Equidistribution of positive closed currents

Taeyong Ahn

KIAS

Pacific Rim Complex-Symplectic Geometry Conference, Pohang

August 4, 2017
E. Schröder first used Newton’s method to study complex roots in one complex variable: finding a root of \(f(x) = 0 \) by iteration where \(f \) is a polynomial.

\[
x_{n+1} = P(x_n) = \cdots = P^n(x_0) \quad \text{where} \quad P(x) := x - g(x)/g'(x)
\]
The study of the good initial values and bad initial values leads to the definitions of the Fatou-Julia set.

Definition

A point \(p \in X \) belongs to the Fatou set \(F \) if there exists an open neighborhood \(U_p \ni p \) where \(\{f^n\} \) is an equicontinuous family. The Julia set \(J \) is its complement \(X \).

Remark

In general, the Julia set has a very complicated structure, known as fractal.
Examples of the Julia Set
Examples of the Julia Set
How do we study these complicated set?
Brolin’s equidistribution theorem

Theorem (Brolin, 1965)

Let \(f(z) = z^d + \cdots \) be a given polynomial of degree \(d \geq 2 \). Then, there exists a subset \(\mathcal{E} \subset \mathbb{C} \) such that \(\# \mathcal{E} \leq 1 \) such that if \(a \in \mathbb{C} \setminus \mathcal{E} \), then

\[
\frac{1}{d^n} \sum_{f^n(z) = \alpha} \delta_z \to \mu \text{ as } n \to \infty
\]

where \(\mu \) is a harmonic measure on the filled Julia set of \(f \). The limit is independent of the choice of \(a \in \mathbb{C} \setminus \mathcal{E} \). The exceptional set \(\mathcal{E} = \emptyset \) unless \(f \) is affinely conjugate to \(z \to z^d \). In this case, the set \(\mathcal{E} = \{0\} \) is totally invariant.

Such convergence towards a unique measure is called *equidistribution*.
Example. Consider $f(z) = z^2$ and δ_1. when $n = 0$
Example. Consider $f(z) = z^2$ and δ_1. when $n = 1$
Example. Consider $f(z) = z^2$ and δ_1.

when $n = 2$
Example. Consider $f(z) = z^2$ and δ_1.

when $n = 3$
Example. Consider $f(z) = z^2$ and δ_1. when $n = 4$
Example. Consider $f(z) = z^2$ and δ_1.

In this case, the measure μ is the Lebesgue measure on the unit circle and the exceptional set \mathcal{E} is $\{0\}$.
Generalization of Brolin’s Theorem

In one dimensional case,
Lyubich, Freire-Lopes-Mañé

In higher dimensional case, when codimension = 1,
Favre-Jonsson, Dinh-Sibony, Fornæss-Sibony, Guedj,
Russakovskii-Shiffman, Sibony, Parra, Taflin,

when codimension = k, i.e, the measure case.
Briend-Duval, Fornæss-Sibony, Dinh-Sibony
Roughly speaking, a positive \((p, p)\)-current is a \((p, p)\)-form with measure coefficients. A positive closed current can be understood as a (analytic) generalization of analytic subsets.

Let \(A\) be an analytic subset of pure dimension \(k - p\). Then, the current of integration \([A]\) on \(A\) is defined by

\[
\langle [A], \varphi \rangle = \int_{\text{Reg} A} \varphi \quad \text{for} \quad \varphi \in \mathcal{D}^{k-p}.
\]

Also, smooth forms are currents in an obvious way:

\[
\langle \psi, \varphi \rangle = \int_X \psi \wedge \varphi \quad \text{for} \quad \varphi \in \mathcal{D}^{k-p}.
\]
On the other hand, according to a theorem of Siu, we have

Theorem (Siu, 1978)

Let S be a positive closed (p,p)-current of \mathbb{P}^k. If the support of S is an analytic subset of \mathbb{P}^k of pure dimension $k - p$, then, $S = \sum_j c_j [V_j]$ where $c_j > 0$ is a constant and V_j's are analytic subsets of \mathbb{P}^k of pure dimension $k - p$.

In what follows, \mathcal{C}_p denotes the space of positive closed (p,p)-currents of unit mass of \mathbb{P}^k.
Generalization of Brolin’s Theorem: Equidistribution of Analytic Subsets

Conjecture (Dinh-Sibony)

Let \(f \) be a holomorphic endomorphism of \(\mathbb{P}^k \) of algebraic degree \(d \geq 2 \) and \(T \) its Green current.

Then \(d^{-p_n}(f^n)^*[H] \) converge to \(sT^p \) for every analytic subset \(H \) of \(\mathbb{P}^k \) of pure codimension \(p \) and of degree \(S \) which is generic.

Here \(H \) is generic if either \(H \cap E = \emptyset \) or \(\text{codim} H \cap E = p + \text{codim} E \) for any irreducible component \(E \) of every totally invariant analytic subset of \(\mathbb{P}^k \).
Theorem (Dinh-Sibony)

Let f be a holomorphic endomorphism of algebraic degree $d \geq 2$ of \mathbb{P}^k. Let μ be the equilibrium measure of f and \mathcal{E} a maximal proper analytic subset of \mathbb{P}^k which is totally invariant under f, i.e. $f^{-1}(\mathcal{E}) = f(\mathcal{E}) = \mathcal{E}$. Then

$$d^{-kn}(f^n)^*(\delta_a)$$

converges to μ if and only if $a \notin \mathcal{E}$.

Measure case: $p = k$
Theorem (Dinh-Sibony, Taflin)

Let f be a holomorphic endomorphism of \mathbb{P}^k of algebraic degree $d \geq 2$ and T its Green current. If H is a hypersurface and of degree s which is generic in the Zariski sense, then the sequence $d^{-n}(f^n)^*[H]$ converges to T exponentially fast.
A quasi-potential of S is a quasi-plurisubharmonic function u on \mathbb{P}^k such that

$$S - \omega = \text{dd}^c u$$

If we impose a normalizing condition, for example, $\sup_{\mathbb{P}^k} u = 0$, then u is unique. Note that

$$\langle S - \omega, \varphi \rangle = \int_{\mathbb{P}^k} u \wedge \text{dd}^c \varphi$$
Let $S \in \mathcal{C}_p$. Then, we have a $(p-1, p-1)$-current U_S such that

$$S - \omega^p = \ddbar U_S.$$

However, there are two difficulties:
1) U_S is no more a function and
2) there is no canonical choice of U_S.
Super-potentials

Definition (Dinh-Sibony, 2009)

Let $S \in \mathcal{C}_p$ be smooth. Then, we define the super-potential \mathcal{U}_S of mean m by

$$\mathcal{U}_S(R) = \langle S, \mathcal{U}_R \rangle$$

for $R \in \mathcal{C}_{k-p+1}$ where \mathcal{U}_R denotes a quasi-potential of R of mean m. For general $S \in \mathcal{C}_p$, we define by

$$\mathcal{U}_S = \lim_{\theta \to 0} \mathcal{U}_{S_{\theta}}.$$

The mean of quasi-potential \mathcal{U}_R is defined by $\langle \mathcal{U}_R, \omega^p \rangle$. Then, we have

$$\langle S - \omega^p, \varphi \rangle = \langle \mathcal{U}_S, M\omega^{k-p+1} + \text{dd}^c \varphi \rangle - \langle \mathcal{U}_S, M\omega^{k-p+1} \rangle.$$
Known results on equidistribution of positive closed (p, p)-currents with $1 < p < k$

Theorem (Dinh-Sibony, 2009)

Let $\mathcal{H}_d(\mathbb{P}^k)$ denote the set of holomorphic endomorphisms of degree $d \geq 2$ on \mathbb{P}^k.

There is a Zariski dense open set $\mathcal{H}^*_d(\mathbb{P}^k)$ in $\mathcal{H}_d(\mathbb{P}^k)$ such that, if f is in $\mathcal{H}^*_d(\mathbb{P}^k)$, then $d^{-pn}(f^n)^*(S)$ converges to T^p uniformly with respect to $S \in \mathcal{C}_p$.

In particular, for f in $\mathcal{H}^*_d(\mathbb{P}^k)$, T^p is the unique current in \mathcal{C}_p which is f^*-invariant.
Known results on equidistribution of positive closed (p, p)-currents with $1 < p < k$

Theorem (A-, 2016)

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a holomorphic endomorphism of degree $d \geq 2$. Let T^p denote the Green (p, p)-current associated with f on \mathbb{P}^k.

Then, there is a proper (possibly empty) invariant analytic subset E for f such that $d^{-p n} (f^n)^* S$ converges to T^p exponentially fast in the sense of currents for every $S \in \mathcal{C}_p$ smooth on E.
In the case of $p = 1$, a quasi-potential u of $S \in C_1$, that is a q-psh function u such that $\text{dd}^c u = S - \omega$ and $\sup_{\mathbb{P}^k} u = 0$ is a function. It is very convenient to talk about the regularity and/or singularity.

1. The Lelong number of S is 0 or equivalently, the Lelong number of u is 0.

2. u is locally bounded.
Super-potentials continuous/bounded near an analytic subset

Let $D_{k-p+1}(W)$ for an open subset W of \mathbb{P}^k denote the space of closed $(k-p+1, k-p+1)$-currents R on \mathbb{P}^k such that $\text{supp} R \subseteq W$ and R can be written as $R = R_+ - R_-$ where R_\pm are positive closed $(k-p+1, k-p+1)$-currents of the same mass.

Definition

A super-potential \mathcal{U}_S of mean m is continuous in W if $\mathcal{U}_S(\cdot)$ is a continuous function on D_{k-p+1} with respect to the topology of D_{k-p+1}. A super-potential \mathcal{U}_S of mean m is bounded in W if there exists an constant $C_{S,m} > 0$ such that

$$\mathcal{U}_S(R) \leq C_{S,m}$$

where $R \in D_{k-p+1}(W)$.
Theorem (A.-, preprint)

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a holomorphic endomorphism of algebraic degree $d \geq 2$. Then, there exists a proper (possibly empty) invariant analytic subset E for f such that if $S \in \mathcal{C}_p$ is a current with its super-potential U_S of mean 0 bounded near E, then we have

$$d^{-pn}(f^n)^*S \to T^p$$

exponentially fast in the sense of currents where \mathcal{C}_p denotes the set of positive closed (p, p)-currents of unit mass on \mathbb{P}^k and T the Green current associated with f.
Proposition

Let E be a proper analytic subset of \mathbb{P}^k. If a positive closed (p, p)-current S on \mathbb{P}^k of unit mass has singularities such that

$$S \leq M_S \sum S_1 \wedge \cdots \wedge S_p \quad \text{near } E$$

in the sense of currents where the sum is a finite sum, M_S is a non-negative constant and every S_i is a positive closed $(1, 1)$-current of 1, whose quasi-potential q_i is (K, α)-Hölder continuous near E. Then, the super-potential U_S of S of mean 0 is PB near E.
Let \(R \) be a positive closed \((p, p)\)-current on an open set \(U \) of \(\mathbb{C}^k \). Let \(z \) denote the coordinates in \(\mathbb{C}^k \) and \(B_a(r) \) the ball of center \(a \) and of radius \(r \). Define for \(a \in U \)

\[
\nu(R, a, r) := \frac{\| R \wedge (dd^c \|z\|)^2\|^{k-p} \|_{B_a(r)}}{\pi^{k-p} r^{2(k-p)}}.
\]

When \(r \) decreases to 0, \(\nu(R, a, r) \) is decreasing and the Lelong number of \(R \) at \(a \) is the limit

\[
\nu(R, a) := \lim_{r \to 0} \nu(R, a, r).
\]

In particular, when \(p = 1 \) it is equivalent to saying that its local potential \(\nu \) satisfies the following
Theorem (Guedj, 2003)

Let \(f : \mathbb{P}^k \) be a holomorphic endomorphism of algebraic degree \(d \geq 2 \). Assume that \(S \in \mathcal{C}_1 \) has zero Lelong number everywhere on \(\mathbb{P}^k \). Then, we have

\[
d^{-n}(f^n)^*S \rightarrow T.
\]
Skoda’s integrability theorem

Let \(\nu \) be a psh function on the unit ball \(B \subset \mathbb{C}^k \) with \(\sup_B \nu = 0 \). Suppose that \(\dd c \nu \) has zero Lelong number. Skoda’s integrability theorem implies that \(\exp(-\nu) \) is integrable. Then, we can do the following. Let \(K \subset B \). Then, for any \(c > 0 \), we have

\[
\text{Vol}(\{ \nu < -c \} \cap K) \leq \int_K \exp(-c - \nu) \leq \exp(-c) \int_K \exp(-\nu).
\]
Let $S \in \mathbb{C}_p$ be such that the Lelong number $\nu(S, a) = 0$ for every $a \in \mathbb{P}^k$. Then, we have

$$d^{-pn}(f^n)^*S \to T^p$$

in the sense of currents.

It is not clear whether the Lelong number works well with super-potentials for $1 < p < k$.
Definition (Guedj-Zeriahi, 2007)

Let $\text{PSH}(\mathbb{P}^k, \omega) := \{ q \in \mathcal{L}^1(\mathbb{P}^k) : w + dd^c q \geq 0 \}$. We define

$$
\mu_\varphi := \lim_{j \to +\infty} 1_{\{ \varphi > -j \}}[\omega + dd^c \max\{ \varphi, -j \}]^k
$$

and

$$
\mathcal{E}(X, \omega) := \left\{ \varphi \in \text{PSH}(\mathbb{P}^k, \omega) : \mu_\varphi(\mathbb{P}^k) = \int_{\mathbb{P}^k} \omega^k \right\}.
$$

This is the largest class in $\text{PSH}(\mathbb{P}^k, \omega)$ on which the complex Monge-Ampère operator is well defined and the comparison principle is valid. Also, the Lelong number of $\omega + dd^c \varphi$ for this class is 0.
Theorem (A.-Nguyen, in preparation)

For every $\phi \in \mathcal{E}(X, \omega)$ with $\phi \in L^1(\|\omega + dd^c \phi\|^{p-1})$,

$$d^{-pn}(f^n)^*(\omega + dd^c \phi) \to T^p$$

exponentially fast in the sense of currents.
Idea of Proof

We use the comparison principle and localization by a difference of two psh functions. Write $\omega_\varphi := \omega + \dd c \varphi$.

\[
\langle d^{-p}n(f^n)^*(\omega + \dd c \varphi) - T^p, \varphi \rangle \\
= \cdots \langle (d^{-n}(f^n)^* \omega_\varphi - T) \wedge [d^{-n}(f^n)^* \omega_\varphi]^l \wedge T^{p-l-1}, \varphi \rangle \cdots \\
= \cdots \langle d^{-n} \nu \circ f^n [d^{-n}(f^n)^* \omega_\varphi]^l \wedge T^{p-l-1}, \dd c \varphi \rangle \cdots
\]

where $\omega_\varphi = T + \dd c \nu$ with $\sup_k \nu = 0$.

Idea of Proof

\[
\int d^{-n} \nu \circ f^n [d^{-n}(f^n)^* \omega_\varphi] \wedge T^{p-l-1} \wedge \omega^{k-p+1}
\]

\[
= \int \{d^{-n} \circ f^n \geq \epsilon_n\} \quad d^{-n} \nu \circ f^n [d^{-n}(f^n)^* \omega_\varphi] \wedge T^{p-l-1} \wedge \omega^{k-p+1}
\]

\[
+ \int \{d^{-n} \circ f^n < \epsilon_n\} \quad d^{-n} \nu \circ f^n [d^{-n}(f^n)^* \omega_\varphi] \wedge T^{p-l-1} \wedge \omega^{k-p+1}
\]

We can write

\[
d^{-n} \int \{\varphi \circ f^n < -C\} \quad \varphi \circ f^n [d^{-n}(f^n)^* \omega_\varphi] \wedge T^{p-l-1} \wedge \omega^{k-p+1}
\]

\[
= -d^n C \int_{\varphi \circ f^n < -C} \quad [d^{-n}(f^n)^* \omega_\varphi] \wedge T^{p-l-1} \wedge \omega^{k-p+1}
\]

\[
+ d^{-n} \int_{-\infty}^{-C} \quad [d^{-n}(f^n)^* \omega_\varphi] \wedge T^{p-l-1} \wedge \omega^{k-p+1}(\{\varphi \circ f^n < t\})dt.
\]
Eventually, we use the following boundedness:
For every $\varphi \in \mathcal{E}(\mathbb{P}^k, \omega)$, there exists a convex increasing function $\varphi : \mathbb{R}^- \to \mathbb{R}^-$ such that

$$\int \chi \circ \varphi \omega^k_\varphi < +\infty.$$

Together with our assumption and the comparison principle, we have

$$\int \varphi \omega^{p-1}_\varphi \wedge \omega^{k-p+1}_{\chi \circ \varphi} < +\infty.$$
Thank you!