Monotone Lagrangian tori in cotangent bundles

Yoosik Kim
(with Yunhyung Cho and Yong-Geun Oh)

Boston University
yoosik@bu.edu

August 1, 2017
A submanifold L of a symplectic manifold (X^{2n}, ω) is called Lagrangian if $\omega|_L = 0$ and $\dim L = n$

eg. $(\mathbb{C}^n = \mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i), \ S^1(r_1) \times \cdots \times S^1(r_n)$

Every Lagrangian L in (X, ω) comes with two invariants.

1. (Symplectic area) $\omega(\beta)$ for $\beta \in \pi_2(X, L)$.
2. (Maslov index) $\mu(\beta)$ for $\beta \in \pi_2(X, L)$.

A Lagrangian submanifold L is monotone if $\exists \ a > 0$ such that

$$\omega(\beta) = a \cdot \mu(\beta)$$

for all $\beta \in \pi_2(X, L)$.
Monotone Lagrangian submanifolds

e.g. \((\mathbb{C}^n = \mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i)\)

- \(S^1(r_1) \times \cdots \times S^1(r_n)\) is monotone if \(r_1 = \cdots = r_n\).

\[\pi_2(\mathbb{C}^2, S(r_1) \times S(r_2)) \simeq \mathbb{Z}^2,\] generated by two discs bounded by

- \((S(r_1)) \times (\text{a point in } S(r_2))\)
- \((\text{a point in } S(r_1)) \times (S(r_2))\)
Motivation

• (Lagrangian Floer theory)
 • (Oh) Good condition for Lagrangian Floer theory.
 • A candidate for non-displaceable Lag. in a symplectic manifold.
 (Arnold conjecture)
 • A candidate for a generating set for Fukaya category.
 (Homological mirror symmetry conjectured by Kontsevich)

• (Classification of Lagrangian submanifolds)
 • (Chekanov) \(n \) monotone. Lag. tori in \(T^*\mathbb{R}^n \cong \mathbb{R}^{2n} \)
 • (Albers-Frauenfelder) monotone Lag. tori in \(T^*S^2 \)
 • (Oakley-Usher) monotone Lag. tori in \(T^*S^3 \)
 • (Auroux) infinitely many monotone Lag. tori in \(T^*\mathbb{R}^n \) \((n \geq 3)\).
 • (Chekanov-Schlenk, Biran-Cornea, Entov-Polterovich, Fukaya-Oh-Ohta-Ono, Wu) mono. Lag. torus in \(\mathbb{C}P^1 \times \mathbb{C}P^1 \) or \(\mathbb{C}P^2 \)
 • (Vianna) infinitely many monotone Lag. tori in \(\mathbb{C}P^2 \), del Pezzo surf.
Theorem (Cho-K.-Oh)

Let X be one of the followings

- **Spheres**
- **Unitary groups,**
- **Special unitary groups**
- **a product of them**

The cotangent bundle T^*X admits monotone Lagrangian tori.
Outline of construction

- How to produce a monotone Lagrangian torus in T^*X?
- Find a completely integrable system on a symplectic manifold M having X as a Lagrangian fiber.
- Pass nearby Lagrangian tori to T^*X.
Coadjoint orbits

\begin{align*}
\begin{cases}
Ad: U(n) \times u(n) \to u(n) & (U, X) \mapsto UXU^{-1} \\
Ad^*: U(n) \times u(n)^* \to u(n)^* & (U, \xi) \mapsto \xi_U; \quad \xi_U(X) = \xi(U^{-1}XU)
\end{cases}
\Rightarrow O_\lambda = \text{the orbit of } \lambda \in u(n)^* \text{ under the coadjoint action } Ad^*.
\end{align*}

\begin{align*}
u(n) &= \{(n \times n) \text{ skew Hermitian matrices.}\} \\
\sqrt{-1}u(n) &= \{(n \times n) \text{ Hermitian matrices.}\}
\end{align*}

- A Killing form on \(\sqrt{-1}u(n)\): \((X, Y) \mapsto \text{tr}(XY) = \text{tr}(X^tY)\)

- Have a \(U(n)\)-equivariant \(\mathbb{R}\)-vector space isom

\begin{align*}
\sqrt{-1}u(n) &\mapsto u(n)^* \quad X \mapsto (X, \cdot).
\end{align*}

\Rightarrow (\text{adjoint orbit of } \lambda \in \sqrt{-1}u(n)) = (\text{coadjoint orbit of } \lambda \in u(n)^*)
Under the identification, fixing a sequence of real numbers
\[\lambda_1 = \cdots = \lambda_{n_1} > \lambda_{n_1+1} = \cdots = \lambda_{n_2} > \cdots > \lambda_{n_r+1} = \cdots = \lambda_n, \]
we may take
\[\lambda = \text{diag}(\lambda_1, \cdots, \lambda_n) \in \sqrt{-1}u(n) \]
and then
\[\mathcal{O}_\lambda = \{ U \text{ diag}(\lambda_1, \cdots, \lambda_n) U^{-1} : U \in U(n) \} \]
\[= \{ A \in \sqrt{-1}u(n) : \text{spec}(A) = \{ \lambda_1, \cdots, \lambda_n \} \}. \]

We obtain
\[\mathcal{O}_\lambda \simeq \frac{U(n)}{U(n_1) \times U(n_2 - n_1) \times \cdots \times U(n_r - n_{r-1}) \times U(n - n_r)} \]
\[\simeq \mathcal{F}(n_1, n_2, \cdots, n_r; n). \]
Gelfand-Cetlin Systems

Consider

\[U(n) \supset U(n-1) \supset \cdots \supset U(1), \quad U(k) \cong \begin{bmatrix} U(k) & O \\ O & I_{n-k} \end{bmatrix} \]

A moment map of \(U(k) \)-action is

\[\Phi^{(k)} : O_{\lambda} \rightarrow \sqrt{-1}u(k), \quad X \mapsto X^{(k)}. \]

where \(X^{(k)} \) is the \((k \times k)\)-principal minor of \(X \).

Let \(\lambda^{(k)}_i : \sqrt{-1}u(k) \rightarrow \mathbb{R}, \quad A \mapsto \) (the \(i \)-th largest eigenvalue of \(A \)).

Theorem (Guillemin-Sternberg)

\[\Phi_{\lambda} = \{ \Phi^{(k)}_j := \lambda^{(k)}_j \circ \Phi^{(k)} \} \] forms a completely integrable system on \(O_{\lambda} \).

It is called a Gelfand-Cetlin system.
Lemma (The min-max theorem)

Let $A^{(k-1)}$ be the $(k - 1) \times (k - 1)$ principal minor of $A \in \sqrt{-1}U(k)$. Then, $\lambda_i^{(k)} \geq \lambda_i^{(k-1)} \geq \lambda_{i+1}^{(k)}$.

e.g. $\mathcal{O}_\lambda \simeq F(1, 2; 3)$ where $\lambda = \text{diag}(\lambda_1 > \lambda_2 > \lambda_3)$.

\[\begin{align*}
\lambda_1 \\
|V| \\
\phi_1^{(2)} \geq \lambda_2 \\
|V| \\
|V| \\
\phi_1^{(1)} \geq \phi_2^{(2)} \geq \lambda_3
\end{align*} \]

- $\triangle_\lambda = (\text{The Gelfand-Cetlin polytope})$
 - := (the polytope given by the half planes of the above inequalities)
 - := (the image of \mathcal{O}_λ under Φ_λ)
To understand the face structure of \triangle_λ, consider a ladder diagram. eg. Γ_λ where $\lambda = \text{diag}(3, 1, -1, -3)$ or $\lambda = \text{diag}(2, 2, -2, -2)$.

A ladder diag. consists of containers of non-constant comp. of Φ_λ.

The red point is called the origin, a blue point is called a top vertex.

A positive path is a shortest path from the origin to a top vertex in Γ_λ. (It can move \rightarrow or \uparrow)
Diagram-Face Correspondence

An admissible diagram is a subgraph of a ladder diagram Γ_λ if

1. it can be expressed as a union of positive paths.
2. it contains all top vertices

For example, $\mathcal{F}(3) \simeq \mathcal{O}_\lambda$ where $\lambda = \text{diag}(2, 0, -2)$.

\[
\begin{array}{cccc}
2 & 0 & -2 \\
2 & 0 & -2 \\
0 & 0 & -2 \\
2 & 0 & -2 \\
2 & 0 & -2 \\
\end{array}
\]

Theorem (An-Cho-Kim)

For given λ, there is a one-to-one correspondence

$$\Psi : \{\text{admissible diagrams of } \Gamma_\lambda\} \simeq \{\text{faces of } \triangle_\lambda\}$$

satisfying

- \textbf{(Order-preserving)} $\Gamma_1 \subset \Gamma_2$ if and only if $\Psi(\Gamma_1) \subset \Psi(\Gamma_2)$.
- \textbf{(Dimension)} $\dim \Psi(\Gamma)$ is the first betti number of Γ.
e.g. $\mathcal{F}(3) \simeq O\lambda$ where $\lambda = \text{diag}(2, 0, -2)$.

$x\Rightarrow \psi(\Gamma)$ is contained in the planes defined by equating two adjacent variables not divided by paths.

For a given point in $\triangle\lambda$, can tell which face contains it.
• Understand the topology of Gelfand-Cetlin fibers.

• Gelfand-Cetlin system vs Toric moment map

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Gelfand-Cetlin systems</th>
<th>Toric integrable systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>The interior</td>
<td>Lagrangian torus</td>
<td>Lagrangian torus</td>
</tr>
<tr>
<td>Not in the interior</td>
<td>Isotropic smooth mfld</td>
<td>Isotropic smooth mfld</td>
</tr>
<tr>
<td>A k-dim face</td>
<td>Not necessarily torus</td>
<td>k-dim’l torus</td>
</tr>
<tr>
<td>Not in the interior</td>
<td>Can be Lagrangian</td>
<td>Cannot be Lagrangian</td>
</tr>
</tbody>
</table>

• A submanifold Y of (X^{2n}, ω) is called *isotropic* if $\omega|_Y = 0$.
Theorem (Cho-K.-Oh)

Let $\lambda = \text{diag}(\lambda_1, \cdots, \lambda_n)$. Let Φ_λ be a Gelfand-Cetlin system on O_λ. For any $u \in \triangle_\lambda$, $\Phi^{-1}_\lambda(u)$ is the total space E_{n-1} of an iterated bundle

$$\Phi^{-1}_\lambda(u) \longrightarrow E_{n-1} \longrightarrow E_{n-2} \longrightarrow \cdots \longrightarrow E_1 \longrightarrow \{\text{pt}\}$$

$$F_{n-1} \quad F_{n-2} \quad \cdots \quad F_1$$

where F_k is either a point or a product of odd dimensional spheres.

Moreover, $\Phi^{-1}_\lambda(u)$ is an isotropic submanifold of dimension $\sum_{k=1}^{n-1} \dim F_k$.
W-blocks and M-blocks

To construct such a bundle, need the following LEGO® kit.

- **W-blocks**

 W_1, W_2, W_3, \ldots

 The origin

 Bottom vertex

- **M-blocks**

 M_1, M_2, M_3, \ldots

 S^1, S^3, S^5, \ldots
Combinatorial Procedure

- Suppose that \(u \) is in the relative interior of a face \(f \).

\(\Gamma_f \): the admissible diagram corresponding to \(f \)

1. Cut \(W_k \) along the positive paths of \(\Gamma_f \).
2. Throw away all cut blocks not containing a bottom vertex of \(W_k \).
3. Read \(F_k \) by counting \(M \)-blocks.

eg. \(\lambda = \text{diag}(2, 0, -2) \), \(O_\lambda \cong F(1, 2, 3) \), \(\Phi^{-1}_\lambda(0, 0, 0) \)? \(f = \{(0, 0, 0)\} \).
\[W_1 \quad \Gamma_f \quad W_2 \]

\[F_1 = \text{pt} \]

\[F_2 = S^3 \]

\[\Phi^{-1}_\lambda(0,0,0) \rightarrow E_2 \rightarrow E_1 \rightarrow \text{pt} \]

\[F_2 = S^3 \]

\[F_1 = \text{pt} \]

\[\Rightarrow \Phi^{-1}_\lambda(0,0,0) \simeq S^3 \]
eg. Let $\lambda = \text{diag}(3, 3, 0, -3, -3)$. Then, $O_\lambda \simeq F(2, 3; 5)$.

\[\begin{pmatrix} 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \]

W_1 $F_1 = \text{pt}$

W_2 $F_2 = S^3$

W_3 $F_3 = S^1 \times S^1$

W_4 $F_4 = S^3$

$\Phi^{-1}_\lambda(u) = E_4 \rightarrow E_3 \rightarrow E_2 \rightarrow E_1 \rightarrow \text{pt}$

$F_4 = S^3$ $F_3 = S^1 \times S^1$ $F_2 = S^3$ $F_1 = \text{pt}$

$\Rightarrow \Phi^{-1}_\lambda(u) \simeq (S^1)^2 \times (S^3)^2$
For a combinatorial test for detecting Lagrangian fibers, we define
- Boards and Extended boards

![Diagram of boards and extended boards, including...](image)

- Symmetric blocks

![Diagram of symmetric blocks, including...](image)
Theorem (Cho-K.-Oh)

The followings are equivalent.

1. the extended board \tilde{B}_λ is cut into symmetric blocks along the positive paths of Γ_f.
2. the fiber over a point in the relative interior of f is Lagrangian.
3. the fiber over any point in the relative interior of f is Lagrangian.

eg. $\lambda = \text{diag}(5, 5, 2, 0, -3, -3, -6), \mathcal{O}_\lambda \simeq \mathcal{F}(2, 3, 4, 6; 7)$
S^n-fibers, $U(n)$-fibers

- S^n-fibers

- $U(n)$-fibers, $SU(n)$-fibers
More S^n-fibers

- Get more variety of fibers if looking at G.-C. fibers of other types.

Let

$$K_2(\lambda_k) := \begin{bmatrix} 0 & -\lambda_k \\ \lambda_k & 0 \end{bmatrix}$$

$$O^B_\lambda = \{ A \cdot \text{diag}(K_2(\lambda_1), \cdots, K_2(\lambda_n), 0) \cdot A^{-1} : A \in SO(2n + 1) \}$$

$$O^D_\lambda = \{ A \cdot \text{diag}(K_2(\lambda_1), \cdots, K_2(\lambda_n)) \cdot A^{-1} : A \in SO(2n) \}$$

- S^n-fibers

```
2 0
S^2-fiber

3 0 0
S^3-fiber

4 0 0 0
S^4-fiber

5 0 0 0 0
S^5-fiber

...```

Yoosik Kim (BU)  Monotone Lagrangian tori  August 1, 2017  23 / 31
Consider the fibers over the line segment connecting centers to obtain monotone Lag. tori.

Apply the Darboux-Weinstein Theorem in order to carry Lag. tori to cotangent bundles.
Theorem (Nishinou-Nohara-Ueda)

There is one-to-one correspondence between holomorphic discs of Maslov index two bounded by a G.-C. toric fiber and facets of a G.-C. polytope $\Delta_\lambda$

By the monotonicity Lemma, holomorphic discs of small areas are fully contained in the D.-W. nbd.
\[\begin{aligned}
\pi_2(L) &= 0 \\
\pi_1(L) &= \mathbb{Z}^{df} \\
\pi_2(T^*L, T) &\simeq \mathbb{Z}^{N-d_f} \text{ where } \dim_{\mathbb{R}} \mathcal{O}_\lambda = 2N.
\end{aligned}\]

- Use the Diagram-Face correspondence.
  
  eg. Let \(\lambda = \text{diag}(2, 2, -2, -2)\). Then, \(\mathcal{O}_\lambda \simeq \text{Gr}(2, 4)\).
  
  \(\Rightarrow\) Has Lag. \(U(2)\)-fibers over 1-dimensional edge \(f\).

  \(\Rightarrow\) Four facets containing the edge.

- \(\pi_2(T^*L, T)\) is gen. by the discs corresponding to such facets.
Comparision of monotone Lagrangian tori in $T^*S^3$

- Consider two Lag. fibers in different faces that are diffeomorphic.
- What are relation between monotone Lag. tori?
  
  eg. $\mathcal{O}_A^\lambda (\lambda = \text{diag}(2,0,-2))$ vs $\mathcal{O}_B^{\lambda'} (\lambda' = \text{diag}(K_2(3), K_2(0), 0))$
Comparision of monotone Lagrangian tori in $T^*S^{2n+1}$


Assume that they have the same monotonicity constant.

Theorem (Cho-K.-Oh)

They are not related by any symplectomorphisms.

Why? Let

$$\begin{align*}
\widehat{\pi}_2(T^*L, T) &= \{\text{classes of Maslov index 2 realized by holo. discs.}\} \\
\widehat{\pi}_1(T) &= \langle\{\partial\beta : \beta \in \widehat{\pi}_2(T^*L, T)\}\rangle.
\end{align*}$$

If there were a symplectomorphism $\phi$, $\exists$ one-to-one correspondence

$$\widehat{\pi}_2(T^*L, T^A) \simeq \widehat{\pi}_2(T^*L, T^B), \quad \widehat{\pi}_1(T^A) \simeq \widehat{\pi}_1(T^B)$$

$\widehat{\pi}_1(T^B)$ cannot gen $\pi_1(T^B)$, but $\phi_\ast\widehat{\pi}_1(T^A)$ can gen. as a $\mathbb{Z}$-module.
Comparision of monotone Lagrangian tori

eg.

VS

- The first gives monotone Lag tori in $T^*(S^5 \times S^5 \times S^1 \times S^1)$
- The second gives monotone Lag tori in $T^*S^5 \times T^*S^5 \times T^*S^1 \times T^*S^1$

$\Rightarrow$ These two monotone Lag. tori are not related by symplectomorphisms. We can distinguish them by comparing open Gromov-Witten invariants.

- A monotone Lag. torus from the first bounds 14 holomorphic discs of Maslov index 2.
- A monotone Lag. torus from the second bounds 12 holomorphic discs of Maslov index 2.
Theorem (Cho-K.-Oh)

Let $u$ be in the relative interior of a face $f$ in $\Delta_\lambda$. If the board $\mathcal{B}_\lambda$ is cut into solvable blocks along the positive paths of $\Gamma_f$, then there exists a non-unitary line bundle $\rho$ such that

$$HF(\Phi_{-1}^{-1}(u), \rho) \cong H(T; \mathbb{C}).$$

In particular, $\Phi_{-1}^{-1}(u)$ is non-displaceable.
eg. $\lambda = \text{diag}(5, 5, 2, 0, -3, -3, -6)$. $\mathcal{O}_\lambda \simeq \mathcal{F}(2, 3, 4, 6; 7)$. 

\begin{align*}
\text{board } B_\lambda & \quad \text{diagram } \Gamma_f \\
\text{diagram } \Gamma_g & \quad \text{diagram } \Gamma_g
\end{align*}