
THE PRO-ÉTALE TOPOLOGY FOR ALGEBRAIC STACKS
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Abstract. The pro-étale topology by Bhargav Bhatt and Peter Scholze allows us to recon-
struct the derived category of constructible Q`-sheaves on a topologically noetherian scheme
in the usual derived manner. We extend this result from schemes to algebraic stacks.
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1. Introduction

1.1. Let X be a separated scheme of finite type over a field k of characteristic p and let ` be
a prime different from p. In practice, the “derived category” Db

c(X,Q`) of constructible Q`-
sheaves on X is defined to be the limit of the derived categories of constructible Z/`nZ-sheaves
tensored with Q` over Z`:

Db
c(X,Q`) := lim

n
Db
c(X,Z/`nZ)⊗Z` Q`.

This indirect approach was refined by the work of Bhargav Bhatt and Peter Scholze on
the pro-étale topology; see [2]. The pro-étale topology is finer than the étale topology, so
that one can construct a sheaf associated to the topological ring Q` which captures the
topological information on the ring (see [2, 4.2.12]), but not too coarse, so that one can
redefine Db

c(X,Q`) as the usual derived category of constructible sheaves of modules over the
sheaf of rings associated to Q` (see [2, 6.8.14]). In particular, as Bhatt–Scholze pointed out,
the Q`-homotopy type of X can be constructed directly, unlike the work of Deligne in [3, 5.2].
The motivation for this paper is to give such a direct construction of Q`-homotopy types for
algebraic stacks.

The main result of this paper is to generalize [2, 6.8.14] from schemes to algebraic stacks:
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Theorem 1.2. Let S be a noetherian scheme and let X be an algebraic stack of finite type
over S. Then:

(i) The natural functor

colim
F⊆E

Dcons((Sch /X)proét,OF )→ Dcons((Sch /X)proét,OE)

is an equivalence of triangulated categories, where the colimit is indexed by the finite
extensions F of Q` contained in E.

(ii) The natural functor

Dcons((Sch /X)proét,OE)[`−1]→ Dcons((Sch /X)proét, E)

is an equivalence of triangulated categories.

Remark 1.3. Here the coefficient sheaves of rings and the derived categories are defined as
in 4.4 and 4.17, respectively, by using the pro-étale topology for algebraic stacks of 2.5.

1.4. Our strategy for proving the main result 1.2 is to reduce to the case of schemes of [2,
6.8.14] by supplying an equivalence between the (derived) category of constructible sheaves
on algebraic stacks and the (derived) category of constructible sheaves on simplicial algebraic
spaces; see 4.24 and 4.27. We will make use of many arguments developed in the work of
Martin Olsson (see [4]). However, there are some notable aspects that are new in our work.
First, we make an observation that a big étale (resp. pro-étale) sheaf on a scheme is locally
constructible in the sense of [1, VII.1.1.9] (see 3.4) if and only if it is cartesian in the sense
of 3.1; see 3.5. This simple observation (which might not be new but does not appear in the
literature to the extent of the author’s knowledge) turns out to be surprisingly useful since
it establishes a close connection between the study of small étale (resp. pro-étale) sheaves
on schemes and the study of big étale (resp. pro-étale) sheaves on algebraic stacks, and
therefore will be used repeatedly throughout the paper. We also note that our treatment of
cartesian sheaves on algebraic stacks is simpler than it is in [4]. This is due to our new result
4.7, which guarantees that the coefficient sheaves of rings we work with in this paper (see
4.4) are cartesian in the sense of 3.1; it not only simplifies our work, but also provides some
generalization of the work of Bhatt–Scholze; see 4.30.

1.5. Conventions. We follow the theory of algebraic spaces and stacks as developed in [5].

1.6. Acknowledgements. The author is thankful to Bhargav Bhatt, Martin Olsson, and
Peter Scholze for their encouragement. The author is also grateful to an anonymous referee
for many helpful comments and suggestions. This work was supported by the Institute for
Basic Science (IBS-R003-D1).

2. Pro-étale Topology for Algebraic Stacks

In this section we define the pro-étale topology for algebraic stacks. Throughout the rest
of this paper, we fix a base scheme S and an algebraic stack X over S.

2.1. Let X be a scheme. Let Sch /X denote the category of schemes over X. It is equipped
with a Grothendieck topology, where a collection of X-morphisms {fi : Yi → Y }i∈I is a
covering if each fi is weakly étale (that is, fi and ∆fi : Yi → Yi×Y Yi are flat; see [2, 1.2]) and
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the collection is a fpqc covering of Y . We refer to it as the big pro-étale topology on X and
denote by (Sch /X)∼proét the associated topos. Note that the (small) pro-étale topology on X
of [2, 4.1.1] is the induced topology on the full subcategory Proét(X) ⊆ Sch /X spanned by
the weakly étale X-schemes. Let Xproét denote the associated topos.

2.2. The following lemma (whose proof is immediate from the fpqc descent for flat morphisms;
see, for example, [6, Tag 02L2]) shows that the property of being a weakly étale morphism is
well-defined for morphisms of algebraic spaces, or more generally for representable morphisms
of algebraic stacks:

Lemma 2.3. The property of being a weakly étale morphism is stable with respect to the fpqc
topology. Moreover, it is stable and local on domain with respect to the étale topology.

2.4. We can extend the big pro-étale topology on schemes (see 2.1) to algebraic stacks:

Definition 2.5. Let AS/X denote the category whose objects are pairs (T, t), where T is
an algebraic space over S and t : T → X is a morphism over S, and whose morphisms
(T ′, t′) → (T, t) are pairs (f, f b) where f : T ′ → T is a morphism of algebraic spaces over S
and f b : t′ → t◦f is an isomorphism of functors. It is equipped with a Grothendieck topology,
where a collection of maps {(fi, f bi ) : (Ti, ti)→ (T, t)} is a covering if each fi is weakly étale
(resp. étale) and the underlying collection {fi : Ti → T} is a fpqc (resp. étale) covering. We
refer to it as the big pro-étale (resp. étale) topology on X and denote by (AS/X)∼proét (resp.
(AS/X)∼ét) the associated topos.

Remark 2.6. Let Sch /X ⊆ AS/X denote the full subcategory spanned by those objects
(T, t) for which T is a scheme. With respect to the induced topology, the inclusion functor
induces an equivalence of topoi.

Remark 2.7. In the special case where X is equivalent to a scheme X, we can recover the
usual big étale topology on X (see, for example, [5, 2.1.13]).

2.8. For each object (T, t) ∈ Sch /X, the functor

Proét(T )→ (Sch /X)proét : (f : T ′ → T ) 7→ (T ′, t ◦ f)

is cocontinuous (see 2.1), and therefore induces a morphism of topoi itét
: Tproét → (Sch /X)∼proét

for which the pullback functor carries a big pro-étale sheaf F on X to its restriction to Tproét,
which we denote by F(T,t). If (f, f b) : (T ′, t′)→ (T, t) is a morphism in Sch /X, then there is
a canonical morphism ρ(f,fb) : f−1F(T,t) → F(T ′,t′) in T ′proét satisfying the following conditions:

(i) For each composition (T ′′, t′′)
(f ′,f ′b)−→ (T ′, t′)

(f,fb)−→ (T, t) in Sch /X, the following diagram
commutes:

f ′−1f−1F(T,t)

ρ
(f,fb) //

'
��

f ′−1F(T ′,t′)

ρ
(f ′,f ′b)
��

(f ◦ f ′)−1F(T,t)

ρ
(f,fb)◦(f ′,f ′b) // F(T ′′,t′′).

(ii) If (f, f b) : (T ′, t′) → (T, t) is a morphism for which f is weakly étale, then the map
ρ(f,fb) is an isomorphism.

https://stacks.math.columbia.edu/tag/02L2
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As in the case of lisse-étale sheaves on X, the big pro-étale sheaf F can be recovered from the
data ({F(T,t)}, {ρ(f,fb)}); see [5, 9.1.12] for details.

2.9. For later reference, we record a useful diagram. Let f : Y → X be a morphism of
schemes and let fét : Yét → Xét denote the associated morphism of topoi. Then there is a
commutative diagram of topoi (and similarly for the pro-étale case):

(Sch /X)∼ét

(i!,i
−1)

��
Yét

ifét

99

fét

// Xét.

3. Cartesian Sheaves on Algebraic Stacks

In this section we define the notion of a cartesian sheaf on (Sch /X)proét and describe those
sheaves via hypercovers, as in the case of lisse-étale sheaves of [4, §4]. We fix a smooth
surjection p : X → X for which X is a scheme throughout this section.

Definition 3.1. Let τ ∈ {ét, proét}.

(i) A big τ -sheaf of sets F on X is cartesian if for each morphism (f, f b) : (T ′, t′)→ (T, t) in
Sch /X, the canonical map f−1F(T,t) → F(T ′,t′) of small τ -sheaves on T ′ is an isomorphism
(see 2.8).

(ii) Let Λ be a big τ -sheaf of rings on X. A big τ -sheaf of Λ-modules F on X is cartesian
if for each morphism (f, f b) : (T ′, t′) → (T, t) in Sch /X, the canonical map of small
τ -sheaves of Λ(T ′,t′)-modules on T ′

f ∗F(T,t) := f−1F(T,t) ⊗f−1Λ(T,t)
Λ(T ′,t′) → F(T ′,t′)

is an isomorphism. Let Modcart
Λ ((Sch /X)τ ) ⊆ ModΛ((Sch /X)τ ) denote the full subcat-

egory spanned by the cartesian τ -sheaves of Λ-modules.

3.2. We now give an alternative characterization of big cartesian sheaves on schemes. Let
X be a scheme. The restriction functor i−1 : (Sch /X)ét → Xét from the big étale topos to
the small one admits both left and right adjoints, which we denote by i! and i∗, respectively.
Note that the adjoint pairs (i!, i

−1) and (i−1, i∗) form morphisms of topoi. Similarly, we have
morphisms of topoi (j!, j

−1) and (j−1, j∗) in the case of the pro-étale topology.

Remark 3.3. In the situation of 3.1, if X is equivalent to a scheme X, then a big étale
sheaf of sets F on X is cartesian if and only if the canonical map t−1

ét i
−1F → F(T,t) is an

isomorphism for each object (t : T → X) ∈ Sch /X (and similarly for the pro-étale case).

3.4. According to [1, VII.1.1.9], a big étale sheaf of sets F on a scheme X is locally con-
structible if the adjunction map i!i

−1F → F is an isomorphism (see 3.2). We define a locally
constructible big pro-étale sheaf similarly.

The following assertion (which is a consequence of 2.9 and 3.3) might be known to the
experts, but the author could not find it in the literature, so record it here:

Proposition 3.5. Let τ ∈ {ét, proét}. A big τ -sheaf of sets F on a scheme X is locally
constructible if and only if it is cartesian. In particular, there is an equivalence of categories
between Xτ and the full subcategory of (Sch /X)∼τ spanned by the cartesian sheaves.
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3.6. We recall a bit of terminology. Let ∆ denote the category of combinatorial simplices.
According to [7, Vbis.1.2.1], a ∆-topos consists of a topos Tn for each object [n] ∈ ∆ and a
morphism of topoi fδ : Tm → Tn for each morphism (δ : [n] → [m]) ∈ ∆ such that for each

composition [n]
δ→ [m]

ε→ [k], there is an isomorphism fδ ◦ fε ' fε◦δ. We refer to it as the
simplicial topos. We will often abuse notation by denoting the ∆-topos and the morphism of
topoi fδ by T• and δ, respectively. The total topos associated to the simplicial topos T•, which
we denote by Tot(T•), is a category whose objects are collections ({Fn}[n]∈∆, {Fδ}(δ:[n]→[m])∈∆)
where Fn ∈ Tn and Fδ : δ−1Fn → Fm is a morphism in Tm such that for each composition

[n]
δ→ [m]

ε→ [k], the diagram

f−1
ε f−1

δ Fn
Fδ //

'
��

f−1
ε Fm

Fε
��

(fε◦δ)
−1Fn

Fε◦δ // Fk

commutes, and whose morphisms ({Fn}, {Fδ})→ ({Gn}, {Gδ}) are a collection of morphisms
{dn : Fn → Gn}[n]∈∆ such that dm ◦Fδ = Gδ ◦ δ−1(dn) for each morphism (δ : [n]→ [m]) ∈ ∆.
We refer to an object of the total topos as a sheaf on the simplicial topos T•.

3.7. Let X• denote the 0-coskeleton of the smooth surjection p : X → X, so that Xn =
X ×X X ×X · · · ×X X is the (n + 1)-fold fiber product of X over X. There is an associated
simplicial topos, which we denote by X•,proét (resp. (Sch /X•)

∼
proét), consisting of the small

pro-étale topos Xn,proét (resp. big pro-étale topos (Sch /Xn)∼proét) for each object [n] ∈ ∆, and

the morphism of topoi δ : Xm,proét → Xn,proét (resp. δbig : (Sch /Xm)∼proét → (Sch /Xn)∼proét)
induced by δ : Xm → Xn for each morphism (δ : [n]→ [m]) ∈ ∆.

Remark 3.8. If Λ is a sheaf of rings on (Sch /X)proét, then its restrictions to the small and
big pro-étale topoi of Xn for every n induce sheaves of rings on X•,proét and (Sch /X•)

∼
proét,

respectively. We will generally abuse notation by denoting these sheaves by Λ.

3.9. Throughout the rest of this section, we fix a cartesian sheaf of rings Λ on (Sch /X)proét.

Definition 3.10.

(i) A sheaf of Λ-modules F• on X•,proét is cartesian if for each morphism (δ : [n]→ [m]) ∈ ∆,
the map δ∗Fn → Fm is an isomorphism. Let Modcart

Λ (X•,proét) ⊆ ModΛ(X•,proét) denote
the full subcategory spanned by the cartesian sheaves of Λ-modules.

(ii) A sheaf of Λ-modules F• on (Sch /X•)
∼
proét is cartesian if for each n, Fn is cartesian in

the sense of 3.1 and for each morphism (δ : [n] → [m]) ∈ ∆, the map δbig∗Fn → Fm
is an isomorphism. Let Modcart

Λ ((Sch /X•)
∼
proét) ⊆ ModΛ((Sch /X•)

∼
proét) denote the full

subcategory spanned by the cartesian sheaves of Λ-modules.

3.11. Let Des(X/X,Λ) denote the category whose objects are pairs (F, σ) where F is a small
pro-étale sheaf of ΛX-modules and σ : pr∗1 F → pr∗2 F is an isomorphism of small pro-étale
sheaves of ΛX×XX-modules such that pr∗23(σ)◦pr∗12(σ) = pr∗13(σ) on X×XX×XX, and whose
morphisms (F,′ σ′) → (F, σ) are morphisms φ : F ′ → F of sheaves of ΛX-modules such that
σ ◦ pr∗1(φ) = pr∗2(φ) ◦ σ′ (here pi : X ×X X → X and pij : X ×X X ×X X → X ×X X denote
the projections).
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3.12. There is a tautological functor Modcart
Λ ((Sch /X)proét)→ Modcart

Λ (X•,proét). There is also
a functor Modcart

Λ (X•,proét)→ Des(X/X,Λ) which carries a collection ({Fn ∈ Xn,proét}, {Fδ})
to the pair (F0, F

−1
d1
◦ Fd0). By mimicking the proof of [4, 4.4, 4.5] for the lisse-étale case, we

obtain the following:

Proposition 3.13. The functors Modcart
Λ ((Sch /X)proét)→ Modcart

Λ (X•,proét)→ Des(X/X,Λ)
are equivalences of categories.

3.14. There is an evident extension functor j! : ModΛ(X•,proét)→ ModΛ((Sch /X•)
∼
proét). For

later use, we show that Modcart
Λ ((Sch /X•)

∼
proét) is also equivalent to Modcart

Λ ((Sch /X)proét):

Lemma 3.15. The functor j! restricts to an equivalence of categories

Modcart
Λ (X•,proét)→ Modcart

Λ ((Sch /X•)
∼
proét).

Proof. There is a well-defined restriction functor Modcart
Λ ((Sch /X•)

∼
proét)→ Modcart

Λ (X•,proét).
By virtue of 3.5, it is a quasi-inverse to the restriction of j!, thereby completing the proof. �

3.16. We close this section with a discussion of the relationship between big pro-étale and
étale sheaves on X. The identity functor (Sch /X)proét → (Sch /X)ét is cocontinuous, and
therefore induces a morphism of topoi ν : (Sch /X)∼proét → (Sch /X)∼ét (cf. [2, §5]).

Proposition 3.17. Let F be a cartesian sheaf of abelian groups on (Sch /X)ét. Then the
derived adjunction map F → Rν∗ν

−1F is an isomorphism.

Proof. Recall that we fixed a smooth surjection p : X → X, where X is a scheme. There is a
commutative diagram of topoi

(Sch /X)∼proét

νX //

rproét

��

(Sch /X)∼ét

rét

��
(Sch /X)∼proét νX

// (Sch /X)∼ét,

where r−1
proét and r−1

ét are the restriction functors. Note that the restriction of F to the big étale
topos of X is cartesian, hence locally constructible by virtue of 3.5. Combining this with 2.9
and the fact that the canonical map of functors r−1

ét ◦ νX∗ → νX∗ ◦ r−1
proét is an isomorphism,

we are reduced to the case of small étale sheaves on schemes, in which case the desired result
follows from [2, 5.1.6]. �

4. Constructible Sheaves on Algebraic Stacks

In this section we generalize some of the results about constructible pro-étale sheaves on
schemes (see [2, §6]) to algebraic stacks.

4.1. One of the special features of the pro-étale topology is the notion of a “constant ” sheaf
associated to a topological space; see [2, 4.2.12]. The following extension to algebraic stacks
is immediate:

Lemma 4.2. Let T be a topological space. Then the presheaf (Sch /X)op
proét → Set which

carries an object (U, u) ∈ (Sch /X)proét to Mapcont(U, T ) is a sheaf for the pro-étale topology.
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Remark 4.3. In the special case where X is equivalent to a scheme X, the restriction of the
sheaf to the small pro-étale topos agrees with FT of [2, 4.2.12].

4.4. Let us introduce our coefficient rings for constructible sheaves. Let E be an algebraic
extension of Q` with ring of integers OE. Let EX and OE,X denote the big pro-étale sheaves
on X associated to the topological rings E and OE in the sense of 4.2, respectively. Note that
in the special case of schemes, this is an abuse of notation (see [2, 6.8.1]). However, we will
see in 4.7 that there is little risk of confusion; see also 3.5 and 4.3.

4.5. The following assertion guarantees that our results in Section 3 can be applied to Λ ∈
{EX,OE,X} (see 3.9):

Proposition 4.6. Let f : X → Y be a morphism of schemes. Then the canonical maps
f−1EY → EX and f−1 OE,Y → OE,X are isomorphisms of small pro-étale sheaves.

Proof. By virtue of the second part of [2, 6.8.2], it will suffice to consider the case of OE,
where E is a finite extension of Q`. In this case, the first part of [2, 6.8.2] guarantees that OE

is the limit of constant sheaves. Then we can regard it as a limit of representable sheaves,
where each of the transition maps is affine. Consequently, it is representable and the desired
result follows from the fact that f−1 preserves representable sheaves. �

Corollary 4.7. The big pro-étale sheaves EX and OE,X are cartesian in the sense of 3.1.

Proof. In view of 4.6, this follows immediately from the fact that for each object (T, t) ∈
Sch /X, the restrictions of EX and OE,X to Tproét are isomorphic to ET and OE,T , respectively.

�

4.8. We devote the remainder of this section to defining constructible pro-étale sheaves on
algebraic stacks and studying their properties, generalizing the case of schemes of [2]. For the
rest of this section, we often abuse notation by denoting the sheaves on an algebro-geometric
object which are associated to the topological rings E and OE in the sense of 4.2 by Λ, and
assume the following:

(∗) The base scheme S is noetherian and the algebraic stack X is of finite type over S.

4.9. Let X be a topologically noetherian scheme (that is, the underlying topological space
is noetherian; see [2, 6.6.9]). Let us recall the notion of a constructible sheaf on X; see [2,
6.8]. A lisse Λ-sheaf is a small pro-étale sheaf of Λ-modules L on X such that L is locally
free of finite rank. We say that a small pro-étale sheaf of E-modules F on X is constructible
if there exists a finite stratification {Xi → X} such that each restriction FXi is lisse and
that a complex K ∈ D(Xproét, E) is constructible if it is bounded and all cohomology sheaves
are constructible. Let Dcons(Xproét, E) ⊆ D(Xproét, E) denote the full subcategory spanned
by the constructible complexes. Finally, a small pro-étale sheaf of OE-modules F on X is
constructible if there exists a finite stratification {Xi → X} such that each restriction FXi is
locally isomorphic to P ⊗OE OE,X for some finitely presented OE-module P . Let ConsX(OE)
denote the category of the constructible sheaves.

The property of being a constructible sheaf is local for the étale topology:

Lemma 4.10. Let X be a topologically noetherian scheme and let F be a small pro-étale sheaf
of Λ-modules. Let {fi : Xi → X} be an étale cover. If each restriction FXi is constructible,
then so is F .
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Proof. By noetherian induction, it will suffice to show that for any irreducible closed subset
Y ⊆ X, there exists a non-empty open subset U ⊆ Y such that the restriction FU is locally
free of finite rank. Suppose we are given such a subset Y . Let us choose some Xi for which
its image under fi contains the generic point of Y . Since FXi is constructible, we can choose
a locally closed subset X ′i ⊂ Xi such that FX′i is a locally free E-module of finite rank in
the case where Λ = E, and is locally isomorphic to P ⊗OE OE,X′i

for a finitely presented
OE-module P in the case where Λ = OE. Writing X ′i as an intersection of an open subset
U ⊆ X ′i and a closed subset C ⊆ X ′i, we complete the proof by observing that U ∩ Y is the
desired non-empty open subset of Y . �

Proposition 4.11. Let F be a cartesian sheaf of Λ-module on (Sch /X)proét. Then the fol-
lowing conditions are equivalent:

(i) For every object (T, t) ∈ Sch /X for which T is noetherian, the restriction F(T,t) is
constructible.

(ii) There exists a smooth surjection t : T → X such that T is a quasi-compact scheme and
that F(T,t) is constructible.

Proof. This is an immediate consequence of 4.10 and that for a morphism of topologically
noetherian schemes, the pullback of a constructible Λ-sheaf is constructible. �

Remark 4.12. The existence of a smooth cover T → X as in the second condition of 4.11 is
guaranteed by our assumption on X that it is of finite type over the noetherian base scheme
(see 4.8). Note that in this case, the scheme X is noetherian.

Definition 4.13. A sheaf of Λ-modules F on (Sch /X)proét is constructible if it is cartesian (see
3.1) and if the equivalent conditions of 4.11 are satisfied. Let ConsX(Λ) ⊆ Modcart

Λ ((Sch /X)∼proét)
the full subcategory spanned by the constructible Λ-sheaves.

Remark 4.14. In the special case where X is equivalent to a scheme X, a cartesian sheaf of
Λ-modules F on (Sch /X)proét is constructible in the sense of 4.13 if and only if its restriction
to Xproét is constructible in the sense of [2, 6.8.6, 6.8.10]. Consequently, even if the notations
of 4.13 and [2, 6.8.10] conflict with one another, there is little danger of confusion.

4.15. The next result enables us to define constructible complexes on X:

Lemma 4.16. The category ConsX(Λ) is abelian.

Proof. Choose a smooth surjection p : X → X for which X is a quasi-compact scheme
(see 4.12). We have a morphism of topoi (p−1, p∗) : Xproét → (Sch /X)∼proét for which the

pullback functor p−1 is the restriction functor. It then follows from the proof of 4.7 that
there is an induced morphism of ringed topoi (Xproét,ΛX) → ((Sch /X)∼proét,ΛX). Since the

functor p∗ : ModΛX
((Sch /X)proét) → ModΛX (Xproét) can be identified with p−1, it is exact.

Combining this observation with 4.11, we can reduce to the case of schemes, in which case
the desired result follows from [2, 6.8.7, 6.8.11]. �

Definition 4.17. A complex of Λ-modules on (Sch /X)proét is constructible if it is bounded
and all cohomology sheaves are constructible in the sense of 4.13. Let Dcons((Sch /X)proét,Λ) ⊆
D((Sch /X)proét,Λ) denote the full subcategory spanned by the constructible complexes.
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4.18. Our strategy for proving the main result 1.2 is to study sheaves on the simplicial topos
(Sch /X•)

∼
proét to reduce to the case of schemes. To this end, we start by defining constructible

sheaves on the simplicial topos:

Definition 4.19.

(i) A sheaf of Λ-modules F• on X•,proét is constructible if it is cartesian (see 3.10) and each
Fn is constructible in the sense of [2, 6.8.6, 6.8.10]. Let ConsX•(Λ) ⊆ Modcart

Λ (X•,proét)
denote the full subcategory spanned by the constructible sheaves.

(ii) A sheaf of Λ-modules F• on (Sch /X•)
∼
proét is constructible if it is cartesian (see 3.10) and

each restriction of Fn toXn,proét is constructible. Let ConsSch /X•(Λ) ⊆ Modcart
Λ ((Sch /X•)

∼
proét)

denote the full subcategory spanned by the constructible sheaves.

Remark 4.20. The equivalence of 3.15 restricts to an equivalence of categories ConsX•(Λ)→
ConsSch /X•(Λ).

Remark 4.21. If F• is cartesian sheaf of Λ-modules on X•,proét (resp. (Sch /X•)
∼
proét), then

it is constructible if and only if F0 is constructible.

4.22. There is a natural morphism of simplicial topoi (Sch /X•)
∼
proét → (Sch /X)∼proét, where

we regard (Sch /X)∼proét as a constant simplicial topos, inducing a morphism of ringed topoi
π : (Tot((Sch /X•)

∼
proét),Λ)→ ((Sch /X)∼proét,Λ) (see 3.6 and 3.8). We have an adjunction

π∗ : ModΛ((Sch /X)proét)
//ModΛ((Sch /X•)

∼
proét) : π∗oo

for which the pullback functor π∗ carries a cartesian sheaf on (Sch /X)proét to a cartesian sheaf
on (Sch /X•)

∼
proét. Moreover, the restriction of π∗ to Modcart

Λ ((Sch /X)proét) is isomorphic to

the composition of the functor Modcart
Λ ((Sch /X)proét) → Modcart

Λ (X•,proét) of 3.12 with the
equivalence j! : Modcart

Λ (X•,proét) → Modcart
Λ ((Sch /X•)

∼
proét) of 3.15. Note that π∗ is exact

because π∗ = π−1 (see 3.8).

4.23. Throughout the rest of this section, we assume that the scheme X appearing in our
fixed cover p : X → X of Section 3 is noetherian (see 4.12).

Lemma 4.24. The functor π∗ restricts to an equivalence of categories ConsX(Λ)→ ConsSch /X•(Λ).

Proof. By virtue of 3.13 and 3.15, the pullback functor π∗ restricts to an equivalence of cat-
egories Modcart

Λ ((Sch /X)proét) → Modcart
Λ ((Sch /X•)

∼
proét). Invoking 4.23, the desired equiva-

lence follows from 4.11 (see also 4.21). �

4.25. Combining 4.16 with 4.24, we see that ConsSch /X•(Λ) is an abelian category. In par-
ticular, the following definition makes sense:

Definition 4.26. A complex of Λ-modules on (Sch /X•)
∼
proét is constructible if it is bounded

and all cohomology sheaves are constructible in the sense of 4.19. Let Dcons((Sch /X•)
∼
proét,Λ) ⊆

D((Sch /X•)
∼
proét,Λ) denote the full subcategory spanned by the constructible complexes.

Proposition 4.27. The functor π∗ of 4.22 induces an equivalence of triangulated categories

Dcons((Sch /X)proét,Λ)→ Dcons((Sch /X•)
∼
proét,Λ).
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Proof. We first observe that the category ConsX(Λ) is closed under extensions by reduc-
ing to the case of schemes; see the proof [2, 6.8.9] and [2, 6.8.11]. Combining this ob-
servation with 4.16 and 4.24, we deduce that the subcategories Dcons((Sch /X)proét,Λ) and
Dcons((Sch /X•)

∼
proét,Λ) are triangulated. We next show that the derived unit map id→ Rπ∗◦

π∗ for the adjunction (π∗, π∗) of 4.22 is an isomorphism of functors on D+((Sch /X)proét,Λ).
Since the unique morphism from the big pro-étale sheaf on X represented by the object
(X, p) ∈ Sch /X to a final object of (Sch /X)∼proét is an epimorphism, the desired isomorphism
is a formal consequence of cohomological descent (see, for example, [5, 2.4.16] and its proof).
To complete the proof, it will suffice to show that for each object K ∈ Dcons((Sch /X•)

∼
proét,Λ),

the derived counit map π∗Rπ∗K → K is an isomorphism. For this, we may assume that K
is a constructible sheaf on (Sch /X•)

∼
proét concentrated in degree 0, in which case the desired

result follows from 4.24. �

4.28. We are now ready to prove the main result 1.2 of this paper.

Proof of 1.2. To show the fully faithfulness of both functors, as in the proof of [2, 6.8.14], it
will suffice to prove that for each object K ∈ Dcons((Sch /X)proét,OE), the internal derived
Hom functor RHom(K, •) commutes with direct sums in D≥0((Sch /X)proét,OE). Using the
fully faithfulness of the functor π∗ : D+((Sch /X)proét,OE)→ D+((Sch /X•)

∼
proét,OE) (see the

proof of 4.27), we are reduced to the case of schemes, in which case the desired result follows
from [2, 6.8.12] (see also the proof of [2, 6.3.14]). To verify essential surjectivity, we note that
the fully faithfulness guarantees that we can reduce to the case of constructible sheaves on
(Sch /X)proét concentrated in degree 0. Combining 3.13 with 4.20 and 4.24, we deduce that
the category ConsX(Λ) is equivalent to the full subcategory of Des(X/X,Λ) spanned by those
objects (F, σ) for which F is constructible (see also 4.21). Using this observation and the
fully faithfulness, the desired results follow from [2, 6.8.11] and [2, 6.8.13] for the first and
second functors, respectively. �

4.29. We conclude this section with a few remarks about the behavior of the derived category
of constructible sheaves with respect to morphisms of algebraic stacks. Suppose we are given
a morphism of algebraic stacks f : X → Y, where X and Y satisfy condition (∗) of 4.8. We
have a morphism of topoi (f−1, f∗) : (Sch /X)∼proét → (Sch /Y)∼proét for which the pullback

functor f−1 is the restriction functor. Using the natural map f−1ΛY → ΛX, we obtain a
derived adjunction

Lf ∗ : D((Sch /Y)proét,ΛY) //D((Sch /X)proét,ΛX) : Rf∗oo .

Since the natural map is an isomorphism, we conclude that the derived pullback functor Lf ∗

coincides with the usual pullback functor f ∗ = f−1.

Remark 4.30. Let f : X → Y be a morphism of schemes and let (f−1, f∗) : Xproét → Yproét

be the associated morphism of small pro-étale topoi. We have a natural map f−1ΛY → ΛX

and it induces a derived adjunction

Lf ∗ : D(Yproét,ΛY ) //D(Xproét,ΛX) : Rf∗oo .

It then follows from [2, 6.8.15] that Lf ∗ can be identified with f−1 provided that f is étale or
a closed immersion. By virtue of 4.6, we conclude that the assertion on the derived pullback
functor holds for any morphism of schemes.
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4.31. Assume now that f is proper. Arguing as in the proof of [4, 9.14], we see that if F
is a constructible sheaf of ΛX-modules on (Sch /X)proét, then Rif∗F is a constructible sheaf
of ΛY-modules on (Sch /Y)proét. Consequently, the derived adjunction of 4.29 restricts to an
adjunction

f−1 : Dcons((Sch /Y)proét,ΛY) //Dcons((Sch /X)proét,ΛX) : Rf∗oo .
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