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Abstract. The goal of this paper is to provide an equivalence of profinite completions
of pro-spaces in model category theory and ∞-category theory. As an application, we show
that the author’s comparison theorem for algebro-geometric objects in model category theory
recovers that of David Carchedi in ∞-category theory.
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1. Introduction

1.1. Statement of the main results.

1.1.1. There are two existing notions of profinite completions of pro-simplicial sets. In model
category theory, the profinite completion functor on pro-simplicial sets

Pro(SSet)→ ŜSet

is defined to be the limit of level-wise profinite completion of simplicial sets; see [14, §2.7].
On the other hand, in ∞-category theory, the profinite completion functor on pro-spaces

Pro(S)→ Pro(Sπ)

is defined as a left adjoint to the fully faithful embedding Pro(Sπ) ↪→ Pro(S); see [12, 3.6.1].

The goal of this paper is to prove that these two profinite completions are compatible with
each other. Recall from [5, 4.2.3, 4.2.5] that the model categorical profinite completion admits
a right adjoint to provide an adjunction

Pro(SSet) //ŜSetoo ,

which is, according to [5, 4.2.6], a Quillen adjunction with respect to the strict model category
structure on pro-simplicial sets and Quick’s model category structure on profinite spaces. In
particular, one can consider the underlying ∞-functor

Pro(SSet)∞ → ŜSet∞
1
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of the profinite completion of pro-simplicial sets. Recall also that the underlying ∞-category

of Pro(SSet) (resp. ŜSet) is equivalent to Pro(S) (resp. Pro(Sπ)) by [2, 6.0.1] (resp. [2,
7.4.9]). All things considered, there is a diagram of ∞-categories

Pro(SSet)∞

o
��

// ŜSet∞

o
��

Pro(S) // Pro(Sπ)

with the model categorical and ∞-categorical profinite completions in the top and bottom
arrows respectively. By analyzing the vertical equivalences with respect to the Quillen ad-
junction of [5, 4.2.6], we show that this diagram commutes:

Theorem 1.1.2. (Theorem 4.1.5 in the text) The underlying ∞-functor associated to the
profinite completion on Pro(SSet) is equivalent to the profinite completion on Pro(S).

Remark 1.1.3. This compatibility serves as a key for connecting profinite completion of
topological types and that of shapes. Indeed, as an application, the comparison theorem for
algebraic stacks via shapes will be deduced from the one via topological types.

1.1.4. Recall from [5, 4.3.18] that for a locally of finite type algebraic stack X over C and
the associated topological stack Xtop, the map of profinitely completed topological types

ĥ(Xtop)→ ĥ(X)

is a weak equivalence of profinite spaces.

While the work of Ilan Barnea, Yonatan Harpaz, and Geoffroy Horel in [2] provides a
connection between topological types and shapes, the compatibility between the model cate-
gorical and∞-categorical profinite completions enables to connect their profinite completions.
In particular, one obtains:

Theorem 1.1.5. (Theorem 4.2.4 in the text) Let X be a locally of finite type algebraic stack
over C. Then the map of profinitely completed shapes

Ŝh(Xtop)→ Ŝh(X)

is an equivalence in Pro(Sπ).

Remark 1.1.6. This recovers [4, 4.14] of David Carchedi in his independent work of the étale
homotopy type of higher stacks [4]. Compared to his proof involving the reformulation of local
systems in ∞-category theory, we obtain 4.2.4 as a formal consequence of [5, 4.3.18] by the
compatibility of profinite completions 4.1.5 and the work of Barnea-Harpaz-Horel. Note that
[5, 4.3.18] was also obtained formally from Artin-Mazur’s classical theorem [1, 12.9] under
the machinery developed in [5]. Consequently, 4.1.5 fills in the missing piece as one tries to
obtain the comparison theorem for algebraic stacks in ∞-category theory formally from the
geometry of schemes–the study on étale coverings and cohomology.

1.2. Motivation.

1.2.1. In 1960s, Michael Artin and Barry Mazur developed the étale homotopy theory of
schemes [1]. Associated to a locally noetherian scheme X is its pro-homotopy type, a pro-
object in the homotopy category of simplicial sets, which is referred to as the étale homotopy



AN EQUIVALENCE OF PROFINITE COMPLETIONS 3

type of X. It recovers the étale cohomology and enlarged étale fundamental group of X and.
Moreover, it provides a homotopy theory for schemes.

Artin-Mazur’s classical comparison theorem [1, 12.9], which generalizes the Riemann exis-
tence theorem, says that for a connected finite type scheme X over C, there is a map from
the singular complex associated to the underlying topological space of analytification of X to
the étale homotopy type of X, which induces an isomorphism on the profinite completion.

Following Artin-Mazur’s seminal work, Eric Friedlander extended it to the étale topological
types of simplicial schemes [6]. Recently, Ilan Barnea and Tomer Schlank rediscovered Artin-
Mazur’s étale homotopy types using model category theory as they constructed new model
category structures on pro-categories [3].

1.2.2. Based on the work of Barnea-Schlank, the author extended the previous theories to
simplicial algebraic spaces and algebraic stacks [5]. In fact, the theory of topological types
of topoi was developed in [5] under model category theory and applied to algebro-geometric
objects so that it generalizes the previous theories. In particular, the comparison theorem for
algebraic stacks [5, 4.3.18], which generalizes Artin-Mazur’s comparison theorem for schemes,
was proved in a formal model categorical way.

On the other hand, David Carchedi proved independently the comparison theorem for
algebraic stacks using ∞-category theory [4, 4.14] as he studies the étale homotopy type of
higher stacks.

To provide a connection between these two different approaches to the comparison theorem,
it is necessary to compare the profinite completion of pro-simplicial sets in model category
theory to the profinite completion of pro-spaces in ∞-category theory.

As a preliminary step, we review the work of Ilan Barnea, Yonatan Harpaz, and Geoffroy
Horel on the equivalence between the model categorical and ∞-categorical approaches to
pro-categories [2], which connects topological types of topoi to shapes of associated∞-topoi.
After then, based on Barnea-Harpaz-Horel’s model for the ∞-category of profinite spaces,
the equivalence between the profinite completions will be proved by the characterization of
profinite completion of pro-simplicial sets that it is a left adjoint [5, 4.2.3].

1.3. Convention.

1.3.1. In this paper, an algebraic space X over a scheme S is a functor X : (Sch/S)op → Set
such that the following holds:

(i) X is a sheaf with respect to the big étale topology.
(ii) The diagonal

∆ : X → X ×S X
is representable by schemes.

(iii) There exists a S-scheme U and an étale surjection U → X.

An algebraic stack X over a scheme S is a stack in groupoids over the big étale site (Sch/S)ét
of S-schemes such that the following holds:

(i) The diagonal

∆ : X→ X×S X
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is representable by algebraic spaces.
(ii) There exists a S-scheme X and a smooth surjection π : X → X.

Remark 1.3.2. These definitions only assume the minimum conditions compared to those
in the literature. For example, we do not assume the quasi-compactness on the diagonal.

1.3.3. An ∞-category in this paper refers to an (∞, 1)-category. Among several equiva-
lent models of (∞, 1)-categories, we take quasi-categories throughout the paper; our basic
reference is [11].

1.4. Acknowledgements. This work was supported by IBS-R003-D1. The author is grate-
ful to Ilan Barnea for his helpful comments and suggestions.

2. The comparison theorem via topological types

In this section we recall from [5] topological types of algebro-geometric objects and their
comparison theorems.

2.1. Review on topological types and profinite completions.

2.1.1. Let us briefly recall the topological types of topoi [5, §2.3]. Let T be a topos and
consider the (2-categorical) unique morphism of topoi

Γ = (Γ∗,Γ∗) : T → Set.

Then for the pro-categories of simplicial objects, Γ∗ admits a left adjoint LΓ∗ and, moreover,
the adjunction

(2.1.1.1) LΓ∗ : Pro(T∆op
) //Pro(SSet) : Γ∗oo

is a Quillen adjunction with respect to Barnea-Schlank’s model category structures [3, §7.3].

Recall from [5, 2.3.2] that for the left derived functor LLΓ∗ : Ho(Pro(T∆op
))→ Ho(Pro(SSet))

the topological type of a topos T is defined to be the pro-simplicial set

h(T ) := LLΓ∗(∗)

where ∗ is a final object of T . More generally, the topological type h(F•) of a simplicial object
F• in T is defined to be the pro-simplicial set

LLΓ∗(F•).

Remark 2.1.2.

(i) Topological types of stacks [5, 2.3.6] is a bit more involved as it is necessary to deal
with the 2-categorical aspects of stacks. It will be reviewed in 2.2.2 with the comparison
theorem for algebraic stacks.

(ii) Various properties of topological types can be found in [5, §2.3, §2.4]. Especially, there
are the descent theorems [5, 2.3.23, 2.3.32, 2.3.36] obtained in a very categorical manner,
compared to other approaches in the literature.
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2.1.3. Let us recall from [14] profinite spaces and profinite completions. The category Ê

of compact, Hausdorff, and totally disconnected topological spaces is equivalent to the pro-

category of finite sets. The forgetful functor Ê → Set admits a left adjoint. Denote the

category of simplicial objects in Ê by ŜSet and refer to its objects as profinite spaces. There
is an adjunction ̂: SSet //ŜSet : | |oo

where the right adjoint is the induced forgetful functor. The left adjoint is referred to as the
profinite completion of simplicial sets.

Following [14, §2.7], the profinite completion functor on Pro(SSet) is the composition of the
functor on the pro-categories associated to the profinite completion of simplicial sets followed

by the limit functor on Pro(ŜSet):

Pro(SSet) // Pro(ŜSet)
lim // ŜSet : (Xi)i∈I 7→ limi∈I X̂i.

Notation 2.1.4. Denote by ĥ(T ) the profinite completion of the topological type h(T ) which
is a priori a pro-simplicial set. Likewise for h(F•).

2.1.5. One of the key technical ingredients for the comparison theorem for algebraic stacks
via topological types is the fact that the profinite completion on pro-simplicial sets admits
a right adjoint [5, 4.2.3]; it implies that the profinite completion commutes with homotopy
colimits (see [5, 4.2.8]). For later use, let us recall how the proof works.

Recall from [2, 7.2.3] that a simplicial set X is τn-finite if it is a level-wise finite sets and
the canonical map X → coskn τnX is an isomorphism. Also, X is τ -finite if it is τn-finite
for some n ≥ 0. For the full subcategory SSetτ ⊂ SSet of τ -finite simplicial sets, there is a

natural inclusion SSetτ → ŜSet and the functor

Pro(SSetτ )→ ŜSet.

induced by the universal property of pro-categories is an equivalence of categories by [2, 7.4.1].

There is an adjunction

(2.1.5.1) Pro(SSet) //Pro(SSetτ )oo .

whose right adjoint is induced by the natural inclusion SSetτ → SSet. It then follows from
[5, 4.2.3] that the left adjoint Ψ is equivalent to the profinite completion on pro-simplicial
sets under the equivalence of categories of [2, 7.4.1]. Therefore, there is an adjunction

(2.1.5.2) Pro(SSet) //ŜSetoo

whose left adjoint is the profinite completion.

2.2. The comparison theorem for algebraic stacks via topological types.

2.2.1. In [5], Artin-Mazur’s comparison theorem for schemes [1, 12.9] was generalized to
simplicial algebraic spaces [5, 4.3.14] and algebraic stacks [5, 4.3.18]. To set up the comparison

theorems via topological types, note from [5, 4.3.1] that the big étale site Ét is the category
of complex analytic spaces equipped with the Grothendieck topology that a collection of
morphisms {Xi → X} is a covering of X if each morphism Xi → X is étale and the map∐

i∈I Xi → X is surjective. On the other hand, recall from [5, 3.2.1] that LFÉ/C is the site
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whose underlying category is the full subcategory of the category of C-schemes consisting of
locally of finite type C-morphisms with the coverings induced by coverings in the big étale
topology on SpecC.

The topological types of locally of finite type (simplicial) schemes/algebraic spaces over C
are defined to be the topological types of the corresponding (simplicial) sheaves in the topos

(LFÉ/C)∼; see [5, 3.2.6]. Likewise for (simplicial) complex analytic spaces.

For a locally of finite type simplicial algebraic space X• over C, its comparison theorem [5,
4.3.14] provides that the map of profinitely completed topological types

ĥ(Xan
• )→ ĥ(X•)

is a weak equivalence of profinite spaces with respect to Quick’s model category structure
[14, 2.12].

2.2.2. To obtain the topological types of algebraic stacks, recall from [5, 3.3.1] that for an

algebraic stack X that is locally of finite type over C, one defines the site LFÉ(X) as following.
An object is a pair (Y, y), where y : Y → X is a locally of finite type morphism over C with
Y an algebraic space. A morphism

(Y, y)→ (Z, z)

is a pair (h, hb) where h : Y → Z is a morphism of algebraic spaces and hb : y → z ◦ h is a
2-morphism of functors. A collection of maps

{(hi, hbi) : (Yi, yi)→ (Y, y)}
is a covering if the underlying collection of morphisms of algebraic spaces {yi : Yi → Y } is an
étale covering: each yi is étale and

∐
Yi → Y is surjective.

Following [5, 3.3.3], the topological type h(X) of X/C is defined to be the topological type

of the associated topos (LFÉ/X)∼.

To set up the comparison theorem for algebraic stacks, note that the category of topological
spaces with the usual open coverings gives rise to the big topological site Top. Recall from
[13, §20] that there is a functor from the category of locally of finite type algebraic stacks over
C to the category of stacks over Top. Denote by Xtop the image of X under this functor. The
comparison theorem for algebraic stacks [5, 4.3.18] provides that there is a weak equivalence

ĥ(Xtop)→ ĥ(X).

3. Topological types and shapes

In this section we review the original work of Ilan Barnea, Yonatan Harpaz, and Geoffroy
Horel [2] to provide the relationship between topological types and shapes [2, 6.0.4].

3.1. Preliminaries on pro-categories.

3.1.1. Let us briefly review pro-categories in∞-category theory. We will recall pro-categories
associated to accessible ∞-categories which admit finite limits. In fact, for the purpose of
connecting topological types to shapes, we should consider more general case of locally small
∞-categories. To avoid too much technical details, let us restrict our attention to the case of
accessible ∞-categories; see [2, §3.2] for the technicality involving locally smallness.
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Let C be an accessible ∞-category which admits finite limits. Recall from [12, 3.1.1]
that a pro-object of C is a functor C → S which is accessible and preserves finite limits.
Denote by Pro(C) the full subcategory of Fun(C, S)op spanned by the pro-objects of C. We
refer to Pro(C) as the ∞-category of pro-objects of C. The pro-category Pro(C) enjoys a
universal property. For this, let D be an ∞-category which admits small cofiltered limits,
and let Fun′(Pro(C),D) ⊂ Fun′(Pro(C),D) denote the full subcategory spanned by those
functors which preserve small cofiltered limits. It then follows from [12, 3.1.6] that the
Yoneda embedding induces an equivalence of ∞-categories

Fun′(Pro(C),D)→ Fun(C,D).

3.1.2. Let f : C→ D be a functor between accessible∞-categories which admit finite limits.
By the universal property of pro-categories, there is an induced functor on the pro-categories

Pro(f) : Pro(C)→ Pro(D),

which commutes with small cofiltered limits. Assuming further that f is accessible and
commutes with finite limits, there is a functor

Pro(D)→ Pro(C)

induced by the composition with f . It can be checked this functor is a left adjoint to Pro(f).

3.1.3. The ∞-category of spaces S is a final object in the ∞-category of ∞-topoi; see [11,
6.3.4.1]. In other words, for an ∞-topos X, there exists a unique geometric morphism π∗ :
X → S up to equivalence. The composition π∗ ◦ π∗ : S → S is a pro-object of S, which is
referred to as the shape of X and denoted by Sh(X); see [11, 7.1.6.3].

Applying 3.1.2 to π∗ : S→ X, one sees that Pro(π∗) admits a left adjoint

π! : Pro(X)→ Pro(S).

It can be checked that for each objectX ∈ X and its overcategory X/X, there is an equivalence
of pro-spaces

π!(X) ' Sh(X/X).

In particular, for a final object ∗ of X, there is an equivalence of pro-spaces π!(∗) ' Sh(X).

3.2. Comparison between topological types and shapes.

3.2.1. Let (C,W) be a relative category. There is a natural functor of ∞-categories

NC→ C∞

from the nerve of C to the underlying ∞-category of the relative category. Associated to a
simplicial set S is its homotopy category hS; see [11, 1.1.5.14]. Considering the canonical

isomorphism C
∼ // hNC , one obtains a functor

(3.2.1.1) C→ hC∞.

Definition 3.2.2. Let (C,W) be a relative category. For an object x ∈ C, the underlying
∞-object x∞ is the image of x under the functor (3.2.1.1).

Remark 3.2.3. In the literature, the underlying ∞-category C∞ is often chosen in such a
way that the underlying map on objects is the identity. We do not make such a choice so as
to avoid any confusion in the case we use a specific model for C∞ whose underlying map on
objects is not the identity.
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3.2.4. There is a concrete description of the underlying ∞-objects for simplicial model
categories. Indeed, let M be a simplicial model category with its underlying ∞-category
M∞ = N(Mcf) which is the simplicial nerve [11, 1.1.5.5] of the full subcategory Mcf ⊂ M

of fibrant-cofibrant objects. For an object X ∈ M, its underlying object is Xcf which is a
cofibrant fibrant approximation [7, 8.1.2] of a fibrant cofibrant approximation of X in M.

For a simplicial Quillen adjunction between simplicial model categories

F : M //N : Goo ,

there is an induced adjunction of underlying ∞-categories

F∞ : M∞
//M∞ : G∞oo .

It can be checked that for the left derived functor LF : Ho(M) → Ho(N) applied to an
object A ∈M, there is an equivalence

(LF (A))∞ ' F∞(A∞).

Notation 3.2.5. Denote the underlying ∞-object of the topological type h(T ) by h∞(T )

and that of its profinite completion ĥ(T ) by ĥ∞(T ). Likewise for h(F ).

3.2.6. Applying the previous discussion of adjunctions and underlying ∞-objects to the
simplicial Quillen adjunction (2.1.1.1), one obtains an adjunction of underlying∞-categories

(3.2.6.1) (LΓ∗)∞ : Pro(T∆op
)∞

//Pro(SSet)∞ : Pro(Γ∗)∞oo .

Moreover, for an object F ∈ T∆op
, there is an equivalence in Pro(SSet)∞

h∞(F ) ' (LΓ∗)∞(F∞).

3.2.7. The main bridge that connects topological types and shapes is the equivalence between
the model categorical and ∞-categorical approaches to pro-categories by Barnea-Harpaz-
Horel [2]. Recall from [3, 7.13] that for a topos T , there is a weak fibration category structure
[3, 1.2] on T∆op

, from which one can associate the underlying ∞-category of the underlying
relative category. According to [2, 6.0.1], there is a natural equivalence of ∞-categories

Pro(T∆op

)∞ → Pro(T∆op

∞ ).

In fact, this equivalence is functorial with respect to right derived functors [2, 5.2.5]. In
the case of our interest, note that the underlying∞-functor Γ∗∞ of the constant sheaf functor
Γ∗ : SSet→ T∆op

induces a functor

Pro(Γ∗∞) : Pro(S)→ Pro(T∆op

∞ )

by the universal property of pro-categories [2, 3.2.19]. It then follows from [2, 5.2.5] that this
functor is equivalent to the right adjoint Pro(Γ∗)∞ of (3.2.6.1) under the equivalence of [2,
6.0.1]. That is, there is a commutative diagram of ∞-categories

(3.2.7.1) Pro(SSet)∞
Pro(Γ∗)∞ //

o
��

Pro(T∆op
)∞

o
��

Pro(SSet∞)
Pro(Γ∗∞)

// Pro(T∆op

∞ ).

Remark 3.2.8. There is an equivalence of ∞-categories SSet∞ ' S. Let us identify them
throughout the rest of this paper.
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3.2.9. Let C be a site whose associated topos is T . According to [11, 6.5.2.14], for Jardine’s
model category [9, 2.3] of simplicial presheaves on C, its underlying ∞-category is an ∞-
topos. On the other hand, notice that T∆op

∞ can be thought as the underlying ∞-category of
Joyal’s model category [10] of T∆op

. It then follows from [9, 2.8] and [11, A.3.1.12] that these
underlying ∞-categories are equivalent, and thus T∆op

∞ is an ∞-topos.

Let us describe the shape of the ∞-topos T∆op

∞ . With respect to Joyal’s model category
structure on T∆op

, the adjunction Γ∗ : SSet //T∆op
: Γ∗oo becomes a Quillen adjunction. By

3.2.4, there is an adjunction of underlying ∞-categories

Γ∗∞ : S //T∆op

∞ : (Γ∗)∞oo .

Since Γ∗∞ commutes with finite limits by [2, 2.4.13], one sees that

(Γ∗∞, (Γ∗)∞) : T∆op

∞ → S

is the unique geometric morphism of the ∞- topos T∆op
. Therefore, there is an equivalence

of pro-spaces

Sh(T∆op

∞ ) ' (Γ∗)∞ ◦ Γ∗∞.

3.2.10. The functor

Γ∗∞ : S→ T∆op

∞

is accessible and commutes with finite limits, and hence Pro(Γ∗∞) admits a left adjoint Γ!.
Considering the left adjoints to the horizontal functors in (3.2.7.1), one obtains a commutative
diagram of ∞-categories

(3.2.10.1) Pro(T∆op
)∞

(LΓ∗ )∞ //

o
��

Pro(SSet)∞

o
��

Pro(T∆op

∞ )
Γ! // Pro(S).

3.2.11. Finally, one can state [2, 6.0.4] in terms of underlying∞-objects of topological types.
Let F be an object in T∆op

. Applying F∞ to (3.2.10.1), one sees from 3.1.3 and 3.2.6 that
there is an equivalence of pro-spaces

h∞(F ) ' Sh(T∆op

∞ /F∞)

under the right vertical equivalence of (3.2.10.1). In particular, there is an equivalence of
pro-spaces h∞(T ) ' Sh(T∆op

∞ ).

4. An equivalence of profinite completions and the comparison theorem via
shapes

In this section we use the key statement–the profinite completion is a left adjoint–and the
model for ∞-categorical profinite spaces by Barnea-Harpaz-Horel to provide an equivalence
of profinite completions in model category theory and∞-category theory. As an application,
we obtain the comparison theorem for algebro-geometric objects in terms of shapes.
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4.1. An equivalence of profinite completions.

4.1.1. Let X ∈ S be a pro-space. According to [12, 2.3.2], X is defined to be π-finite if it
satisfies the following conditions:

(i) X is n-truncated for some n ≥ −2.
(ii) π0X is finite.

(iii) For each x ∈ X and each m ≥ 1, πm(X, x) is finite.

Deonte by Sπ the full subcategory of S spanned by the π-finite spaces. The associated pro-
category Pro(Sπ) is referred to as the ∞-category of profinite spaces; see [12, 3.6.1].

4.1.2. It follows from 3.1.2 that the fully faithful embedding Pro(Sπ)→ Pro(S) admits a left
adjoint

Pro(S)→ Pro(Sπ)

which is referred to as the profinite completion functor. For a pro-space X, its image under

this functor is denoted by X̂ and referred to as the profinite completion of X.

4.1.3. In order to obtain an equivalence of profinite completions in model category theory and
∞-category theory, we review [2, 7.4.9] of Barnea-Harpaz-Horel, which provides a connection
between the model categorical profinite homotopy theory in the sense of Quick [14] and
the ∞-categorical one. Recall from [8, 2.2] that for a set K of Kan complexes, one can
localize the strict model category structure on Pro(SSet) to obtain a new model category
structure denoted by LK Pro(SSet); cofibrations are the cofibrations in the strict model
category structure and a map X → Y is a weak equivalence if and only if

MapPro(SSet)(Y,A)→ MapPro(SSet)(X,A)

is a weak equivalence for each A ∈ K.

Choosing K to be Kπ (see [2, 7.2.8]), LKπPro(SSet) can be a model for Pro(Sπ). Namely,
it follows from [2, 7.2.12] that there is an equivalence of ∞-categories

LKπPro(SSet)∞
∼ // Pro (Sπ).

On the other hand, the localized model category LKπPro(SSet) is Quillen equivalent to

Quick’s model category structure on ŜSet. To see this, let us view Pro(SSetτ ) as a model

category through the equivalence of categories Pro(SSetτ ) ' ŜSet [2, 7.4.1]. In this regard,
the adjunction (2.1.5.1) becomes a Quillen adjunction (see [2, 7.4.5]) which induces a Quillen
equivalence (see [2, 7.4.8])

LKπ Pro(SSet) //Pro(SSetτ )oo .

All in all, one obtains an equivalence ŜSet∞ ' Pro(Sπ) [2, 7.4.9].

4.1.4. To compare the profinite completions, recall from [5, 4.2.6] that the adjunction (2.1.5.2)
is a Quillen adjunction with respect to the strict model category structure on pro-simplicial
sets (cf. [5, 2.2.6]) and Quick’s model category structure on profinite spaces.
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Theorem 4.1.5. The underlying∞-functor associated to the profinite completion on Pro(SSet)
is equivalent to the profinite completion on Pro(S). That is, there is a commutative diagram
of ∞-categories

(4.1.5.1) Pro(SSet)∞

o
��

// ŜSet∞

o
��

Pro(S) // Pro(Sπ).

Proof. The Quillen adjunction

id : Pro(SSet) //LKπPro(SSet) : idoo

of the localization induces an adjunction

Pro(SSet)∞
//LKπPro(SSet)∞oo .

It then follows from [5, 4.2.3] and [2, 7.4.8] that one can replace the top arrow of the square
by the left adjoint of the induced adjunction.

Now, it suffices to show the commutativity of the square after replacing the horizontal
arrows by their right adjoints. Yet such a diagram commutes by the construction of the
equivalence LKπPro(SSet)∞ ' Pro(Sπ) (see the proof of [2, 7.1.2] and [2, 7.2.11]). �

4.2. The comparison theorem via shapes.

Theorem 4.2.1. Under the equivalence of ∞-categories ŜSet∞ ' Pro(Sπ), for each object
F ∈ T∆op

, there is an equivalence of profinite spaces

ĥ∞(F ) ' Ŝh(T∆op

∞ /F∞).

In particular, there is an equivalence of profinite spaces ĥ∞(T ) ' Ŝh(T∆op

∞ ).

Proof. Since the profinite completion on pro-simplicial sets preserves weak equivalences (cf.
[14, 2.14. 2.28]), it follows from 3.2.4 that the image of h∞(F ) under the top arrow of (4.1.5.1)

is equivalent to ĥ∞(T ) which is the underlying ∞-object of ĥ(T ) (see 3.2.5 for the notation).
Then considering the equivalence of topological types and shapes 3.2.11, the statement follows
from the equivalence of profinite completions 4.1.5. �

Remark 4.2.2. The equivalence in 4.2.1 is functorial in the following sense. Let f : T ′ → T
a morphism of topoi. For each F ∈ T∆op

,

ĥT ′(f
∗F )→ ĥT (F )

is a weak equivalence in ŜSet if and only if

Ŝh(T ′∆
op

∞ /f ∗∞F∞)→ Ŝh(T∆op

∞ /F∞)

is an equivalence in Pro(Sπ). In particular, ĥ(T ′) → ĥ(T ) is a weak equivalence in ŜSet if

and only if Ŝh(T ′∆
op

∞ )→ Ŝh(T∆op

∞ ) is an equivalence in Pro(Sπ).

Notation 4.2.3. For a locally of finite type algebraic stack X over C, denote by Sh(X) the

shape of the ∞-topos T∆op

∞ where T = (LFÉ/X)∼. Likewise for the associated topological
stack (see [5, 4.3.15, 4.3.17]).
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Theorem 4.2.4. (cf. [4, 4.14]) Let X be a locally of finite type algebraic stack over C. Then
the map of profinitely completed shapes

Ŝh(Xtop)→ Ŝh(X).

is an equivalence in Pro(Sπ).

Proof. Under the compatibility of the profinitely completed topological types and shapes
4.2.1 (cf. 4.2.2), the statement is reduced to the comparison theorem for algebraic stacks via
topological types [5, 4.3.18]. �

Remark 4.2.5.

(i) Similarly, one can translate the comparison theorem for simplicial algebraic spaces [5,
4.3.14] to the one described by shapes.

(ii) While the author developed the theory of topological types under model category theory
and, in particular, proved the comparison theorem for algebraic stacks [5, 4.3.18], David
Carchedi showed independently the comparison theorem for algebraic stacks under ∞-
category theory [4, 4.14]. Here we recover his comparison theorem by establishing the
equivalence of profinite completions.
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