroup H ≤ Sn, let o(H)
denote the set of orbits of the induced action of H on the n letters.

Let C be an ∞-category which admits colimits and finite limits. According to Hoyois [7,
p.3], the n-th symmetric power functor Symn : C→ C is defined by the formula

SymnX = colim
H∈Sub(Sn)

Xo(H),

where Xo(H) denotes the |o(H)|-fold product of X with itself; when C = S, this is compatible
with the usual definition of symmetric powers of spaces, and when C is a 1-category, the
symmetric powers behave like categorical quotients in a sense that SymnX is equivalent to
the coequalizer of the diagram

Sn ×Xn // // Xn,

where the two maps are the natural action of Sn on the n-fold product Xn of X with itself
and the projection onto the second factor.

6.8. Let X be a locally of finite type and separated algebraic space over a scheme S. As-
sociated to the natural action of Sn on the n-fold product Xn of X over S is the groupoid

Sn ×Xn //// Xn in algebraic spaces over S. It follows from [14, 5.3] that a GC quotient

q : Xn → SymnX of the groupoid exists (see [14, 3.17] for the definition of a GC quotient).

The advantage of the qfh topology over the étale topology is that the GC quotient and the
diagonal morphism

q : Xn → SymnX

j : Sn ×Xn → Xn ×SymnX X
n

are qfh coverings of algebraic spaces. In other words, the pullbacks i∗q and i∗j are epimor-
phisms in the category of qfh sheaves of sets on S.

Remark 6.9. The virtue of q and j being qfh coverings is that the pullback of the symmetric
power SymnX becomes a categorical quotient in the category of qfh sheaves of sets on S,
even if SymnX itself is not a categorical quotient in the category of big étale sheaves on S:

Proposition 6.10. Let X be a locally of finite type and separated algebraic space over a
scheme S. Then the canonical map

Symn(i∗X)→ i∗(SymnX)

is an equivalence in Tqfh.
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Proof. It follows from [7, 2.2] that τ≤0 Tqfh ⊆ Tqfh is stable under symmetric powers. Com-
bining this with the fact that the pullback i∗ preserves 0-truncated objects, it amounts to
proving the equivalence in the usual 1-topos of qfh sheaves of sets on S. Since i∗ preserves
finite limits, it suffices to show that the diagram of big étale sheaves of sets on S

Sn ×Xn //// Xn // SymnX

defining SymnX pulls back to a coequalizer of qfh sheaves of sets on S. Invoking the fact
that i∗q is an (effective) epimorphism, i∗ applied to the diagram

Xn ×SymnX X
n //// Xn // SymnX

which is induced by the fiber product Xn×SymnXX
n is a coequalizer of qfh sheaves of sets on

S. We complete the proof by observing that one still has a coequalizer diagram after replacing
i∗(Xn ×SymnX X

n) of the coequalizer by i∗(Sn ×Xn) using the epimorphism i∗j. �

Lemma 6.11. Let X be a quasi-compact, quasi-separated, and locally noetherian algebraic
space over a scheme S. Then the natural map

Shπ(i∗X)→ Shπ(X)

is an equivalence of profinite spaces.

Proof. Using 6.5 and the profinite hypercover descent [4, 4.2.11], we may assume that X is
a scheme. Consider a morphism of 1-topoi induced by the identity functor (Sch /X)ét →
(Sch /X)qfh which is continuous and commutes with finite limits. By virtue of [8, Theorem 1]
and its proof, the morphism of topoi induces isomorphisms on non-abelian first cohomology
groups for locally constant sheaves of finite groups, and on global sections for locally constant
sheaves of finite sets. On the other hand, [19, 3.4.4] guarantees that it induces isomorphisms
on abelian cohomology groups for locally constant sheaves of finite abelian groups, which
completes the proof. �

Theorem 6.12. Let X be a proper algebraic space over a separably closed field k. Then the
natural map

Symn(Shπ(X))→ Shπ(SymnX)

is an equivalence of profinite spaces.

Proof. Consider a commutative square of profinite spaces

Symn(Shπ(i∗X)) //

��

Shπ(i∗ SymnX)

��
Symn(Shπ(X)) // Shπ(SymnX).

By virtue of 6.11, the vertical arrows are equivalences. To complete the proof, it suffices to
show that the top horizontal arrow is an equivalence. The commutativity of profinite shapes
and products 5.3 (which also holds for algebraic spaces by virtue of 6.5 and [4, 4.2.11])
combined with 6.11 supplies that for each H ≤ Sn, the canonical map

Shπ((i∗X)o(H))→ (Shπ(i∗X))o(H)
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is an equivalence of profinite spaces. Passing to the colimit over H ∈ Sub(Sn), the left
diagonal arrow in the following commutative diagram of profinite spaces is an equivalence:

Symn(Shπ(i∗X))

))
colim Shπ(Tqfh/i∗Xo(H))

44

// Shπ(Symn i∗X).

Invoking the fact that the profinite shape functor preserves colimits (because it is a left

adjoint) and that the functor T
op
qfh → Ĉat∞ which carries each object F ∈ Tqfh to the ∞-

category Tqfh/F preserves small limits [9, 6.1.3.9], the bottom map is an equivalence and

therefore so is the right diagonal. The desired equivalence now follows from 6.10. �

Remark 6.13.

(i) Assume further that X is connected and geometrically normal. By virtue of [1, 11.1],
h(X ) and h(Symn X ) are pro-objects in the homotopy category of those connected CW-
complexes whose homotopy groups are all finite. As Hoyois pointed out to the author,
it is not clear that they are profinite in the sense of [12, §2.7]. Nevertheless, both a
\-isomorphism of profinite spaces in the sense of Artin-Mazur and a weak equivalence
of profinite spaces in the sense of Gereon Quick [12, 2.6] are precisely those maps which
induce isomorphisms on all homotopy groups. Therefore, using [12, 2.33] and 6.5, one
can recover [18, Theorem 1].

(ii) In comparison with [3, 10.0.4]—which gives an alternative proof of [18, Theorem 1]—
in the thesis of the author, the theorem above holds without the assumption that X is
geometrically normal, and does not depend on the computation of the étale fundamental
group of SymnX by Indranil Biswas and Amit Hogadi (see [3, 9.3.5]). It also fills in the
gap in the proof of [3, 9.2.11] via 5.3.
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