

Conference on Integrable Systems and Related Areas

June 23 - 27, 2025 IBS POSTECH Campus

Organizers

Alexander Aleksandrov (IBS Center for Geometry and Physics) Anton Alekseev (University of Geneva) Sonja Hohloch (University of Antwerp) Yong-Geun Oh (IBS Center for Geometry and Physics & POSTECH) Tudor Ratiu (Shanghai Jiao Tong University)

Invited Speakers

Yunhyung Cho (Sunkyunkwan University) Giordano Cotti (Universidade de Lisboa, GEM) Holger Dullin (University of Sydney) Konstantinos Efstathiou (Duke Kunshan University) Eunjeong Lee (Chungbuk National University) Norton Lee (IBS Center for Geometry and Physics) Yanpeng Li (Sichuan University) Yu Li (University of Toronto) Jiang-Hua Lu (The University of Hong Kong) Alexander Mikhailov (University of Leeds) Rak-Kyeong Seong (Ulsan National Institute of Science and Technology) Daisuke Tarama (Ritsumeikan University) Dmytro Voloshyn (IBS Center for Geometry and Physics) Hiroaki Yoshimura (Waseda University) Registration https://cgp.ibs.re.kr/activities/registration/368

Webpage https://cgp.ibs.re.kr/conferences/2025CISRA/

Venue IBS POSTECH Campus Bldg, #301, Pohang, South Korea

Contact US Soon Ok Jung at sojung@ibs.re.kr

Morning, Monday, June 23

Time	Speaker	Title & Abstract	
10:00 – 11:00	Jiang-Hua Lu (The University of Hong Kong)	The standard cluster structure on Schubert cells from the point of view of Poisson deformation In this talk we show that the standard Poisson structure on a Schubert cell in the flag variety of a complex sem- simple Lie group is, in a sense, a master deformation of its log-canonical term, and we explain a close relation between the Poisson cohomology classes appearing in the deformation and the mutation matrix for the stand- ard cluster structure on the Schubert cell. The talk is partially based on joint work with M. Matviichuk.	
11:10 – 12:10	Yu Li (University of Toronto)	Polynomial integrable systems from cluster structures We present a general framework for constructing polynomial integrable systems on linearizations of Poisson varieties that admit log-canonical systems. Our construction is in particular applicable to Poisson varieties with compatible cluster or generalized cluster structures. As examples, we consider an arbitrary standard complex semisimple Poisson Lie group \$G\$ with the Berenstein-Fomin-Zelevinsky cluster structure; nilpotent Lie subgroups of \$G\$ associated to elements of the Weyl group of \$G\$, identified with Schubert cells in the flag variety of \$G\$ and equipped with the standard cluster structure (first defined by Geiss-Leclerc-Schr\"oer when \$G\$ is simply-laced); and the restriction of the Gekhtman-Shapiro-Vainshtein generalized cluster structure on the Drinfeld double of the Poisson Lie group \${\rm GL}(n, \mathbb C)\$ to its dual Poisson Lie group \${\rm GL}(n, \mathbb C)^*\$. In each of the three cases, we show that every extended cluster in the respective cluster structure gives rise to at least one polynomial integrable system on the respective Lie algebra with respect to the linearization of the Poisson structure at the identity element. For some of the polynomial integrable systems thus obtained, we give Lie theoretic interpretations of their Hamiltonians, and we further show that their Hamiltonian flows are complete.	

Afternoon, Monday, June 23

Time	Speaker	Title & Abstract	
14:00 – 15:00	Alexander Mikhailov (University of Leeds)		
15:10 – 16:10	Konstantinos Efstathiou (Duke Kunshan University)	Maslov \$S^1\$ bundles We introduce the Maslov \$S^1\$ bundles over symplectic manifolds \$(M, \omega)\$, that is, the determinant bun- dle \$\Gamma\$ of the unitary frame bundle over \$M\$, and the bundle \$\Gamma^2 = \Gamma / \{ \pm 1 \}\$. The usual Maslov index is defined when the bundles are trivial. We discuss the properties of the Maslov bundles focusing on the interplay between their geometry and the dynamics of symplectic group actions on \$M\$. Symplec- tic group actions can be lifted to group actions on the Maslov bundles. When \$M\$ is a homogeneous \$G\$- space, then so are \$\Gamma\$ and \$\Gamma^2\$. More- over, we provide an alternative proof of the fact that when \$M\$ is a monotone symplectic manifold then the symplectic action is Hamiltonian. In the particular case of symplectic circle actions, we define the notion of Maslov data which generalizes the notion of Maslov index to the case where the Maslov bundle is not trivial. Joint work with Bohuan Lin and Holger Waalkens.	

Tuesday, June 24

Time	Speaker	Title & Abstract	
		Discretization of Dirac structures and La- grange-Dirac dynamical systems with associ- ated variational structures	
10:00 - 11:00	Hiroaki Yoshimura (Waseda University)	In this talk, we begin with discretizing the canonical one- and two-forms on the cotangent bundle using fi- nite difference maps, which also serve to discretize nonholonomic constraints. This allows us to define a discrete Dirac structure on the cotangent bundle. Then, we discretize the higher-order geometric struc- ture known as Tulczyjew's triple on the cotangent bun- dle, and show that discretizing the Dirac differential of the Lagrangian yields a discrete Lagrange-Dirac sys- tem. Finally, we demonstrate the existence of a dis- crete Lagrange-d'AlembertPontryagin principle, and show that the corresponding discrete equations pre- serve the discrete Dirac structure together with some examples of nonholonomic systems. This is a joint work with Linyu Peng.	
		Gromov-Witten theory, isomonodromic defor- mations, and integral transforms	
		The quantum differential equations (qDEs) define a class of ordinary differential equations in the complex domain, or more precisely, isomonodromic families of such equations, whose study represents a challenging and active area in both contemporary geometry and mathematical physics. The qDEs encode rich invariants associated with smooth projective varieties.	
11:10 – 12:10	Giordano Cotti (Universidade de Lisboa, GEM)	These equations encapsulate information not only about the enumerative geometry of varieties but also, conjecturally, about their topology and complex geom- etry. The key to unlocking this wealth of data lies in the study of the asymptotics and monodromy of their so- lutions.	
		In this talk, the speaker will address the problem of ex- plicitly integrating the quantum differential equations of varieties and will report on progress in a long-term project devoted to this topic. Focusing on the case of projectivizations of vector bundles, he will first intro- duce a family of integral transforms and special func- tions (the integral kernels), and then demonstrate how to use these tools to obtain explicit integral represen- tations of solutions.	
		Based on arXiv:2005.08262 (Memoirs of the EMS, 2022) and arXiv:2210.05445 (Journal Math. Pures Appl., 2024), and arXiv:2506.xxxxx.	

Wednesday, June 25

Time	Speaker	Title & Abstract	
10:00 – 11:00	Yanpeng Li (Sichuan University)	Integrable systems, cluster algebras and symplectic groupoid. TBA	
11:10 – 12:10	Dmytro Voloshyn (IBS Center for Geometry and Physics)	Topics around Classical Yang-Baxter equa- tion. The Classical Yang-Baxter equation (CYBE) is well known in the theory of integrable systems. In the early 1980s, the non-skew-symmetric solutions of the CYBH were classified by Belavin and Drinfeld. Each solution gives rise to a Poisson bracket (BD bracket) on a sim ple complex algebraic group \$G\$. In early 2010s Gekhtman, Shapiro and Vainshtein proposed a conjecture (GSV conjecture) stating that for each BD bracket the coordinate ring \$\mathbf{C}[G]\$ carries a com patible cluster structure. Recent progress on the GSV conjecture has revealed global relations between BI brackets, in the form of Poisson rational maps. Mos recently, Yanpeng Li, Yu Li and Jiang-Hua Lu devel oped a method for constructing integrable systems from cluster structures compatible with Poisson brackets. Observations suggest that this frameworf applies to linearizations of BD brackets. In this talk, will discuss connections between these different devel opments.	

Morning, Thursday, June 26

Time	Speaker	Title & Abstract
10:00 – 11:00	Yunhyung Cho (Sunkyunkwan University)	Cluster-type structure on Fano simplices and T-singularities A combinatorial mutation of a lattice polytope is a pro- cedure producing a new lattice polytope and it is a combinatorial counterpart of a mutation of Landau- Ginzburg mirrors on a Fano manifold. In this talk, we will describe a certain cluster-type structure of a Fano simplex, which is the polar dual of a moment polytope of a fake weighted projective space. More precisely, we define a mutable facet of a Fano simplex and prove that the number of mutable facets (called the rank) are invariant under combinatorial mutation. Conse- quently, each Fano simplex gives rise to a certain rank- valent graph whose vertices and edges correspond to Fano simplices and mutations, respectively. In dimen- sion two, we will show that a Fano triangle is of full rank (i.e., three) if and only if the corresponding fake weighted projective plane admits only T-singularities.
11:10 – 12:10	Norton Lee (IBS Center for Geometry and Physics)	Dimers for Type D Relativistic Toda lattice We construct the dimer graph for the Type D Relativ- istic Toda lattice by introducing impurity to the \$Y^{2N,0}\$ square dimer. By properly placing the im- purities and change of canonical variables assigned to the 1-loops on the dimer graph, we introduce the "fold- ing" of the graphs and get the type D relativistic Toda lattice Hamiltonian and monodromy matrix.

Afternoon, Thursday, June 26

Time	Speaker	Title & Abstract	
14:00 – 15:00	Daisuke Tarama (Ritsumeikan University)	Geodesic flows on step-two nilpotent groups This talk deals with the geodesic flows of a step- nilpotent Lie groups with respect to a left-invari (pseudo-)Riemannian metric. The complete integ bility is discussed in relation to the isometries and Williamson types of relative equilibria are consider The latter analysis requires the classification of Car subalgebras in real simple Lie algebras of types B a D. Some related topics may also be mentioned. T talk is based on collaborations with Wolfram Ba and Genki Ishikawa.	
15:10 – 16:10	Eunjeong Lee (Chung- buk National Univer- sity)	On toric degenerations of flag varieties For a semisimple algebraic group \$G\$ and a Borel sub- group \$B\$, the homogeneous space \$G/B\$, called the \textit{flag variety}, is a smooth projective variety with rich connections to representation theory and combi- natorics. Although the flag variety \$G/B\$ is not neces- sarily a toric variety, one may associate a toric variety to \$G/B\$ via the theory of NewtonOkounkov bodies. For instance, the string polytopes, including Gelfand Cetlin polytopes, are known to be NewtonOkounkov polytopes of \$G/B\$. Recently, Fujita and Oya have provided a larger family of NewtonOkounkov poly- topes arising from cluster structures of \$G/B\$. In this talk, we will discuss the combinatorics of Newton Okounkov polytopes arising from cluster structures of \$G/B\$. This talk is based on several joint works with Yunhyung Cho, Naoki Fujita, Akihiro Higashitani, Yoosik Kim, and Kyeong-Dong Park.	

Friday, June 27

Time	Speaker	Title & Abstract	
		Geodesic flows on S3 and SO(3) and their quanti- sation	
10:00 – 11:00	Holger Dullin (University of Sydney)	It is well known that the sphere S3 is the double cover of SO(3). We study corresponding (quantum) integrable systems on S3 and SO(3) and their relation. Choosing a separating coordinate system for the geodesic flow on S3 induces a Liouville integrable system, which after symplectic quotient by the S1 action given by the geodesic flow induces an integrable system on S2xS2. We choose the separating coordinate system on S3 such that the induced system on S2xS2 is toric. The image of the classical momentum map on S3 is a cone over a square, containing the joint spectrum of the corresponding quantum integrable system. Repeating the construction for SO(3) also gives a cone, but with half the volume where the square is rotated by 45 degrees. The arrangement of the joint spectra is different, but of course such that Weyl's law holds in the semi-classical limit with half the number of states for SO(3). The relation of this story to spherical harmonics is discussed. Joint work with Damien McLeod.	
11:10 - 12:10	Rak-Kyeong Seong (UNIST)	Birational Transformations on Dimer Integrable Systems Dimers, also known as brane tilings, are bipartite periodic graphs on a 2-torus, that represent a Type IIB brane con- figuration in string theory, which realizes a family of 4- dimensional supersymmetric quiver gauge theories cor- responding to toric Calabi-Yau 3-folds. By Goncharov and Kenyon, these dimer models have been shown to define also integrable systems. In this talk, we illustrate a recent discovery that when two toric Calabi-Yau 3-folds and their corresponding toric varieties are related by a bira- tional transformation, the corresponding dimer models define two integrable systems, which are also birational equivalent. I illustrate this discovery with an explicit ex- ample and give also a brief overview on how this discov- ery can lead us to new results in the future. The talk is based on: https://arxiv.org/pdf/2504.21081	

Conference on I	ntegrable	Systems	and	Related Areas
-----------------	-----------	---------	-----	----------------------

CONFERECNE GENERAL INFORMATION

Meals Provided During the Conference

X If you have a companion who is not attending the conference, please arrange for separate payment.

Light morning refreshments

Some sandwiches and fruits will be provided to conference registrants from June 23rd to 27th. Time: 9:30 - 10:00 am

<u>Lunch</u>

Lunch will be provided to conference registrants from June 23rd to 27th. Menu: Lunch Box, Main menu will be slightly changed each day. Time: 12:10 pm - 13:30 pm

Excursion on June 25

PLEASE SIGN UP for the excursion at the reception desk.

Venue: Oeosa Temple Trail Time: 1:30 PM – (Departure after Lunch) Participation Fee: TBA

Dinner on June 26

PLEASE SIGN UP for the dinner at the reception desk.

Menu: TBA Restaurant: TBA Time: 5:30 ~ 7:30 PM

Shuttle Bus for the Conference

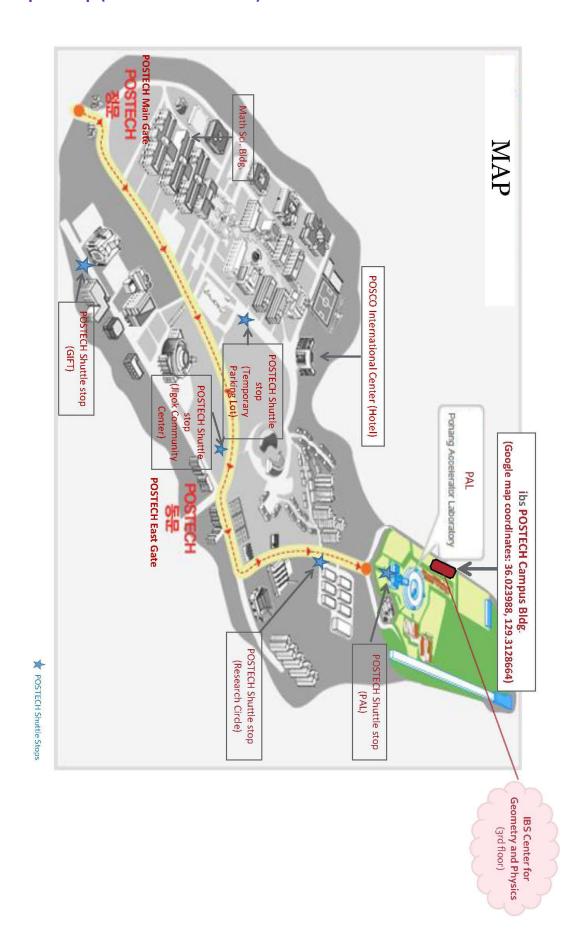
The shuttle bus will depart daily at 9:20 AM from POSCO International Center (Hotel), from June 23 (Mon) to June 27 (Fri). Route: 9:20 AM POSCO International Center (Hotel) \rightarrow 9:25 AM POSTECH HQ Bldg. (next to the flagpole) \rightarrow 9:35 AM IBS POSTECH Campus Bldg.

Please note: There will be no return shuttle service in the afternoon.

CONFERECNE GENERAL INFORMATION

Available Offices for Speakers

For speakers who need some space, please check 'OFFICE FOR THE SPEAKERS' sign on the doors around CGP area. Please understand that the office may need to be shared by two as there're limited number of rooms.


Wireless Internet Access

- Network Name: Guest_ibsWiFi
- ID: Guest_ibsWiFi
- PW: 0123456789@

Banking

Banking (Global ATM) near IBS POSTECH Campus Bldg.

• Campus Map (Location of IBS CGP):

Dining on campus

POSTECH Dining Services - Facilities Operation Time

		POSILCI	Dining Servi	ices - Facilities Operation	Time	
	Stor	e	C	peration hours	Breaktime	Closing Day
		Full- course meals (Students only)	Breakfast Lunch	07:30~09:30 (Saturday/Sunday/Holiday 08:00~09:30) 11:30~13:30	-	Open throughout the year
		Pob borgor	Dinner	17:30~19:00		Weekend/Holiday
		Bob berger	Lunch	11:30~13:30	-	weekend/Holiday
		Chinese Cuisine	Ducalifact	Not in ope	ration	
		Geu Yeo Deun	Breakfast Lunch	07:30~10:30 11:30~13:30		Weekend/Holiday
		Geu reo Deuli	Dinner	17:30~19:00	-	weekenu/honday
Jigok Com-	Haedong-	Wisdom	Diffiel	11:50~13:00		Weekend/Holiday
munity	Aurum	WISCOTT	Staff Service	08:00~02:00	-	Open throughout the
Center	Hall	GS25* (Jigok Community Center)	Self-Check- out	02:00~08:00	-	year (Closed on Lunar New Year's Day & during Thanksgiving)
		BURGER KING		11:00~20:00	-	Open throughout the year
		Monet Cafe		08:00~19:00	-	Weekend/Holiday
			Lunch	11:30~14:00		Saturday(lunch)/Sun-
		e-Sports COLOS- SEUM	Dinner	17:30~02:00	14:00 ~17:30	day/Holiday Closed on Saturdays during vacation
POS	<u>^</u>					Weekend/
Internation		The Blue Hill		11:30~13:30	-	Holiday
		GS25*	Staff Service	08:00~22:00		
Churchaut	(Stude	ent Union Bldg.)	Self-Check- out	22:00~08:00	-	Open throughout the year
Student Union Bldg	со	ffee nearme		08:00~19:00	-	Weekend/ Holiday
	Oasis	MAKKI/ Geu Yeo Deun		11:30~13:30	-	Weekend/ Holiday
Deec	vrch	GS25*	Staff Service	09:00~18:00		Open through and the
Resea Bld		(ME Engineering Lab. Bldg.)	Self-Check- out	18:00~09:00	-	Open throughout the year
		GS25*	Staff Service	08:00~22:00 (Saturday/Sunday/Holiday 10:00~19:00)		Open throughout the
Tae-Jun Pa Libra	-	Library	Self-Check- out	22:00~08:00 (Saturday/Sunday/Holiday 19:00~10:00)		year
		coffee nearme Li- brary	(Saturday/Su	08:00~21:00 nday/Holiday 10:00~17:00)	-	Open throughout the year
PAL,Scier	nce Hall	coffee nearme PAL&NINT	11:30~15:30		-	Weekend/ Holiday
	Log Ca	ibin		18:00~02:00	-	Sunday/Holiday

* GS25: Convenience Store

Message for Taxi Driver When You Arrive in Pohang

Destination	Korean Sentence for the driver	What the sentence means
IBS POSTECH Campus Bldg. * Conference Venue #301	기초과학연구원 포스텍 캠퍼스로 가주세요. (가속기 연구소 안쪽, 선형가속기 지나서) 감사합니다. 기초과학연구원 포스텍 캠퍼스 주소: 경북 포항시 남구 지곡로 127번길 79 (가속기 연구소 출입구 지나서 안쪽, 선형가 속기 지나서)	Please take me to the IBS POSTECH Campus Bldg. Thank you.
POSCO International Center (Hotel) at POS- TECH 포항공대 포스코 국제관 호텔로 가주서 감사합니다.		Please take me to the POSCO International Center (Hotel). Thank you.
IBS POSTECH Campus Bldg. via POSCO Interna- tional Center (Hotel) at POSTECH	포스코국제관 호텔에 잠시 들렀다 기초과학 연구원 포스텍 캠퍼스(가속기 연구소 안쪽, 선형가속기 지나서)로 가주세요.	Please stop by at POSCO In- ternational Center (Hotel) briefly, then take me to the IBS POSTECH Building. Thank you.
Pohang KTX Station	포항 KTX역으로 가주세요	Please take me to Pohang KTX Station.
Pohang Intercity Bus Terminal	포항 시외버스터미널로 가주세요	Please take me to Pohang In- tercity Bus Terminal.
(Waiting)	(Waiting) 여기서 잠시만 기다려주세요	
(Safety)	천천히 안전하게 가주세요	Please drive slowly and safely.

Contact

Ms. Soonok Jung sojung@ibs.re.kr Office: +82-(0)54-260-9075

Please visit our workshop website: https://cgp.ibs.re.kr/conferences/2025CISRA/

Conference on Integrable Systems and Related Areas
--

Workshop Schedule

Time	June 23 (Mon)	June 24 (Tue)	June 25 (Wed)	June 26 (Thu)	June 27 (Fri)	
9:30 - 10:00	Welcome and Registration / Breakfast					
10:00 - 11:00	Jiang-Hua Lu	Hiroaki Yoshimura	Yanpeng Li	Yunhyung Cho	Holger Dullin	
11:00 - 11:10	Break / Teatime					
11:10 - 12:10	Yu Li	Giordano Cotti	Dmytro Voloshyn	Norton Lee	Rak-Kyeong Seong	
12:10 -14:00	Lunch					
14:00 - 15:00	Alexander Mikhailov	Discussions		Daisuke Tarama	Closing & Free Discussion	
15:00 - 15:10	Break / Teatime			Break / Teatime		
15:10 - 16:10	Konstantinos Efstathiou			Eunjeong Lee		
16:10 - 16:40				Photo Session		
16:40 - 17:30				& Discussions		
17:30 – 19:30				Banquet		

Please visit our workshop website: <u>https://cgp.ibs.re.kr/conferences/2025CISRA/</u>

IBS Center for Geometry and Physics IBS POSTECH Campus Bldg. 3F 79, Jigok-ro 127, Nam-gu, Pohang Gyeongbuk, Korea 37673 Tel: +82-(0)54-260-9075 Fax: +82-(0)54-260-9109 http://cgp.ibs.re.kr